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Serial crystallography generates ‘still’ diffraction data sets that are composed

of single diffraction images obtained from a large number of crystals arbitrarily

oriented in the X-ray beam. Estimation of the reflection partialities, which

accounts for the expected observed fractions of diffraction intensities, has so

far been problematic. In this paper, a method is derived for modelling the

partialities by making use of the ray-tracing diffraction-integration method

EVAL. The method estimates partialities based on crystal mosaicity, beam

divergence, wavelength dispersion, crystal size and the interference function,

accounting for crystallite size. It is shown that modelling of each reflection by a

distribution of interference-function weighted rays yields a ‘still’ Lorentz factor.

Still data are compared with a conventional rotation data set collected from a

single lysozyme crystal. Overall, the presented still integration method improves

the data quality markedly. The R factor of the still data compared with the

rotation data decreases from 26% using a Monte Carlo approach to 12% after

applying the Lorentz correction, to 5.3% when estimating partialities by EVAL

and finally to 4.7% after post-refinement. The merging Rint factor of the still data

improves from 105 to 56% but remains high. This suggests that the accuracy of

the model parameters could be further improved. However, with a multiplicity

of around 40 and an Rint of �50% the merged still data approximate the quality

of the rotation data. The presented integration method suitably accounts for the

partiality of the observed intensities in still diffraction data, which is a critical

step to improve data quality in serial crystallography.

1. Introduction

X-ray free-electron lasers and high-brilliance undulator

beamlines at synchrotrons have been used to perform serial

(femtosecond) crystallography, collecting diffraction data

from a large number (thousands up to millions) of micrometre-

sized or nanometre-sized crystals (Chapman et al., 2011;

Boutet et al., 2012; Redecke et al., 2013; Gati et al., 2014;

Demirci et al., 2013). Individual crystals may be hit by an X-ray

pulse, thereby producing a diffraction pattern within the 10–

50 fs pulse duration, before being vaporized by the transferred

energy. This principle of ‘diffraction before destruction’ has

been demonstrated by experiments on the Linac Coherent

Light Source (LCLS) hard X-ray free-electron laser

(Chapman et al., 2011). Since the X-ray pulses are shorter than

it takes for radiation-induced structural changes to occur,

this approach of serial crystallography overcomes radiation

damage, which has become a major problem with highly

brilliant synchrotron sources (Weik et al., 2000; Ravelli &

McSweeney, 2000; Burmeister, 2000) using conventional

rotation methods of collecting data from one or very few

larger crystals. The diffraction images in serial crystallography
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are single snapshots of nonrotating crystals: so-called still

images. As opposed to the conventional rotation data, the

reflections are not fully integrated but are partials, except

possibly when using future pink XFEL beams (Dejoie et al.,

2015). The particular orientation of the crystal lattice deter-

mines the extent of this partiality, which is a great unknown in

the data-reduction process.

The specific challenges in data processing are the indexing

of the stills, the reconstruction of full intensities and the

merging of data obtained from different crystals, in addition

to the handling of huge amounts of data. Three software

packages are available to process serial X-ray diffraction

patterns: CrystFEL (White et al., 2012, 2013; White, 2014),

cctbx.xfel from the Computational Crystallographic Toolbox

(Sauter et al., 2013; Hattne et al., 2014) and nXDS (Kabsch,

2014). For indexing, rotation-method indexing packages such

as MOSFLM (Leslie & Powell, 2007), DirAx (Duisenberg,

1992) and LABELIT (Sauter et al., 2004) are being used. In

2010, Kirian and coworkers proposed a Monte Carlo inte-

gration method that, by averaging large numbers of diffraction

spots, averages out the unknown partialities as well as differ-

ences in crystal size, beam flux and the incident spectrum

(Kirian et al., 2010). Thousands of diffraction images are

needed for this method to converge (Boutet et al., 2012). It is

generally believed (White, 2014) that estimation of partialities

could reduce the number of images needed for the Monte

Carlo integration method and could improve the data quality.

Three approaches have been proposed to estimate partialities.

All three use post-refinement to improve the partiality

correction factors and scale factors for each image. Kabsch

(2014) derived an analytical expression for partiality from a

Gaussian mosaic spread function. Comparison of ultrafine-

sliced rotation images treated as stills or as normal rotation

images gave satisfactory results. Kabsch includes a Lorentz

factor for still data explicitly. The still data processing is not as

good as one would expect, according to Kabsch. He concludes

that this may be caused by two-dimensional rather than three-

dimensional profile fits and the lack of other unimplemented

corrections. White (2014) considers the overlap of reciprocal

reflection volumes with a nest of Ewald spheres and calculates

partialities from the distance of reciprocal-lattice points to the

two limiting Ewald spheres. Using modelled data, White shows

that the partiality estimation improve the data, with significant

improvement of the statistics upon post-refinement. Most

recently, Sauter (2015) and Uervirojnangkoorn et al. (2015)

presented a partiality model that is implemented in cctbx.xfel.

