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Structural genomics programs have developed and applied

structure-determination pipelines to a wide range of protein

targets, facilitating the visualization of macromolecular

interactions and the understanding of their molecular and

biochemical functions. The fundamental question of whether

three-dimensional structures of all proteins and all functional

annotations can be determined using X-ray crystallography is

investigated. A first-of-its-kind large-scale analysis of crystal-

lization propensity for all proteins encoded in 1953 fully

sequenced genomes was performed. It is shown that current

X-ray crystallographic knowhow combined with homology

modeling can provide structures for 25% of modeling families

(protein clusters for which structural models can be obtained

through homology modeling), with at least one structural

model produced for each Gene Ontology functional annota-

tion. The coverage varies between superkingdoms, with 19%

for eukaryotes, 35% for bacteria and 49% for archaea, and

with those of viruses following the coverage values of their

hosts. It is shown that the crystallization propensities of

proteomes from the taxonomic superkingdoms are distinct.

The use of knowledge-based target selection is shown to

substantially increase the ability to produce X-ray structures.

It is demonstrated that the human proteome has one of the

highest attainable coverage values among eukaryotes, and

GPCR membrane proteins suitable for X-ray structure

determination were determined.
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1. Introduction

Knowledge of the three-dimensional structures of proteins is

essential for understanding biological processes (Harrison,

2004; Chang et al., 2013). Structures help to explain molecular

and biochemical functions, visualize details of macromolecular

interactions, facilitate understanding of underlying biochem-

ical mechanisms and define biological concepts. Structural

biology has demonstrated remarkable progress over the past

two decades (Joachimiak, 2009; Berman et al., 2012). The

human genome and follow-up sequencing projects have

revolutionized biology and medicine (Ball et al., 2012; Wilson,

2012; Edwards et al., 2013). Structural genomics (SG)

programs take advantage of this genomic information that is

rapidly becoming available for an increasingly larger set of

organisms to evaluate the feasibility of determining the

structures of a majority of protein families. The challenge is

formidable, as the number of protein sequences continues

to increase exponentially (Levitt, 2007, 2009; Kolodny et al.,

2013). The SG programs have developed and applied structure-

determination pipelines to a wide range of protein targets,

including membrane proteins (Pieper et al., 2013), and have
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used successes and failures to evaluate the feasibility of

structure determination (Structural Genomics Consortium et

al., 2008). With over a decade of efforts which have resulted in

the accumulation of high-quality data (Berman et al., 2009;

Gabanyi et al., 2011), the question arises as to how feasible it is

to obtain structural models for all protein families found in

living organisms.

According to the Protein Data Bank (PDB; Berman et al.,

2000), nearly 90% of protein structures were determined by

X-ray crystallography, with further contributions from NMR

and electron microscopy (EM). This motivates our focus on

the dominant crystallization-based structure determination.

Large-scale studies of the crystallization propensities of

proteins were initiated with the advent of the comprehensive

and well annotated experiments carried out by SG centers

(Christendat et al., 2000; Lesley et al., 2002), and the first open

database resources accessible to the scientific community were

created in the early 2000s (Rodrigues & Hubbard, 2003).

These resources were combined into centralized databases,

including TargetDB (Chen et al., 2004) and PepcDB (Protein

Expression Purification and Crystallization DataBase;

Kouranov et al., 2006), which were recently combined in the

TargetTrack knowledgebase (Berman et al., 2009; Gabanyi et

al., 2011). Initial efforts to analyze these data concentrated on

the characteristics of proteins which could be linked to crys-

tallization successes and failures (Christendat et al., 2000;

Rodrigues & Hubbard, 2003; Goh et al., 2004; Canaves et al.,

2004; Kantardjieff & Rupp, 2004; Kantardjieff et al., 2004;

Oldfield et al., 2005; Chandonia et al., 2006). These efforts were

soon followed by the development of methods that predict the

crystallization outcome of proteins: SECRET (Smialowski et

al., 2006), OB-Score (Overton & Barton, 2006), CRYSTALP

(Chen et al., 2007), XtalPred (Slabinski, Jaroszewski, Rodri-

gues et al., 2007; Slabinski, Jaroszewski, Rychlewski et al.,

2007), ParCrys (Overton et al., 2008), CRYSTALP2 (Kurgan

et al., 2009), MetaPPCP (Mizianty & Kurgan, 2009), PXS

(Price et al., 2009), SVMCrys (Kandaswamy et al., 2010), the

MCSG Z-score (Babnigg & Joachimiak, 2010), PPCPred

(Mizianty & Kurgan, 2011), XANNpred (Overton et al., 2011),

CRYSPred (Mizianty & Kurgan, 2012), SCMCRYS

(Charoenkwan et al., 2013) and XtalPred-RF (Jahandideh et

al., 2014). Recent results reveal that the predictive perfor-

mance of these methods deteriorates over time as new data

are being added and new crystallization and structure-deter-

mination protocols are being developed and implemented

(Mizianty & Kurgan, 2011). This calls for intermittent devel-

opment and advancement of new and existing crystallization

propensity predictors. Additionally, new methods must be

computationally efficient to handle the exponentially growing

protein-sequence space. To this end, we developed an accurate

and highly efficient method for the fast determination of the

eligibility of targets for crystallization (fDETECT) and

utilized it to investigate crystallization propensity and the

resulting coverage by X-ray structures of the current snapshot

of the protein universe.

Protein structure can be also predicted computationally and

such efforts have recently been executed on a genome scale

(Xu & Zhang, 2013). Arguably, the most promising compu-

tational approaches are based on homology modeling

(Ginalski, 2006). These methods rely on previously solved

structures of similar proteins, so-called templates, and the

assumption that two proteins that have similar sequences also

have similar structures. They work well since despite the large

number of unique protein sequences, there is a finite and

much lower number of structural motifs/domains that these

sequences fold into (Wolf et al., 2000; Vitkup et al., 2001;

Koonin et al., 2002; Liu & Rost, 2002). Several studies have

demonstrated that homology-modeling methods predict the

structure accurately if the sequence identity between a query

protein and a template is at least 30% (Baker & Sali, 2001;

Nair et al., 2009; Gront et al., 2012) and have a modest chance

of success for sequence identities above 25% (Ginalski, 2006;

Gront et al., 2012).

We performed a first-of-its-kind large-scale analysis

covering all (nearly 2000) known complete proteomes (the

sets of proteins thought to be expressed by an organism whose

genome has been completely sequenced, as defined in

UniProt; UniProt Consortium, 2012) and all functional and

localization annotations available in Gene Ontology (GO;

Ashburner et al., 2000) for the corresponding proteins. This

analysis provides interesting insights into our ability to obtain

X-ray structures across various proteomes and superkingdoms

of life, and quantifies the contributions of X-ray crystallo-

graphy and homology modeling towards the ultimate goal of

solving the protein-structure space.