They calculated the intersection with the Ewald sphere of a

spherical reciprocal-lattice point, where the radii of the lattice

points are determined by mosaic spread and (asymmetric)

beam divergence. Sauter (2015) also includes a parameter for

the coherently scattering volume of mosaic blocks. Using this

approach on XFEL data with post-refinement of crystal

orientations, scale factors and beam parameters, the data are

improved in quality as judged from molecular-replacement

scores, structural refinement and anomalous difference maps

(Uervirojnangkoorn et al., 2015). Moreover, they show that

reliable structures can be obtained with a lower number of

images. Unfortunately, these authors do not mention merging

R factors. Another correction that potentially improves Monte

Carlo integration convergence for nanocrystals is explored

by estimation of the crystal sizes and their corresponding

diffraction power, as described by Qu et al. (2014). They show

that the geometric correction factor, solely based on the

maximum of the Laue interference function for each crystal

with size Nx� Ny� Nz, is superior to Monte Carlo integration

for simulated data. Although the above efforts were made to

improve processed serial crystallography still data, many

questions still need to be addressed. Why do the data not

improve rigorously with the current partiality-correction

models? What factors exactly determine the partiality? Which

errors dominate the partiality-estimation schemes?

Here, we describe an extension of the EVAL profile-

prediction algorithm to process still images. EVAL is a data-

reduction method designed for integrating reflection inten-

sities through profile fitting using ray-tracing simulations

(Duisenberg et al., 2003; Schreurs et al., 2010). We derived a

general interference function that is valid for crystals of

any size and effectively includes the shape transform. The

diffraction process is simulated by typically 10 000 rays, which

are diffracted by an equal amount of reciprocal-lattice vectors.

In the rotation method, we bring reciprocal-lattice vectors

onto the Ewald sphere by rotation around the spindle axis.

However, in the still diffraction method we calculate the

deviation from the exact Bragg condition for each ray and

estimate its contribution to the total diffracted intensity using

the interference function. By summation, the partiality of a
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Figure 1
Ewald construction for a rotation experiment. An incident X-ray beam k0

with length 1/� is reflected by a series of net planes in the direction k1 if
the corresponding reciprocal-lattice vector d�hkl coincides with the Ewald
sphere. In an arbitrary orientation of the crystal lattice d�hkl is not in a
reflecting position but can be rotated around the spindle axis so that the
Bragg condition is met and d�hkl makes an angle of 90� � � with the X-ray
beam k0.



reflection is obtained and, as we will show, also the still

Lorentz factor. To test the approach, we used two still data sets

collected on our in-house diffractometer using a single lyso-

zyme crystal: one consisting of consecutive, stepwise stills and

one consisting of stills from arbitrary orientations. Both were

compared with conventional rotation data collected under the

same conditions. We show that for these data sets the reflec-

tion partialities can be estimated by the ray-tracing simulation

method and that the presented approach significantly

improves the mean intensities of the observed reflections.

2. Diffraction theory

Reflection profiles from a crystal in EVAL are simulated by

generating ray traces. We consider a crystal to be built up

from small crystallites by dividing the crystal on a three-

dimensional grid (sampled from a distribution K) that can

have random orientations taken from a mosaic distribution

(M). Incident X-rays are emitted from a virtual focus (e.g. a

square area F) in direction k0 with respect to the crystallite

and with wavelength � (sampled from a spectral distribution

L). A crystallite with an orientation of the reciprocal-lattice

vector d�hkl gives rise to a diffracted ray in direction k1 as

determined by the Ewald construction. For F, L, K and M

several statistical distributions are available (Schreurs et al.,

2010). In the simulation of rotation data the vectors d�hkl are

rotated around the spindle axis so as to match the Bragg

condition and then touch the Ewald sphere (Fig. 1).

In case of still diffraction experiments with one particular

orientation of the crystal, none of the crystallite lattice vectors

d�hkl are exactly on the Ewald sphere. However, some vectors

are within a certain tolerance in angular deviation (") of the

Bragg angle � and may give rise to diffracted intensity that is

a function of " (see below). The integrated intensity of all

vectors d�hkl from the various crystallites depends on the

mosaic spread, the wavelength dispersion, the beam size and

divergence, the crystal size and the crystallite size itself. The

latter corresponds to the coherently diffracting volume of the

mosaic blocks, and the total reflected intensity of the crystal is

the incoherent sum of all diffracted rays.

2.1. Still diffraction images

The scattered intensity of a crystal at Bragg angle � can be

thought of as the coherent sum of scattering by s layers of

thickness d, according to what we call the James–Buerger

theory (James, 1958; Buerger, 1960). The scattered intensity of

a single layer is

I ¼ I0F2p
e2

mc2

� �2

�2 nsd

sin �

� �2

; ð1Þ

where F 2 is the squared structure factor, I0 is the incident

photon flux, p is the polarization owing to the reflection, e2/

mc2 is the Thomson scattering length of one electron and n is

the number of unit cells per unit volume. A mosaic crystal is

made up of tiny crystallites with associated reciprocal-lattice

vectors d�hkl that are spread over an angular range �, and each

of them may not be perfectly oriented to be in Bragg condi-

tion. The s layers within such a crystallite then scatter slightly

out of phase and their scattered intensity is given by the

interference function

Ið"Þ ¼ I0F2p
e2

mc2

� �2

n2�3 1

2 sin2 �
Vcrystallite

1

s

sin2
ðsB"Þ

ðB"Þ2
; ð2Þ

where " is the deviation of the Bragg angle �, B = 2�dcos�/�
and Vcrystallite is the reflecting volume of the crystallite.

The James–Buerger theory can be extended by writing

the total diffracted intensity as an integral over all possible

orientations of the crystallite vectors d�hkl that make angles of

90� � � with the incident X-ray beam (90� � � in the Bragg

condition) and replacing Vcrystallite by the volume of the crystal

V and " by � � � (see Fig. 2). This results in

I ¼ I0F2p
e2

mc2

� �2

Vcrystal n2�3 1

2 sin2 �

�
1

s

R�max

�min

sin2
½sBð� � �Þ�

½Bð� � �Þ�2
Pð�j�0Þ d�; ð3Þ

where P(�|�0) is the probability distribution of � angles given

the angle �0 of the central reciprocal-lattice vector d�hkl(0) of

the crystal as obtained from the unit-cell matrix.

The mosaic spread, the divergence of incident rays, the

wavelength variations and the crystallite positions being

slightly off-centre in a larger crystal are the cause of deviations

" for the individual rays. For the discussion here, we will

concentrate on the mosaic spread, but the other parameters

are accounted for as well in our ray-tracing simulations.

The distribution function can take several forms. Suppose

that P(�|�0) is uniform, while
R

Pð�j�0Þd� ¼ 1, then the inte-

gral over d� in (3) reduces to s�/B and

I ¼ C
1

2 sin2 �

�

B
¼ C

1

2 sin � cos �
; ð4Þ

where C = I0F 2p(e2/mc2)2�3n2. The last term in (4) is familiar:

it is the Lorentz factor for rotation in the equatorial plane and
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Figure 2
Angular spread of mosaic vectors. �0 denotes the angle of the central
mosaic vector (i.e. that which makes an angle of 90� � �0 with the X-ray
beam), which may be deviating from the ideal Bragg angle �. The full
mosaic spread is defined as six times the standard deviation of a Gaussian
distribution.



is equal to the powder Lorentz factor. Thus, for still images the

powder Lorentz factor applies. When P(�|�0) is a normal or

an otherwise monotonous distribution, we should explicitly

include it in the calculation of (3). However, it cannot be

reduced to a simple trigonometric function nor to an erf (see

Kabsch, 2014) because of the presence of the sinc function in

the integral. Instead, it can be evaluated numerically.

2.2. Rotation diffraction images

Rotation images can be regarded as a superposition of

many stills separated by an infinitesimal rotation angle !. The

integrated intensity for these is

I ¼ C
1

2 sin2 �

1

s

R!max

!min

R�max

�min

sin2
½sBð� � �!Þ�

½Bð� � �!Þ�
2

Pð�!j�0;!Þ d�! d!:

ð5Þ

In a sufficiently large ! scan each d�hkl vector makes a complete

pass through the Ewald sphere, so that we can write

I ¼ C
1

2 sin2 �

1

s

R�max

�min

R!max

!min

sin2
½sBð� � �!�

½Bð� � �!Þ�
2 d!Pð�j�0Þ d�

¼ C
1

2 sin2 �

1

s

R�max

�min

Pð�j�0Þ
R�0max

�0
min

sin2
½sBð� � �0Þ�

½Bð� � �0Þ�2
d!

d�0
d�0 d�

¼ C
1

2 sin2 �

1

s

R�max

�min

Pð�j�0Þ
R�0max

�0
min

sin2
½sBð� � �0Þ�

½Bð� � �0Þ�2
L0 d�0 d�

¼ C
1

2 sin2 �

1

s

R�max

�min

Pð�j�0Þ s�=BL0 d� ¼ CL
R�max

�min

Pð�j�0Þ d� ¼ CL;

ð6Þ

where L0 is the duration component of the Lorentz factor L

for the rotation experiment (equal to the reflection range

expansion factor in Kabsch, 2014). The rotation Lorentz factor

may alternatively be written as 1/[d*(k0�x)] (Milch & Minor,

1974). In case of rotation in the equator, (6) reduces to (4). In

rotation data, therefore, the specific distribution function P(�)

is irrelevant to the integrated intensity and complete reflec-

tions are obtained.

2.3. Implementation of the interference function in EVAL

In EVAL a large number of vectors d�hkl(i) are generated

from a Gaussian or Lorentzian two-dimensional mosaic

distributions (M) and combined with vectors k0 from F, L, K

distributions. The contribution of each of these to the scat-

tered intensity is calculated with

Ii ¼
1

2 sin2 �

1

s

sin2
ðsB"iÞ

ðB"iÞ
2
: ð7Þ

Summing all contributions gives the total scattered normalized

intensity (i.e. C = 1.0; see text below equation 4), which is

effectively an integral over d�, dk0 and, to a minor extent, d�,

because our beam is almost monochromatic. This normalized

intensity is stored in the parameter ‘partiality’ after correction

for the still Lorentz factor, i.e. the partiality is
P

i Ii=Lstill. The

only new parameter introduced is the number of unit cells in

the crystallite Ncell, where s = Ncell(|h| + |k| + |l|), the number of

reflecting planes, while the crystallite size equals sdhkl.

Every d�hkl(i) produces its own impact on detector pixel

coordinates (x, y) and is weighted by contribution Ii. All

impacts together build the two-dimensional reflection profile

that is used as the model profile in the EVAL least-squares fit

to obtain the observed integrated intensity for each diffraction

spot on an image. Both the observed intensity and the summed

interference function (7) contain the still Lorentz factor, and

by dividing one by the other we extract F 2. We also correct for

the polarization and apply possible incidence corrections.

2.4. Laue interference function

In this paper, we follow the James and Buerger approach, as

explained in x2.1, for deriving diffracted intensities by crystals.

The resulting interference function only depends on the

deviation " from the Bragg angle � and the number of unit

cells contained in the crystal. An alternative is to use the three

Laue conditions, and the squared sinc function in (3) is

replaced by

Ið�kÞ ¼
sin N1��k 	 a

sin��k 	 a

sin N2��k 	 b

sin��k 	 b

sin N3��k 	 c

sin��k 	 c

� �2

: ð8Þ

Here,�k = k1 � k0 and N1, N2 and N3 are the number of unit

cells in the three periodic axis directions. In Appendix A, we

show that the two approaches are exactly the same.