2. Materials and methods

2.1. Data sets

We used the training and test benchmark data sets intro-

duced in previous work (Mizianty & Kurgan, 2011) to design a

new crystallization propensity predictor. To allow the accurate

prediction of native protein sequences (collected from

UniProt) we removed affinity tags (Waugh, 2005) from these

data sets. The sequence identity between chains categorized

with the same prediction outcome (crystallizable versus

noncrystallizable) in the training and test sets is below 25%;

this is in line with the evaluation protocols performed in prior

related studies (Mizianty & Kurgan, 2011; Overton et al.,

2008). To further evaluate our predictor, we used protein

structures solved by X-ray crystallography that were deposited

in the PDB (Berman et al., 2000) between 1 January 1993 and

31 December 2012 which have resolution no lower than 3.5 Å.

We filtered out redundant chains, leaving the chain from the

structure with the highest resolution. The corresponding PDB

data set consists of 50 138 nonredundant chains from 44 671

X-ray structures. The UniProt data set consists of 9 586 243

proteins (8 652 940 nonredundant) from 1953 complete

proteomes (106 archaea, 1043 bacteria, 265 eukaryotes and

539 viruses) collected from release 2012_07 of UniProt. The

proteomes were assigned to their taxonomic lineage based

on the NCBI BioSystems database (Geer et al., 2010). The

considered data sets are summarized in Supplementary
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Table S11. We also annotated proteins with Gene Ontology

(Ashburner et al., 2000) annotations where available.

2.2. Coverage by the X-ray structures and homology
modeling

To incorporate homology modeling into our analysis of the

attainable coverage by the X-ray structures, we clustered the

UniProt data set using the UClust algorithm (Edgar, 2010).

UClust could not process sequences longer than 10 000 amino

acids and thus they were removed from the analysis. We

utilized several thresholds of protein identity, including 50%,

which we used to group functionally similar chains (Addou

et al., 2009; Rentzsch & Orengo, 2013), 30%, which allows

accurate homology modeling (Baker & Sali, 2001; Nair et al.,

2009; Gront et al., 2012), and the 25% threshold that we use to

assess potential increases in the coverage based on future

improvements in homology-modeling methods. We note that

UClust generates clusters of proteins that are similar above

the predefined threshold to a reference (seed) protein in a

given cluster and that it defines similarity as the number of

identical residues in the alignment divided by the length of the

shorter sequence. This means that proteins within a given

cluster are likely to have a pairwise sequence similarity above

the threshold, although this is not guaranteed. We use this

clustering method since it provides a good trade-off between

the quality of clustering and low computational cost (Edgar,

2010), which is necessary given the large size of our UniProt

data set. Using the clustering at 30% sequence identity, each

protein sequence in a given cluster is considered ‘structurally

covered’ at a given cutoff of the crystallization propensity

score if there is at least one sequence in this cluster with a

score higher or equal to the cutoff. The structures of the

remaining sequences in that cluster could be obtained through

homology modeling. These clusters are referred to as

‘modeling families’. Moreover, the percentage values of

coverage are computed with respect to the total number of

modeling families in a given analysis, i.e. the number of

structurally solved modeling families divided by the total

number of modeling families.

To estimate the current coverage by X-ray structures, we

used the USearch algorithm to map proteins from the UniProt

data set to the PDB data set. More specifically, we found all

proteins from the UniProt data set which have at least one

target in the PDB data set which covers no less than 90% of

their sequence with no less than 90% sequence identity. As

above, we assume that a given cluster (modeling family) can

be solved by homology modeling if at least one of its members

has such a PDB target, i.e. if a template structure for homology

modeling is already available in PDB.

Supplementary Table S2 summarizes the scope of our study,

including the number of considered complete proteomes,

protein sequences and modeling families across three super-

kingdoms and viruses.

2.3. Measures to evaluate predictive quality

To estimate a correlation of inputs (features) used by our

predictors with the binary prediction outcome (crystallizable

versus noncrystallizable), we use the point biserial correlation

coefficient,

rpb ¼
MC �MNC

Sn

nCnNC

n2

� �1=2

; ð1Þ

where Sn is the standard deviation of the values of a given

feature on the entire data set of proteins (both crystallizable

and noncrystallizable), MC and MNC are the mean values for

the crystallizable and noncrystallizable proteins, respectively,

nC and nNC are the numbers of crystallizable and noncrys-

tallizable proteins, respectively, and n is the total number of

proteins.

The predictive quality of the crystallization propensity

predictors was evaluated utilizing several commonly used

measures including accuracy, sensitivity, specificity and the

Matthews correlation coefficient (MCC) (Overton & Barton,

2006; Overton et al., 2008, 2011; Kurgan et al., 2009; Kanda-

swamy et al., 2010; Mizianty & Kurgan, 2011, 2012; Charoen-

kwan et al., 2013). Receiver operating characteristic (ROC)

curves are typically used to evaluate the numerical propensity

scores associated with the predictions of binary outcomes.

Using each unique propensity value generated by a given

classifier as a threshold, all predictions with scores that are

equal or greater than a given threshold are set as the predicted

positives (crystallizable proteins) and all other proteins are set

as the predicted negatives (noncrystallizable proteins). Next,

the TP rate and FP rate are calculated and plotted on a two-

dimensional graph to form the ROC curve. We compute the

area under the ROC curve (AUC) to quantify the predictive

quality. Higher AUC values correspond to higher quality of

predictions.

2.4. Design of fDETECT

We used a machine-learning approach and annotated (with

the prediction outcomes) data from the training data set to

build the fDETECT prediction model. Our model predicts

whether a given input protein chain would yield or fail to yield

a high-quality crystal structure. It also outputs the propensity

of crystallization, which is higher for chains that are predicted

to crystallize and lower for chains that are predicted to fail to

crystallize. We converted each amino-acid sequence into a

fixed-sized array of numerical features that represent various

physicochemical characteristics of this chain. These features

are inputted into the fDETECT model to generate the

predictions; the model cannot directly use the protein chain as

the input since it has variable size. We considered a compre-

hensive set of features and empirically selected and used a

subset of relevant (to the prediction of crystallization

propensity) subset of features utilizing the training data set.