(8) is often referred to as the shape transform of the crystal

(Kirian et al., 2010; Spence et al., 2011).

2.5. Impact positions and refinement

Peak-position refinement in PEAKREF (Schreurs, 1999)

minimizes the peak-position residuals and the Bragg angle

deviation "0 of the central reciprocal-lattice vector either using

peak maxima from the peak search or using optimized profile

centroids from the EVAL profile fit. Inclusion of "0 in the unit-

cell matrix refinement avoids divergence of unit-cell orienta-

tions through rotations perpendicular to the incident beam, as

discussed by Sauter et al. (2014). Similarly, Kabsch (2014) uses

the angular deviation � divided by the mosaic spread �M in the

target function for peak refinement. All three approaches use

the 	 axis, defined for each reflection as the axis perpendicular

to the incident and diffracted beams, to calculate the deviation

from the Bragg angle � (Schutt & Winkler, 1977). For each still

image, the following target function was minimized to refine

the unit-cell matrix,

� ¼

PNpeak

i

½ð�xiÞ
2
þ ð�yiÞ

2
�
1=2

Npeak

þ

PNpeak

i

j�i � �0;ij

Npeak

; ð9Þ

where �xi and �yi are the differences of observed and

calculated peak positions. PEAKREF can optimize many

instrumental parameters such as detector-offset positions,

primary beam direction and crystal position, which in the

current analysis were fixed in the still data refinement and

based on the rotation data (see below).

research papers

1802 Kroon-Batenburg et al. � Accounting for partiality in serial crystallography Acta Cryst. (2015). D71, 1799–1811



We found that the peak-position residuals from the post-

refinement were much smaller than from the peak maxima

found on a single still image, despite the much larger number

of peaks. This was caused by a shift in the observed � value for

the partial reflections with large "0. For large mosaic crystals

such as our lysozyme crystal measured with a divergent beam,

these shifts in � occur because only distinct directions of

the primary rays or distinct points on the crystal are active

dependent on the deviation "0 (Fig. 3). A negative value for "0

results in an apparent larger � and a positive "0 in an apparent

smaller �. This �-divergence effect has to be taken into account

when the cell matrix is determined and refined from peak

positions. We introduced a parameter ‘flex’ in PEAKREF that

is jointly refined and takes account of this shift. The ‘flex’

parameter turned out to have a constant value for all still

images and it appears to be a property typical for the crystal

and the beam divergence of the particular experiment.

2.6. Post-refinement

We implemented a post-refinement procedure in which

both the peak positions from the EVAL integration and the

partialities could be refined. For this purpose, we calculate the

mean intensity of all equivalent reflections h as

hIh
i ¼

PNh

e

wesf=peIh
e

PNh

e

wesf=pe

: ð10Þ

Weights are obtained from the standard deviations from the

EVAL profile fit (Schreurs et al., 2010) and are given by we =

1/�e
2. The partialities pe arise from the EVAL ray-tracing

simulation, and the image scale factors sf are determined in

ANY (Schreurs, 2007), assuming a constant sum of Bragg

intensities in each frame. The summation in (10) runs over all

equivalents of reflection h (Nh) in the data set. In PEAKREF

image scale factors sf
0 and unit-cell parameters and crystal

orientation angles are refined using the target function

� ¼

PNpeak

i

½ð�xiÞ
2
þ ð�yiÞ

2
�
1=2

Npeak

þ

PNpeak

i

wijs
0
f Ii � p0ihI

hij

PNpeak

i

wis
0
f Ii

: ð11Þ

We specifically include peak positions in this refinement step

in order to avoid unwanted divergence from peak position-

derived unit-cell parameters and orientations. In this post-

refinement step the EVAL ray-tracing procedure is not

repeated to obtain partialities; instead, we use a fitted parti-

ality versus " curve with a single Gaussian. The parameters in

the Gaussian were kept fixed in the refinement; " changes with

the unit-cell parameters from which we recalculate the parti-

ality (pi
0).

3. Materials and methods

3.1. Crystal preparation

Hen egg-white lysozyme (Sigma–Aldrich, Schnelldorf,

Germany) was crystallized using the hanging-drop vapour-

diffusion method with a protein concentration of 75 mg ml�1

in 0.1 M sodium acetate buffer pH 4.8. The precipitant

consisted of 0.1 M sodium acetate buffer pH 4.8, 10–15%(w/v)

sodium chloride, 30%(v/v) ethylene glycol (Sutton et al.,

2013). Drops of 4 ml were set up with a 1:1 protein:precipitant

ratio.

3.2. Data collection

A crystal of dimensions 250� 250� 150 mm was vitrified in

a cold N2-gas stream from an Oxford Instruments 700 series

jet operated at 100 K. Data were collected on a Bruker–AXS

X8 Proteum in-house source with Cu K
 radiation. The

rotating anode was operated at 45 kV and 60 mA. The

reference rotation data set was collected by rotating over

190� in ’ in 0.5� steps per frame. Data were recorded on a

PLATINUM135 CCD detector with a sample-to-crystal

distance of 52 mm. 380 still images were collected with iden-

tical angular settings as the starting angles for each of the

rotation frames; thus, 380 still images were collected at 0.5�

intervals. An additional 394 stills were recorded by random

selections from ! scans 0–7� in ! apart at 15 different !, � and

’ goniometer settings. The exposure time for all images was

5 s.