We also evaluated several machine-learning algorithms on the

training data set to select the model that provides the highest

predictive performance.

feature articles

Acta Cryst. (2014). D70, 2781–2793 Mizianty et al. � Covering complete proteomes with X-ray structures 2783

1 Supporting information has been deposited in the IUCr electronic archive
(Reference: DZ5333).



2.4.1. Features. We considered a comprehensive set of

features when designing our predictor. In total, we analyzed

1276 features that were computed utilizing amino-acid indices

from the AAIndex database (Kawashima et al., 2008), moti-

vated by the work described in Mizianty & Kurgan (2011),

protein characteristics such as absorption, instability, net

charge, extinction and isoelectric point, amino-acid groupings

based on their physicochemical properties, disorder predic-

tions with the IUPred method (Dosztányi et al., 2005) and

predictions of low-complexity regions (Wootton & Federhen,

1993). The designed features cover global protein properties

(e.g. the average value of the index over the whole protein

sequence and the number of sequence segments with a given

characteristic) as well as local characteristics (e.g. the maximal/

minimal value of an index over all sliding segments composed

of consecutive residues). The list of features with detailed

descriptions is available in xS1 of the Supporting Information.

2.4.2. Feature selection. Feature selection was implemented

using two steps: (i) the removal of irrelevant and redundant

features and (ii) wrapper-based feature selection which selects

a subset of remaining features to maximize the predictive

performance on the training data set.

In the first step, the 1276 considered features were filtered

to remove features that have weak or no correlation with the

predictive outcome and which are cross-correlated with each

other. We removed features with a biserial correlation with the

outcome (crystallizable versus noncrystallizable) lower than

double the value of the average biserial correlation in the set

of all considered features. Removal of cross-correlated

features produced a subset of the remaining features for which

all possible pairs of features have Pearson correlations below

0.7 (58 features) and below 0.3 (11 features), which are utilized

in the second step to perform wrapper feature selection and

the parameterization of classifiers utilized in the wrappers,

respectively.

In the second step, we considered three popular types of

classifiers: support vector machine (SVM), logistic regression

with ridge estimator and normalized Gaussian radial basis

function (RBF) network. For the SVM classifiers we consid-

ered linear, polynomial, RBF and sigmoid kernels. Each

classifier (and kernel in the case of SVM) was parameterized,

using the 11 features selected in the previous step, in order to

maximize the AUC measure on the training data set. Using

each of these optimized classifiers, we performed feature

selection with the 58 features. Starting with the feature with

the highest biserial correlation, we kept adding the subse-

quently ranked, according to the biserial correlation, features

to the selected set of features if the addition of a given feature

improved the AUC score.

These two steps were performed using fivefold cross-

validation on the training data set. The correlations of features

were computed as average values over the five training folds,

and the AUC values of the classifiers were computed as

averages over the five test folds. We maximized the AUC score

that evaluates predicted propensities.

We evaluated all considered setups based on their predic-

tive quality and their runtime; the results are presented in

Supplementary Table S3. The difference between the best and

worst AUCs was only 0.04. We selected the logistic classifier

with 11 features to implement fDETECT since this design

is three orders of magnitude faster than the best-performing

setup and its AUC score was worse only by 0.001. The set of 11

features that were empirically selected and used in fDETECT

is discussed in xS2 of the Supporting Information. We

demonstrate that these features are well grounded in the

literature and have been shown to be markers of crystal-

lization outcomes. Our study formulates a novel combination

of these characteristics that can be calculated quickly and

which offers competitive levels of predictive performance for

the prediction of crystallization propensity.

2.5. Evaluation

We evaluated fDETECT on the test data set and compared

it with a comprehensive set of existing methods including

OB-Score (Overton & Barton, 2006), XtalPred (Slabinski,

Jaroszewski, Rodrigues et al., 2007; Slabinski, Jaroszewski,

Rychlewski et al., 2007), CRYSTALP2 (Kurgan et al., 2009),

MetaPPCP (Mizianty & Kurgan, 2009), SVMCrys (Kanda-

swamy et al., 2010) and PPCPred (Mizianty & Kurgan, 2011).

The results given in Table 1 show that fDETECT gave the

highest AUC score and the second best accuracy and MCC.
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Table 1
Comparison of fDETECT and other predictors of crystallization propensity on the test data set.

Results are sorted according to the AUC score; the best value for each measure is given in bold. Results are reported as average (avg) and standard deviation (std)
values over 100 repetitions that utilize 50% of the test data-set data that were selected at random; + or � in the sig columns denotes results that are statistically
significantly worse or better than the corresponding result from fDETECT using a p-value of 0.05. The significance of differences was computed with the Student’s
paired t-test if the distributions were normal or with the Wilcoxon test otherwise. Distribution type was verified using the Anderson–Darling test.

Runtime per protein (ms) Accuracy (%) MCC Specificity (%) Sensitivity (%) AUC

Method avg std sig avg std sig avg std sig avg std avg std avg std sig

fDETECT 0.8 0.0 70.6 0.8 0.354 0.017 75.8 0.8 60.3 1.5 0.754 0.009
PPCpred 152912.9 1438.1 + 71.8 0.8 � 0.361 0.017 � 79.7 0.8 56.0 1.5 0.741 0.009 +
XtalPred† 70624.4 1008.6 + 53.3 0.9 + 0.248 0.016 + 36.0 1.0 87.6 1.1 0.665 0.011 +
CRYSTALP2 0.3 0.0 � 56.6 0.8 + 0.202 0.015 + 48.5 0.9 72.6 1.3 0.658 0.010 +
SVMcrys 153.3 0.7 + 56.5 0.8 + 0.223 0.017 + 46.5 1.0 76.5 1.4 0.615 0.009 +
OBScore 64 0.2 + 47.2 0.9 + 0.130 0.017 + 29.3 1.0 82.7 1.1 0.569 0.010 +
ParCrys‡ N/A N/A N/A 48.3 0.8 + 0.105 0.016 + 34.5 0.9 75.9 1.1 0.557 0.010 +

† The XtalPred results were obtained from a web server; the time estimation may be inaccurate. ‡ ParCrys is available as a web server and we could not estimate its time efficiency.



The analysis reveals that fDETECT, while having comparable

predictive performance to the best-performing PPCpred, is six

orders of magnitude faster than this method and the next best

predictor XtalPred. Although fDETECT is slightly slower

than CRYSTALP2, it gives accuracy, MCC and AUC values

which are significantly higher.

We also evaluated fDETECT on the PDB data set. Inter-

estingly, our analysis reveals a trend between the resolution of

the crystal structures and our predicted propensity. A higher

score on average indicates that the corresponding structure

has better resolution (Supplementary Fig. S1).

Our method was also validated by showing that the average

crystallization propensities computed for chains with struc-

tures in the PDB (resolution < 3.5 Å) are higher than the

average scores for all chains from the same proteomes

(Supplementary Fig. S2). The positive value of the relative

difference denotes that the scores for the PDB structures are

higher than for all chains from the same proteomes. We

observe two trends: (i) the relative differences are lower for

bacterial proteomes, which overall have a high propensity for

crystallization, and (ii) the relative differences are high for

eukaryotes, i.e. the already solved structures have a substan-

tially higher propensity for crystallization compared with the

overall propensity; this means that the chains that remain to

be solved are harder to crystallize.

2.6. Normal skewed distribution fitting

We fitted a normal skewed distribution to model the

distribution of median crystallization scores for three super-

kingdoms (Supplementary Table S4). We used the SN package

for the R language to fit and generate the distributions.

3. Results

Utilizing fDETECT, we analyzed crystallization propensity

for a snapshot of the protein universe which consists of

8 652 940 nonredundant proteins encoded in 1953 complete

proteomes (106 archaea, 1043 bacteria, 265 eukaryotes and

539 viruses) available in the 2012_07 release of the UniProt

database (details of protein/species distribution are given in

Supplementary Table S2). Our analysis aims to reveal the

maximum attainable coverage by X-ray structures, which

combines the current protocols for crystallization-based

structure determination (through the use of crystallization

propensity) and homology modeling. The majority of the

analysis, unless otherwise stated, was performed on the

protein data sets clustered at 30% sequence identity, a

threshold which is typically considered as the minimum for

accurate homology modeling (Baker & Sali, 2001; Nair et al.,

2009; Gront et al., 2012). Each protein sequence cluster is

considered to be ‘structurally covered’ at a given cutoff of the

crystallization propensity score if there is at least one

sequence in this cluster with a score higher or equal to the

cutoff; hence, all remaining protein structural models could be

obtained through homology modeling. We refer to these

clusters as ‘modeling families’.

We divide the proteomes into three superkingdoms of life,

archaea, bacteria and eukarya, and separate viral proteins into

archaeal, bacterial and eukaryotic viruses; the latter was

motivated by substantial differences in their crystallization

propensities. Moreover, we include propensity data for two

eukaryotic organelles: chloroplasts and mitochondria. We also

estimate the coverage by X-ray structures across all GO

annotations including molecular functions, biological

processes and cellular components. Finally, we present the

results for two case studies of high biological interest and

biomedical impact: the Homo sapiens proteome and G-

protein-coupled receptors (GPCRs), a family of transmem-

brane proteins. The H. sapiens proteome analysis reveals the

current level of coverage by X-ray structures and provides an

estimate of the attainable coverage using current crystal-

lization and structure-determination protocols and homology-

modeling algorithms. The analysis of GPCRs not only

confirms that this family of proteins is highly challenging to

crystallize, but also shows a possible application of our method

in target selection as it is able to identify targets which are

likely to be more suitable for crystallization. We chose GPCRs

for our case study since this is a biomedically important family

of membrane proteins involved in cellular signalling that

encodes roughly 21% of the genes of known function (Roth,

2005; Schwartz & Hubbell, 2008) and represents 50–60% of

current drug targets (Lundstrom, 2009). The numbers of

considered complete proteomes, proteins, modeling families

and GO annotations are summarized in Supplementary

Table S2.

3.1. Attainable coverage by X-ray structures of modeling
families

There are 1 734 048 modeling families in the set of 8 652 940

nonredundant proteins present in the 1953 complete

proteomes. Fig. 1(a), which summarizes the coverage that is

attainable by combining X-ray crystallography and homology

modeling, shows that the three superkingdoms have a very

different overall propensity for crystallization. Archaeal

proteomes have the highest propensity (these proteins are the

easiest to crystallize), eukaryotic proteomes have the lowest

(the hardest to crystallize) and bacterial proteomes fall in

between. Fig. 1(a) also reveals that organisms in each super-

kingdom express a large fraction of proteins that have high

crystallization propensity scores and should be relatively easy

to crystallize. We evaluated the propensity scores for a

representative set of 50 138 nonredundant protein chains that

have high-quality structures in the PDB (see the ‘PDB data

set’ in x2) to define a cutoff score that corresponds to a high

likelihood of proteins being successfully crystallized and

producing structures. We clustered these proteins at 30%

sequence identity to avoid bias towards folds that are over-

represented in the PDB and computed the cutoff value as the

median over the average scores computed per cluster, which

equals 0.498. This value is similar to the median value of the

propensity for the crystallizable proteins in the benchmark

test set used to evaluate fDETECT, which was 0.45. Assuming
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that proteins with scores higher than 0.498 are likely to be

solvable via X-ray crystallography, the corresponding

coverage by the X-ray structures varies by superkingdom and

ranges from 19% of the modeling families in eukaryotes to

49% for archaea, with an overall coverage over all super-

kingdoms of 25%. We note that the coverage values are

substantially higher (40% for eukaryota, 81% for archaea and

55% overall) if we assume that modeling families with

members that have a propensity above the 25th centile of the

propensities of proteins in the PDB, which is 0.268, would be

solvable. Interestingly, proteins encoded by viruses show two

distinct distributions. Viruses that infect eukaryotic organisms

contain proteins with propensities similar to those of their host

organisms. Viruses that infect bacteria or archaea have higher

crystallization propensity values that are similar to the

propensities of archaeal proteins. Moreover, proteins from

mitochondria and chloroplast organelles, which are believed

to have evolved from engulfed prokaryotes that once lived as

independent organisms, show a high propensity similar to

those of archaea and bacteriophages. Supplementary Fig. S3

shows the same analysis but considering all proteins instead of

the modeling families. Although the relative differences in the

coverage over different superkingdoms are similar, the values

of the coverage are lower and are 6% for eukaryota, 31% for

archaea and 14% overall. This suggests that homology

modeling provides a substantial contribution towards the

coverage, i.e. a modeling family is covered if at least one

member can be solved and the structures of the remaining

members are assumed to be predictable.

Fig. 1(b) demonstrates that eukaryotic organisms have

larger complete proteomes, as measured by their number of

modeling families. It suggests that as the number of substan-

tially different protein sequences (i.e.

modeling families) expands in these

genomes their crystallization propensity

becomes higher on average. This is

confirmed by a modest (0.24) correla-

tion between the number of modeling

families in eukaryotes and their crys-

tallization propensity.

3.2. Propensity for crystallization of
complete proteomes

We calculated the crystallization

propensities of a subset of 1486

complete proteomes that have at least

100 modeling families (Supplementary

Table S2); each proteome is represented

by its median crystallization propensity

score across its modeling families

(Fig. 2). Similar to the results in

Fig. 1(b), the crystallization propensities

of the complete proteomes grouped by

the three superkingdoms form different

and distinct distributions; however,

further details emerge. The bacterial

and archaeal superkingdoms have

proteomes with the broadest histograms

of scores and with relatively high and

low propensities. The propensities of

bacterial proteomes overlap with those

of archaeal and, to a smaller extent,

eukaryotic proteomes. The propensities

for archaeal and eukaryotic proteomes

show almost no overlap. The histograms

are bell-shaped and can be fitted by

normal distributions (see inset in Fig. 2).