3.3. Data processing and analysis

VIEW was used for image display and peak search

(Schreurs, 1998). Both the rotation images and stills were
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Figure 3
Schematic illustration of conditions causing an apparent shift in 2�. A
mosaic vector d�hkl(0) is slightly off the Bragg condition for an X-ray beam
from the centre of the focus F (blue line) and makes an angle of 90� � �
with the X-ray beam. However, the Bragg condition tends to be fulfilled
with rays emerging from the lower part of the focus (red line; the arc
corresponds to an angle of 90� � �) or for the upper part of the crystal
(green line). Therefore, the reflected beam appears at a larger 2� angle.
Owing to averaging of many rays this effect is not, or is hardly, visible for
rotation images, but it is for still images or ultrafine-sliced images. As the
shift in apparent 2� is always in the direction of 2�, we can account for this
by the ‘flex’ parameter in PEAKREF.



indexed using DirAx (Duisenberg, 1992). Almost all stills

could be indexed without manual intervention. Bravais lattice

constraints were applied and the unit cells were made

congruent (using the goniometer positions), ensuring a

consistent choice of unit-cell axes. The unit-cell matrix and

detector positions were refined from 649 peak positions in the

rotation data. For the still peak positions we used different

refinement options. In the first approach we made use of our

knowledge of the relative positions of the goniometer axes, so

that a global single unit-cell matrix could be refined against

10 728 peak positions. In the second approach, we determined

and refined a unit-cell matrix for each image from 300 peak

positions, as would be the normal procedure in serial crystallo-

graphy. The detector-offset positions were taken from the

peak-position refinement of the rotation data. The unit-cell

matrix was refined against the observed peak positions, using

the ‘flex’ parameter to account for apparent shifts in �,

simultaneously minimizing the off-Bragg angle "0 (9). Using

the unit-cell matrix, we extracted three-dimensional and two-

dimensional reflection boxes for rotation and still images,

respectively, and processed these with EVAL. For every

reflection, 10 000 rays were simulated and the impacts were

collected in pixels contained in the box. In case of still data

every individual ray is associated with a reciprocal-lattice

vector d�hkl(i) with a small angular deviation from the Ewald

sphere "i and is weighted by the interference function (7). The

impact position on the detector is given by the direction of the

shortest distance of the reciprocal-lattice vector to the Ewald

sphere. The divergence effects are accounted for in the ray

tracing and thus the profiles are generated correctly at

deviating positions in � (i.e. without the need for a ‘flex’

parameter as used at the peak-refinement stage).

The parameters for crystal size, mosaic spread and beam

divergence were optimized automatically in the reflection

profile fitted to�50 reflections with I/�(I) > 20 using a simplex

method (see Schreurs et al., 2010). For comparison reasons,

identical values of parameters in the ray-tracing simulations

were used for both types of data sets, although a similar

optimization can be performed for still images. In addition, for

the still images we used Ncell = 25

in the interference function (the

number of unit cells in a crystal-

lite as described in x2.3).

Sampling of the interference

function converges much faster

with low values of Ncell, typical

for nano-sized crystals. The

current data imply a larger value

of Ncell, which in the current

implementation would require

many more rays (up to 106 instead

of 10 000) to sample reflection

profiles smoothly. The integrated

intensities are obtained by a

least-squares fit of the three-

dimensional and two-dimensional

model profiles to the observed

pixel intensities for the rotation and still reflections, respec-

tively. EVAL then delivers the profile-fitted, Lorentz- and

polarization-corrected intensity values in an XML-type data-

file that is further processed in ANY (Schreurs, 2007). In this

program, we determine image scale factors, correct for the

partiality factor and output the intensities and standard

deviations to an hkl- or mtz-type file. Many of the graphical

plots and statistical analyses are made using ANY.

All still images were also processed with the CrystFEL

software suite v.0.5.1 (White et al., 2012). Structural refine-

ments were carried out with REFMAC5 (Murshudov et al.,

2011) and scaling between data sets with SCALEIT (Howell &

Smith, 1992), both from the CCP4 suite (Winn et al., 2011).

ANODE (Thorn & Sheldrick, 2011) was used to calculate

anomalous difference densities.

4. Results

We collected rotation and still diffraction data from one

lysozyme crystal and formed three data sets for analysis: a 190�

rotation data set collected in 380 images in ranges of 0.5� for

reference, a consecutive still data set of 380 images collected in

steps of 0.5�, and this consecutive data set combined with 15

wedges of separate arbitrary orientations totalling 774 images

(Table 1). Indexing and peak refinement by PEAKREF/

EVAL and CrystFEL yielded unit-cell dimensions that varied

by�0.3–0.7% between the separate stills. Initially, the average

residuals in peak positions for the still data were significantly

larger than for the rotation data. Introduction of the ‘flex’

parameter, which takes into account the apparent shift in �
owing to divergence effects (see x2.5), reduced the positional

residuals of peak maxima on still images significantly: from

0.13 to 0.07–0.08 mm on average. This deviation is only slightly

larger than that observed for the rotation data, which was

0.06 mm. The residual in rotation angle for the rotation data

was 0.039� (for 0.5� scan width). For the still data the deviation

from the Bragg angle "0 was 0.18�, which is consistent with a

mosaic spread of 0.5�. Relaxing the unit cells by a separate

matrix for each image lowered the "0 residuals to 0.14�
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Table 1
Indexing and peak-refinement statistics.