Our results suggest that each super-

kingdom includes proteomes that may

be easier or harder to crystallize. As

suggested in Fig. 1(a), viruses show a

‘bimodal’ histogram and map into two
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Figure 1
The coverage that is attainable by combining X-ray crystallography and homology modeling for
modeling families. (a) The relationship between the crystallization propensity score and the
corresponding coverage by X-ray structures for modeling families (i.e. a given modeling family is
considered as having a structural model when any of its members has a crystallization score above a
given cutoff) in a combined set of all considered complete proteomes, in eukaryotes, bacteria,
archaea and viruses and in proteins located in chloroplasts and mitochondria. The vertical lines
show the cutoff values that correspond to the 25th centile, the median and the 75th centile of the
crystallization propensity scores of the clustered proteins from the PDB data set. (b) Scatter plot of
the median propensity scores of complete proteomes grouped by their superkingdoms against the
corresponding number of modeling families (y axis on a logarithmic scale). The scatter for each
superkingdom was linearly fitted (thin line) and the corresponding Pearson correlation coefficient
(PCC) is shown. Smaller proteomes (<100 modeling families) and viruses that also mostly include
small proteomes were excluded to assure statistically sound estimates of propensities.



distinct clusters (see the inset in Fig. 2). Eukaryotic viruses

have proteomes with eukaryote-like propensities and bacter-

iophages have propensities that are similar to those of

archaeal and bacterial proteomes (the number of modeling

families in archaeal viruses is small and thus they were

excluded from this analysis). Therefore, it appears that the

crystallization propensities of viral proteomes co-evolved with

and show properties that are similar to the host proteomes in

their respective superkingdom.

3.3. Attainable coverage by X-ray structures of complete
proteomes

Fig. 3(a) plots the attainable coverage by combining X-ray

crystallography and homology modeling of modeling families

in complete proteomes using several scenarios. As we

discussed earlier, we assume that a given modeling family is

covered by X-ray structure(s) if it includes at least one protein

with a crystallization propensity above the median propensity

of clustered proteins from the PDB data set (proteins with

such high scores are likely to be solvable via X-ray crystallo-

graphy); the remaining structures in that family can be

obtained using homology modeling. The results for 1486

complete proteomes that have over 100 modeling families are

compared and grouped into the three superkingdoms and

viruses. The ‘PDB coverage’ plot shows the coverage by X-ray

structures of these proteomes (each point corresponds to one

complete proteome) using structures currently available in the

PDB and homology modeling. The ‘random target selection’

plot shows the attainable coverage by X-ray structures when

protein sequences are selected at random for structure

determination instead of selecting the chains with the best

crystallization propensity scores. This is intended to represent

the coverage that could be achieved using a more traditional

way of selecting protein targets when the crystallization

propensity score is not used to prioritize targets for structure

determination but instead an arbitrarily chosen chain is

solved. The top two plots in Fig. 3(a) show the coverage by

X-ray structures that can be obtained when structures of all

solvable modeling families (i.e. with scores above the median

score for the PDB structures clustered at 30% sequence

identity) are available and homology modeling is used to

generate additional models using different sequence-identity

cutoffs. With these assumptions and the 30% sequence-iden-

tity homology-modeling cutoff, virtually all bacterial and

archaeal proteomes as well as bacterial viruses can be struc-

turally covered by X-ray structures at above 50%. However,

the majority of eukaryotes and eukaryotic viruses show

coverage substantially below 50%. There is a visible decline in

coverage between bacterial, bacterial virus and archaeal

proteomes and the lower part of individual plots (eukaryotic

viruses and eukaryotes). To account for the projected

improvements in homology modeling, proteomes were clus-

tered at a 25% sequence-identity cutoff. The coverage by X-

ray structures increases by a substantial margin, on average

about 10%, with the improved homology modeling for

proteomes from all superkingdoms. Assuming that homology

modeling would generate high-quality structures at 25%

sequence identity, which should be possible based on the

analysis of Gront et al. (2012), the coverage increases to over

60% of modeling families for most bacteria and archaea and to

over 40% for most proteomes, except for some eukaryotes and

eukaryotic viruses, for which the coverage would be >20%. We

also considered clustering proteins at the 50% sequence-

identity cutoff; the function of proteins

is conserved at this sequence identity

(Addou et al., 2009; Rentzsch &

Orengo, 2013). We observe that the

corresponding attainable coverage by

X-ray structures of most eukaryotes is

fairly low (below 25%); however, some

eukaryotic organisms (red points in the

‘50% seq ident’ line in Fig. 3a),

including human, have modest levels of

coverage of close to 40%.

Fig. 3(b) shows how the coverage by

X-ray structures has changed over time.

We observe a marked difference in the

coverage values of archaeal proteomes,

which in the early days were among the

lowest and have substantially improved

over the last decade. In contrast, the

coverages of eukaryotes and bacteria

remain at the same levels relative to

each other. We also note a substantial

increase in coverage after the year 2000,

which coincides with the creation of the

Protein Structure Initiative (PSI).

Interestingly, although the coverage by
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Figure 2
Histograms of the median crystallization propensities of the considered 1486 complete proteomes.
Median crystallization propensities were computed across modeling families in each proteome
assuming that a given family is represented by the highest score of its members. Modeling families
were computed at the individual proteome level to exclude bias from the presence of sequence
orthologs in other proteomes. The x axis is binned in intervals of 0.02 in width. The insets in the
upper right corner show histograms for each of the three superkingdoms and fitted normal skewed
distributions (lines), except for viruses, for which there are too few data points to fit the distribution.
Smaller proteomes (<100 modeling families), which includes all proteomes of viruses that infect
archaea, were excluded to assure statistically sound estimates of propensities.



X-ray structures of eukaryotic organisms remains lower than

for the other two superkingdoms, the human proteome has

enjoyed relatively higher improvements in coverage, espe-

cially in the last decade (see inset in Fig. 3b). This is a

remarkable achievement given that

human proteins are substantially harder

to solve via X-ray crystallography

compared with proteins that have

already been structurally solved (see

x3.5).

These results demonstrate that major

technological advances in experimental

protein structure determination will be

needed to make a greater impact on the

coverage. They also show that the use of

target selection and prioritization based

on the crystallizability propensity score

allows coverage by the X-ray structures

to be substantially improved by 25–40%

and makes structural models available

to the community for more protein

families.

3.4. Coverage by the X-ray structures
of GO functional annotations

An important issue to consider is

how many structures of proteins with

different functions can be obtained

through X-ray crystallography and

computational approaches. We calcu-

lated the coverage by the X-ray struc-

tures of functions, as represented by GO

annotations, for the 1953 complete

proteomes. Each GO annotation is

represented by a set of proteins with

this annotation. To accommodate the

added value of homology modeling, we

clustered the UniProt data set at 30%

sequence identity to define modeling

families and we mapped annotated

proteins to these clusters. In the 2012_07

release of the UniProt database that we

utilized there are 4 960 913 non-

redundant proteins with 4719 unique

GO annotations that have at least 20

modeling families (57% of all consid-

ered protein sequences); a detailed

breakdown of the number of considered

GO annotations is given in Supple-

mentary Table S2. The reason for

limiting our analysis to annotations with

higher counts is to accommodate the

incompleteness of the GO annotations

and to produce statistically sound

estimates. Assuming that a given

annotation has at least one of its

structures available based on the

attainable coverage that combines
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Figure 3
Coverage by X-ray structures for the considered 1486 complete proteomes grouped into the three
superkingdoms of life and viruses. (a) The current coverage (‘PDB coverage’ plots) and the
attainable coverage by combining X-ray crystallography and homology modeling (the remaining
plots) of individual proteomes (shown using points) which are grouped into lines depending on the
specific criteria used. The x axis lists all considered proteomes that are sorted based on their
coverage by X-ray structures; colors/markers of points indicate their taxonomic category. The
coverage quantifies the fraction of modeling families in a given proteome that currently are or can
be structurally solved. A given modeling family can be structurally covered if it includes at least one
protein with a crystallization propensity above the median propensity of the clustered proteins from
the PDB; the remaining structures in that family can be obtained using homology modeling. The top
two lines show the coverage when modeling families are established based on different levels of
sequence identity (25 and 30%); 30% corresponds to the current limits of homology modeling. The
‘50% seq ident’ line is used to analyze proteins families that share similar functions. The line labeled
‘random target selection’ shows the coverage by X-ray structures where targets in a given modeling
family are selected at random instead of using the chain with the highest crystallization propensity.
The two lines labeled ‘PDB coverage’ refer to the actual (current) coverage based on homology
modeling (assuming the ability to predict structures at 30 or 50% identity) using existing structures
in the PDB as templates. The dotted red line indicates the position of the human proteome. Smaller
proteomes (<100 modeling families) were excluded to assure statistically sound estimates of
propensities. (b) Changes in the coverage by X-ray structures over time. The four lines labeled with
dates refer to the actual coverage based on homology modeling (assuming the ability to predict
structures at 30% identity) using structures available in the PDB at a given time as templates.
The inset shows the growth of average coverage aggregated for all considered proteins, each
superkingdom, viruses and human proteins.



X-ray crystallography (the crystallization propensity score is

above the median score of the clustered PDB structures) and

homology modeling (using a 30% sequence-identity cutoff to

provide the predicted structure), virtually all annotations can

be structurally covered across all superkingdoms (see solid

lines in Fig. 4a).

However, when considering that a given GO annotation is

structurally covered when at least half of its modeling families

have a structure, the coverage varies considerably between

superkingdoms, with 40% for eukaryotes, 47% for bacteria,

63% for archaea and no coverage for viruses (see dashed lines

in Fig. 4a). Fig. 4(a) also demonstrates that it would be unli-

kely that structures would be obtained for all modeling

families in each GO annotation; the corresponding coverage

by the X-ray structures approaches 0% for bacteria, eukary-

otes and viruses, and is only about 1% for archaea (Fig. 4a,

dotted lines). This is because most of the GO annotations

include modeling families with a low crystallization propensity

score that may be very hard to crystallize and determine a

structure. Among the most challenging functional families are

membrane proteins such as ryanodine-sensitive calcium-

release channels, voltage-gated calcium channels and G-

protein-coupled acetylcholine receptors.

In Fig. 4(b) we show how many GO annotations (y axis)

have at least a given fraction of modeling families amenable to

solution of their structures (x axis). These data are analyzed

for each superkingdom of life and viruses. For instance, for

eukaryotic species by following the red line we observe that

80% of GO annotations (y axis) have at least 30% of their

modeling families (x axis) solvable and only 20% of the

annotations (y axis) have at least 58%

of the families amenable to structure

determination.

The results can be divided by a

particular type of annotation, such as

cellular components, molecular func-

tions and biological processes (Supple-

mentary Figure S4). The attainable

coverage by the X-ray structures values

per annotation type follow the same

trends as in Fig. 4(a) that combines all

GO functional annotations.

3.5. Analysis of the human proteome

Obtaining structures or accurate

homology models for human proteins is

clearly of high importance. The results

of the analysis of the complete

H. sapiens proteome are summarized

in Figs. 3(a) and 5. The values of the

current and the attainable coverage by

X-ray structures for the complete

H. sapiens proteome given in Fig. 3(a)

(dotted red lines) are among the highest

in the eukaryotic proteomes. We esti-

mate the current coverage (based on

PDB structures and homology

modeling) to be 14% of modeling

families and 26% of proteins, i.e. the

already covered modeling families are

relatively large. Out of 70 101 human

proteins, 6603 have structures in the

PDB and a further 11 804 can be

predicted by homology modeling. To

compare, recent work that collected

human protein structures (using PDB

depositions and predicted structures) to

predict protein–protein interactions

reported a similar coverage of 28%

(Zhang et al., 2012). Fig. 3(a) reveals

that the coverage can be substantially
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Figure 4
Functional coverage (fraction of structural families with given GO annotations that can be solved
with X-ray structures) of the considered 4719 GO annotations across the three superkingdoms of
life and viruses. Proteins with given GO annotations were mapped into modeling families. (a)
Results on assuming that a GO annotation is covered when a given fraction of its structural families
is solved. The solid lines assume that a given GO annotation is covered when one or more of its
annotated modeling families has an obtainable structure. The dashed/dotted lines assume that a
given annotation is covered when at least 50%/all of its modeling families are structurally covered.
The vertical lines show the cutoff values that correspond to the 25th centile, the median and the 75th
centile of the crystallization propensity scores of the clustered proteins from the PDB data set. (b)
Analysis of how many GO annotations in a given superkingdom (y axis) have at least a given
fraction of modeling families amenable to structure solustion (x axis). We assume that a given
modeling family can be structurally covered if it includes at least one protein with a crystallization
propensity above a cutoff value provided on the x axis in (a) or above the median score (0.498) for
the PDB structures clustered at 30% sequence identity in (b); the remaining structures in that family
can be obtained using homology modeling. To assure statistically sound estimates and to
accommodate for the incompleteness of the GO annotations we limited analysis to annotations with
at least 20 modeling families.



improved to 49% of modeling families assuming that all

human proteins with high crystallization propensities (above

the median score computed for the PDB structures) will be

solved and the corresponding modeling families will be

predicted via homology modeling. Assuming that homology

modeling would be successful at 25% sequence identity, the

coverage would further increase to 59%. Interestingly, solving

the structures of human proteins selected at random from each

modeling family would lead to an estimated coverage of 5% of

the modeling families, which is lower than the current

coverage. This is owing to the fact that proteins in H. sapiens

are relatively difficult to crystallize; their median crystal-

lization propensity is 0.28 compared with a median score for

the clustered PDB structures of 0.498.