EVAL, consecutive stills EVAL, all stills

EVAL,
rotation

CrystFEL,
all stills

Single
unit cell

Unit cell
per image Post-refined

No. of images 380 774 380 380 774
No. of peaks used for indexing 649 300–490† 10728 259–300† 289–300†
No. of peaks used in refinement 101246 217272 113418 230759 396201
Unit-cell parameters

a, b (Å) 78.666 78.735–79.453 78.834 78.765–79.041 78.679–79.119 78.719–79.049
c (Å) 36.819 36.819–37.481 36.842 36.706–36.906 36.706–36.989 36.810–36.980

Orientation r.m.s. (�)
a* 0.028 0.102 0.103
b* 0.038 0.108 0.095
c* 0.035 0.107 0.111

Average residuals
Horizontal, vertical (mm) 0.0622 0.0884 0.0785 0.0766 0.099
"0 (�) 0.0390 0.1850‡ 0.1474‡ 0.1496‡ 0.173‡

† Per image. ‡ Average angular deviation of central reciprocal-lattice vector d* with Ewald sphere (see text for explanation).



(compare ‘single unit cell’ versus ‘unit cell per image’ in

Table 1). In our setup the orientation of each matrix was

known because the crystal orientation was set using a gonio-

meter. The r.m.s. deviations between the set and refined

orientations of the reciprocal-lattice vectors a*, b* and c* were

0.03� for the consecutive still data and increased to �0.10�

using all still data (consecutive and random orientations).

Overall, the number of observations taken into account by

EVAL were 106 � 103 for the rotation data set, 325 � 103 for

the consecutive still data and 657 � 103 for all still data,

whereas CrystFEL took 733 � 103 into account for all still

data (Table 2). All processed sets resulted in �8300 unique

reflections. The multiplicity of the consecutive still data was

roughly three times that of the rotation data, indicating that

reflections were, on average, sliced through three times in our

still data-collection experiment.

The statistics for the integration and merging of data for the

rotation and still data are shown in Table 2. Processing of the

reference rotation data yielded an internal merging Rint of

3.8% with an hI/�(I)i after merging of 47.7. Processing of the

still diffraction data without correction, referred to as Monte

Carlo averaging, produced Rint values exceeding 100% and

hI/�(I)i values that were about fourfold lower than that for the

rotation data using the same number of images. Application

of the still Lorentz correction (4) slightly increased the Rint

(Table 2).

To estimate partialities, we determined the parameters for

mosaic spread, divergence of the incident beam, crystal size

and Ncell by optimizing two-dimensional profile fits using

figures of merit (Schreurs et al., 2010) on a subset of reflections

in EVAL. Mosaic spread was set to 0.5�, beam divergence to

8.6 mrad, crystal size to 130 � 130 � 130 mm (although we

estimated a slightly larger size when selecting the crystal under

the microscope) and Ncell to 25. The ray-tracing procedure

yielded partialities which showed a Gaussian-like distribution

with "0 (Fig. 4a). Notably, the computed still partialities are not

normalized and exceed a value of 1, and hence are used as

relative scale factors. In rotation data the partiality is defined

up to 1 for a fully observed reflection (Rossmann & Beek,

1999); in contrast, the partiality in still diffraction is

determined by the angular width of the intersection with the

Ewald sphere, which depends on various instrumental and

crystal parameters such as those given by (3). Lorentz-

corrected still and (Lorentz-corrected) rotation reflections on

average give the same absolute intensities. Fig. 5 shows that

some still partialities are larger than 1.0 and the still intensities

scatter around the rotation intensity. Further, to illustrate that

the partialities depend strongly on the precise ray-tracing

model parameters, Fig. 4(b) shows the partialities as a function

of "0 in the case of a long focus for the incident beam, which

results in two Gaussian-like curves superimposed. This implies

that a simple Gaussian model for the partiality is not

always correct. When divided into "0 bins, the observed

average intensities correlate well with the estimated partial-

ities (Fig. 6). Application of the partiality model resulted in

average I/hIi values that varied around the ideal value of 1.0.

Subsequent merging of these data, i.e. with both Lorentz and

partiality corrections applied, reduced the Rint values to 57 and

63% for the data sets with consecutive and all stills, respec-

tively.

Next, the effects of Lorentz and partiality correction were

evaluated by comparing the data with the reference rotation

data set. The uncorrected and the Lorentz-corrected inten-

sities have high internal Rint values of 104.9 and 106.5%,

respectively, consistent with the scattering in Fig. 5. The

Lorentz- and partiality-corrected intensities have an Rint of

63.8%. Upon merging the data to unique reflections the

agreement with the rotation data improved dramatically; the

scatter diagrams in Fig. 7(a) and 7(b) reflect the improvement

corresponding to the uncorrected (Monte Carlo) and

corrected (Lorentz and partiality) data. The effects from the

still data corrections are more clearly demonstrated by the R

factors with respect to the reference rotation data, which we

refer to as Rcomp (Table 3). Rcomp (on intensities) was 26%

using Monte Carlo averaging. Application of the Lorentz

correction alone decreased the Rcomp to 12%. Application of

both Lorentz and partiality corrections yielded an Rcomp of

5.3%.
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Table 2
Statistics for the integration and merging of the rotation and still data.