The coverage by X-ray structures of GO functional anno-

tations in human proteins is presented in Fig. 5(a), whereas

Fig. 5(b) compares the actual (based on structures presently

available from the PDB) and the attainable coverage values

for these GO annotations. Assuming that a given GO anno-

tation is structurally covered if at least one of its proteins has

an attainable structure (by combining X-ray crystallography

and homology modeling at 30% sequence identity), one can

structurally cover virtually all annotations in the human

proteome (Fig. 5a). This is also consistent with Fig. 4(a)

(‘Eukaryota 1’ plot). The coverage slightly decreases to about

80% overall if one assumes that at least half of the modeling

families for a given annotation must have a structural model.

However, the coverage decreases to nearly 0% if one wants to

fully cover each annotation (i.e. to

generate structures for all of its

modeling families). This suggests that

for virtually all annotations in the

human proteome there are modeling

families whose structures will be very

difficult to obtain. Taken together, the

results on the human proteome indicate

higher coverage than for a generic set of

eukaryotic proteomes (see Fig. 4a). In

Fig. 5(b) we show that the current

coverage of functional annotations in

the human proteome (based on struc-

tures in the PDB) is fairly low.

Following the black line, 90% of anno-

tations (y axis) have a coverage of at

least 6% (x axis), while only less than

10% of annotations (y axis) have a

coverage of over 35% (x axis).

However, using X-ray crystallography

and homology modeling the coverage

can be substantially improved. Based on

the red line (i.e. using the cutoff that

assumes that a structure can be

obtained if the corresponding crystal-

lization propensity is larger than a

median propensity of the clustered

structures from the PDB data set), 90%

of annotations (y axis) would have at

least 42% coverage (x axis) and 50%

would have at least 58% coverage.

These coverage values are again larger

than the corresponding values

computed over all eukaryotes (red line

in Fig. 4b).

3.6. Analysis of GPCRs

24 730 members of the GPCR family

were clustered at 30% identity and their

attainable coverage by X-ray structures

was analyzed per corresponding

modeling family (Fig. 6). The coverage
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Figure 5
Coverage by X-ray structures of GO annotations in the H. sapiens proteome. (a) Functional
coverage of the H. sapiens proteome (number of GO annotations with X-ray structures divided by
the number of all available GO annotations in H. sapiens). The colors of the lines correspond to the
results for all GO annotation types (all) and for biological processes (P), molecular functions (F)
and cellular components (C) annotations. Human proteins with given GO annotations were mapped
into modeling families. A given modeling family can be structurally covered if it includes at least
one protein with a crystallization propensity above the cutoff value provided on the x axis; the
remaining structures in that family can be obtained using homology modeling. The solid lines
assume that a given GO annotation is covered when one or more of its annotated modeling families
has an obtainable structure. The dashed/dotted lines assume that a given annotation is covered
when at least 50%/all of its modeling families are structurally covered. The vertical lines show the
cutoff values that correspond to the 25th centile, the median and the 75th centile of the
crystallization propensity scores of the clustered proteins from the PDB data set. To assure
statistically sound estimates we limited analysis to the annotations with at least 20 modeling families.
(b) The current (black line) and the attainable (violet, red and yellow lines) coverage by X-ray
structures of the annotated proteins in the complete H. sapiens proteome. The y axis shows the
percentage of annotations which have at least x% of their modeling families covered, where the
value of x is given on the x axis. Lines labeled as the 25th, 50th and 75th centiles are the coverage by
X-ray structures when we assume that a given protein can be solved if its score is higher than the the
25th, the 50th (median) and the 75th centile, respectively, of propensity scores of the clustered
structures from the PDB data set.



values of GPCRs (dark red line) are substantially lower than

for eukaryotic families (red line) and all considered modeling

families (gray line). GPCRs for which structures are already

available in the PDB show relatively high crystallization

propensity scores (dashed line) and this demonstrates that

they could be identified and selected for structural studies

using fDETECT. However, some of these structurally solved

GPCRs are engineered protein fragments which may result in

the production of protein chains with higher crystallization

propensity scores. Assuming that GPCRs with crystallization

propensities above the median propensity of clustered chains

with structures in the PDB can be structurally solved,

the combined use of X-ray crystallography and homology

modeling that uses only GPCRs would fail to provide any

structures of known modeling families of GPCRs (see the dark

red line, crystallization propensity score of 0.498). The orange

line, which shows the attainable coverage by the X-ray

structures when homology modeling utilizes proteins from

other protein families, shows a substantial improvement, with

a coverage of 16.7%. We found some GPCR chains that have

high propensities and their structures should be substantially

easier to solve (see inset in Fig. 6). These 26 GPCRs with fairly

high scores above 0.3 are given in Supplementary Table S5.

4. Discussion

Although nature does not impose evolutionary pressure on

protein sequences to improve their crystallization properties,

it has been shown experimentally that many proteins can form

ordered crystals that can be used to elucidate their atomic

structures. Can we identify and rank these proteins and

rationally select the best proteins for structural studies via

X-ray crystallography? Our analysis shows that different

completely sequenced proteomes vary substantially in their

propensity for crystallization. It also appears that proteomes

from the taxonomic superkingdoms

have distinct crystallization propen-

sities. These propensities can be fitted

with a normal skewed distribution,

where archaeal proteomes show the

highest propensities (mean = 0.39),

bacterial proteomes show intermediate

values (mean = 0.33) and eukaryotic

proteomes show the lowest scores

(mean = 0.14) (Fig. 2; Supplementary

Table S4). These distributions are broad

and therefore depending on which

organism is used to select the protein

target it may be easier or more difficult

to determine its structure. The differ-

ences in propensity for crystallization

may illustrate proteome adaptation to

environmental niches and highlight

protein properties common to crystal-

lization and adaptability. Archaea tend

to occupy more extreme niches than

bacteria and eukaryotes. These organ-

isms are among the most thermophilic known to science and

thus their structures are more stable, which is one of factors

that correlates with high crystallization propensity (see the

‘Instability Index’ in Supplementary Fig. S5). In contrast,

eukaryotes are characterized by a narrower thermal adapta-

tion and many of their proteins show relatively high levels of

intrinsic disorder (Ward et al., 2004; Xue et al., 2012; Peng et al.,

2014), which in turn makes the crystallization of these proteins

more challenging (Oldfield et al., 2013). Moreover, it seems

that eukaryotic viruses co-evolved and have propensities that

are very similar to their eukaryotic host proteomes and are

also characterized by high adaptability and intrinsic disorder

(Xue et al., 2010). On the other hand, bacteriophages and

archaeal viruses have propensities that are substantially higher

and are similar to proteomes from the archaeal and bacterial

superkingdoms. Proteins from mitochondria and chloroplast

organelles, which are of prokaryotic origin, show a high

crystallization propensity similar to archaeal and bacterio-

phage proteomes.