EVAL, Monte Carlo EVAL, Lorentz corrected EVAL, partiality corrected

EVAL,
rotation

CrystFEL,
all stills

Consecutive
stills All stills

Consecutive
stills All stills Consecutive stills All stills

Unit cell Image Image Image Image Single Image Image

No. of reflections 106021 733504 320139 325753 657782
No. unique† 8291 8301 8328 8352
Multiplicity 12.8 88.4 38.6 39.1 78.8
Completeness (%) 100 100 100 99.0 99.2
CC1/2 (%) 100 — 87.4 (80.3) 94.1 (88.6) 88.6 (79.9) 94.3 (88.5) 97.3 (90.9) 95.3 (88.1) 97.5 (90.9)
hI/�(I)i 13.9 (1.7) ‡ ‡ ‡ ‡ ‡ ‡ ‡
hI/�(I)i, merged 47.7 (20.3) 10.1 (5.7) 8.0 (5.1) 11.5 (7.4) 8.1 (5.4) 11.8 (7.7) 12.0 (7.4) 11.0 (6.6) 15.1 (9.0)
Rint§ (%) 3.8 (7.1) — 106.2 (94.5) 104.9 (91.2) 108.0 (97.1) 106.5 (94.4) 57.5 (58.1) 62.6 (62.6) 63.8 (63.4)
Post-refinement
hI/�(I)i, merged 13.2 (7.9) 13.8 (8.2) 18.4 (10.8)
Rint§ (%) 55.7 (56.1) 54.4 (54.5) 55.7 (55.1)

† Point group 4/mmm. ‡ Still data are not scaled by SADABS like the rotation data and no error model is determined for �. In the merging step � is determined from the internal
standard deviation

P
jI � hIij=NðN � 1Þ1=2. § Rint =

PN
h

PNh

e ðjIe � hI
hijÞ=

PN
h

PNh

e Ie, where the summations runs over all N unique reflections h and equivalents.



Although the Lorentz and partiality corrections signifi-

cantly improved the quality of the merged data, the merging

Rint value remained high (i.e. 63.8% for all still data). To

improve the partialities, we performed post-refinement of

the image scale factor, unit-cell parameters and orientations,

minimizing the target function of (11). Post-refinement of the

‘all stills’ data gave scale factors of 0.84–1.35 (additional to the

scale factor sf used in equation 10) and sharpened the distri-

bution of unit-cell dimensions, with virtually no effect on the

variation of crystal orientations (Table 1). These adjustments

resulted in a significant, but modest, reduction of Rint from

63.8 to 55.7% (Table 2). The progress in the precision of

processing the data is reflected by the distributions I(hkl)/

hI(hkl)i shown in Fig. 8. Ideally, I(hkl)/hI(hkl)i values form a

sharp distribution around 1 (as a reference, we depict the

distribution resulting from the rotation data in Fig. 8e).

Figs. 8(b) and 8(c) reflect the striking improvement obtained

by modelling the partiality in EVAL and subsequent post-

refinement. Fig. 8(d) shows that mainly the weak data do not

profit from the post-refinement. Comparison of the merged

data sets shows that the improvement in precision is matched
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Figure 5
Lorentz-corrected still (not partiality-corrected) versus Lorentz-corrected
rotation intensities. All occurrences of reflection 1, �6, 5 are marked by
yellow dots. No scaling was applied so that intensities are on an absolute
scale. Dots above the red line with slope = 1.0 indicate that the observed
still intensity is larger than its corresponding rotation intensity, resulting
in a partiality larger than 1.0. On average, the equivalent observations of
a unique still reflection are equal to the rotation intensity (see text).

Figure 4
Partialities of reflections plotted against their "0. (a) From the ray-tracing
model used in this paper, (b) from ray tracing using a long focus.

Table 3
Comparison of stills with EVAL rotation data.

CrystFEL,
Monte Carlo EVAL, Monte Carlo EVAL, Lorentz correction only EVAL, partiality corrected

EVAL,
partiality corrected,
post-refined

All stills Consecutive stills All stills Consecutive stills All stills Consecutive stills All stills All stills

Rcomp† (%) 32.0 26.7 26.4 12.9 12.0 6.5 5.3 4.7
R on F‡ (%) 18.9 14.5 15.2 10.0 9.0 4.9 4.1 3.1

† Data merged in point group 4/mmm. ‡ From SCALEIT: overall scale.



research papers

Acta Cryst. (2015). D71, 1799–1811 Kroon-Batenburg et al. � Accounting for partiality in serial crystallography 1807

by an improvement in accuracy. Post-refinement reduced the

Rcomp from 5.3 to 4.7% (Table 3).

To illustrate the data quality, we refined the lysozyme

crystal structure and computed anomalous difference densi-

ties. The structure was refined starting from PDB entry 193l

(Vaney et al., 1996) against the reflection data using REFMAC,

and we observed similar Rwork and Rfree values for the differ-

ently processed data (Table 4). Significant differences between

the methods were observed for the resulting average isotropic

B factors. Monte Carlo averaging of the data in CrystFEL and

EVAL yielded increased B factors (21–25 Å2) compared with

the reference defined by the rotation data set (hBi = 13.8 Å2).

The Lorentz correction had a large effect on the B factors and

produced an average B factor of 11.8 Å2; this large effect on

the B factors is explained by a comparable fall-off in � of the

Lorentz factor and the temperature factor. When the Lorentz

Figure 6
Histogram of reflection data versus "0. (a) Partialities, (b) I/hIi for equivalent reflections and (c) I/hIi after partiality correction.

Table 4
Comparison of data quality.