As shown in Fig. 3(a), the coverage by X-ray structures of

proteomes using the nonredundant structures currently

available in the PDB is relatively low. The generation of

additional structures by combining X-ray crystallography and

improved homology modeling would considerably increase

the coverage across individual proteomes and superkingdoms.

The range of attainable coverage differs substantially between

superkingdoms, being correspondingly higher for bacterial

and archaeal proteomes and lower for eukaryotic proteomes

and their viral proteins (Fig. 1a). The use of more advanced

homology-modeling methods that could provide additional

accurate models at a lower sequence identity would lead to

much higher coverage for proteomes of all superkingdoms and

viruses (Fig. 3a). The current coverage by X-ray structures

based on the structures available in the PDB combined with

homology modeling results in a similar distribution of
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Figure 6
Coverage by X-ray structures of G-protein-coupled receptors (GPCRs). The y axis shows the
percentage of annotations which have at least x% of modeling families covered, where the
corresponding value of x is shown on the x axis. The dashed ‘GPCRs in PDB’ line shows the
crystallization propensity scores for GPCRs that have been deposited in the PDB. A histogram of
GPCRs with crystallization propensity scores above 0.3 is given in the inset.



coverage values between the superkingdoms and viruses

compared with the distribution of the attainable coverage (i.e.

all plots in Fig. 3a have green and blue points on the right and

red and triangle markers on the left); however, the values are

consistently smaller. The main difference is a larger overlap

between scores for the archaeal, bacterial and eukaryotic

proteomes for the current coverage. Clearly, the X-ray struc-

tures that have been determined so far show a generally

higher crystallization propensity score than proteins from all

sequenced genomes (the median crystallizability propensity

score for clustered proteins in the PDB is 0.498 compared with

0.23 for the considered genomes), which is expected because

these proteins have been crystallized. However, these differ-

ences may not solely reflect crystallization propensity; they are

possibly influenced by the research interests of individual

laboratories and SG centers.

We also show that use of target selection methods based on

estimation of crystallization propensity, such as our fDETECT

method or other methods, can considerably increase the

attainable coverage when compared with a ‘traditional’

approach that does not utilize such scores (Fig. 3a). The

‘traditional’ approach is also associated with more

pronounced differences in coverage values between super-

kingdoms (‘Random target selection’ plot in Fig. 3a)

compared with the rational approach (the top three plots in

Fig. 3a).

The analysis of the coverage by X-ray structures of func-

tional and localization-based annotations defined in GO

reveals that we can currently provide structural models for at

least one protein in each functional annotation (Fig. 4a).

However, the fraction of annotations for which at least half of

their modeling families or all modeling families can be crys-

tallized varies widely between superkingdoms and is relatively

low. This suggests that almost all of the annotations contain

some very hard-to-crystallize proteins, and points out the

necessity of developing new strategies for structure determi-

nation of these classes of protein families.

Inspection of the attainable coverage by X-ray structures in

the H. sapiens proteome shows that it is one of the most

structurally attainable proteomes among eukaryotes (Fig. 3a).

One of the reasons is that it attracts more attention and

resources, resulting in more structures and more coverage. We

also show that the coverage of GO annotations in humans

can be greatly improved using ‘rational’ target selection and

current crystallization and homology-modeling technologies

(red versus black lines in Fig. 5b).

Finally, we analyzed the idiosyncrasies of the coverage by

X-ray structures for an important transmembrane protein

family of GPCRs, which are found primarily in eukaryotes.

Our study demonstrates that their crystallization propensity is

relatively low. Nevertheless, we found that use of homology

modeling could substantially increase the coverage by X-ray

structures of this protein family. We also investigated the

crystallization propensities of GPCRs for which structures

have been deposited in the PDB and found that, as expected,

their scores are higher compared with the overall scores for all

GPCRs (Fig. 6). This means that so far easier GPCR targets

have been crystallized and their structures solved, and that

significant effort may be needed to determine the remaining

GPCR targets. This result is also influenced by the fact that

some of these proteins were engineered to enhance their

crystallization propensity. We provide a list of 26 GPCR

targets with crystallization propensity scores of at least 0.3; we

believe that the structure of these proteins should be easier to

crystallize.

Significant structural biology efforts on human proteins

have contributed to one of the highest coverage values of this

organism among all eukaryotes. However, our analysis reveals

that current X-ray crystallographic knowhow can only deter-

mine a relatively small fraction of protein structures, parti-

cularly from viruses and most of the remaining eukaryotic

proteomes. Many of these proteins have significant biomedical

impact and are targeted for structure determination (for

example GPCRs, HIV, SARS and influenza virus). Our data

suggest that we need to continue major technological

advances in experimental protein structure determination

using X-ray crystallography to determine the structures of the

most challenging proteins in order to make a greater impact

on the coverage and to determine the structures of proteins

that are targeted because their structures are important to

understand a given disease and/or for drug discovery. Our

analysis also shows that the use of ‘rational’ target selection

and prioritization based on the crystallization propensity

scores allows coverage by the X-ray structures to be

substantially improved (Slabinski, Jaroszewski, Rodrigues et

al., 2007; Babnigg & Joachimiak, 2010). As petascale and

exascale computing become available to biological research

in the near future and new template-based algorithms and

protocols are developed (Moult et al., 2011; Zhang, 2014), this

avenue could provide substantial improvements in the overall

attainable coverage.

We believe that our method has helped to advance our

understanding of the coverage by X-ray structures of proteins

and complete proteomes on a global scale. The method

exclusively uses amino-acid sequence information and existing

experimental crystallization knowhow from large-scale SG

efforts. The data sets used to develop and benchmark our

method (see x2) include proteins taken directly from the

TargetDB resource without affinity tags. At present our

method cannot be applied to predict the crystallization

propensity of protein–protein and protein–nucleic acid

complexes, and does not consider small molecules such as

cofactors and ligands. Moreover, we utilize the sequences in

their wild-type form, which means that we do not consider

modifications (mutations, affinity tags, constructs etc.) that

could change the crystallization propensity. Homology

modeling is assumed to produce structures with sufficient

quality at 30% sequence identity, which may not always be

realistic.
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