EVAL
CrystFEL,
Monte Carlo EVAL, Monte Carlo EVAL, Lorentz correction only EVAL, partiality corrected

EVAL,
partiality corrected,
post-refined

Rotation All stills Consecutive stills All stills Consecutive stills All stills Consecutive stills All stills All stils

Refinement†
Rwork (%) 15.9 17.4 16.8 16.7 16.7 16.6 15.9 16.0 16.0
Rfree (%) 19.8 21.4 20.3 20.2 20.2 20.2 20.0 20.0 20.2
hBi (Å2) 13.8 25.0 20.7 20.6 11.8 11.8 13.0 13.2 13.4

Average anomalous densities‡ (�)
No. of reflections§ 6420 6614 6293 6595 6266 6571 6091 6403 6406
Met SD 13.3 3.2 3.2 4.2 3.6 4.6 5.2 6.3 7.2
Cys SG 10.9 2.1 2.9 3.3 2.8 3.3 3.8 5.2 6.0
Cl� 5.0 1.0 1.0 1.0 1.1 1.2 1.7 2.1 2.3
Na+ 1.8 — 1.0 0.8 2.0 0.8 2.0 1.5 1.5

† Restraint refinement, individual isotropic B factors, input structure PDB entry 193l. ‡ ANODE with data merged in point group 422. Averaged densities over similar atom types
(two for Met SD, eight for Cys SG, 14 for Cl� and one for Na+). § Selected by SHELXC.



and partiality corrections were both applied, the B factors

became more similar to those obtained when using the

rotation data (13.2 versus 13.8 Å2). Anomalous differences are

much more sensitive to the accuracy of the data than structure

refinement. We generated anomalous difference densities

based on the processed data sets using phases from the refined

structure by ANODE. For the methionine sulfur positions the

anomalous density from the rotation data gave a peak height

of 13.3�. The uncorrected, Monte Carlo averaged still data

yielded a weak anomalous signal: a 4.2� peak for methionine

S, corresponding to 32% of the peak height using the rotation

data. Lorentz correction improved the methionine S signal to

35%, whereas including partiality corrections resulted in 47%

of the signal. Finally, this signal improved to 54% after post-

refinement. This shows that both Lorentz and partiality

correction improved the intensities deduced from the still

data.

We tested the effect of data-set size by limiting the still data

to 60 images (Table 5). For the reduced ‘consecutive still’ data

we used images 250–310. For the ‘random still’ data 60 images

from three different wedges were used. For these limited data

sets (91.7 and 97.3% completeness, respectively), the Rfree

factors show that the structure quality deteriorated. Further-

more, the anomalous signal is largely lost. For both structure

refinement and anomalous density analyses the Lorentz and

partiality-corrected data outperform the noncorrected Monte

Carlo processed data.

5. Discussion and conclusions

We used our ray-tracing profile-prediction methods to model

partialities of the observed reflections in still diffraction data

and adapted the programs PEAKREF and EVAL to process

still diffraction images. By taking experimental conditions into

account, we compute 10 000 rays generated from focus, crystal

grid points, wavelength spectrum and mosaic distributions,

and calculate the interference-function weighted contribution

to an observed reflection and hence derive its partiality. Our

formalism implicitly models for the Lorentz factor, mimicking

the contribution of the Lorentz factor to the observed inten-

sities. Our approach differs fundamentally from other still

data-processing methods. Kabsch (2014) defined an analytical

erf function for the partiality, which is the integral over a

Gaussian mosaic function. It is equivalent to our integral in (3)

for an infinitely sharp sinc function (implying that integration
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Figure 7
Scatter plots of still versus rotation reflection intensities. (a) Uncorrected
Monte Carlo and (b) corrected reflection intensities after merging in
point group 4/mmm.

Table 5
Comparison of data with reduced statistics (60 frames).

EVAL, Monte Carlo EVAL, partiality corrected

Consecutive
stills

Random
stills

Consecutive
stills

Random
stills

Refinement†
Rwork (%) 20.7 25.6 17.3 20.7
Rfree (%) 25.1 32.3 21.8 26.3
hBi (Å2) 20.9 21.6 14.3 13.8

Average anomalous densities‡ (�)
No. of reflections§ 862 1265 2212 2166
Met SD 0.6 0.8 — 1.6
Cys SG — 0.8 1.1 —
Cl� — — — —
Na+ — — — —

† Restraint refinement, individual isotropic B factors, input structure PDB entry
193l. ‡ ANODE with data merged in point group 422. Averaged densities over similar
atom types (two for Met SD, eight for Cys SG, 14 for Cl� and one for Na+). § Selected
by SHELXC.
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over this function is complete within a solid angle smaller than

the pixel size of the detector), while ignoring broadening

effects other than the mosaic spread. Kabsch explicitly

corrects for the still Lorentz factor. White (2014) and Sauter

(2015) use reciprocal-lattice point volumes for calculating the

partiality. White (2014) accounts for spectral width and beam

divergence by calculating the overlap of a reciprocal-lattice

volume with a nest of Ewald spheres. Sauter (2015) and

Uervirojnangkoorn et al. (2015) use a single Ewald sphere and

calculate the intersection with a spherical reciprocal-lattice

volume, the size of which is determined by beam divergence,

mosaic spread and spectral dispersion. Both approaches

account for increase of reciprocal diffracting volume with

resolution, and in this way for the wider range of acceptable

off-Bragg angles (d"; see Appendix A). However, both

approaches lack the reflectivity part of the Lorentz factor (d�;

see Appendix A). If the spectral width of the beam becomes

large, an additional Lorentz factor needs to be accounted for,

as used in the Laue method (Zachariasen, 1945). Uerviroj-

nangkoorn et al. (2015) very recently presented their results on

XFEL data. They showed that the Rwork and Rfree of refined

structures improved and part of the anomalous signal was

retrieved. Unfortunately, they do not provide merging Rint or a

comparison to a rotation data set, i.e. Rcomp, to evaluate the

resulting quality of the data more directly. In our approach,

the integration of (3) is achieved by simulation of the rays that

contribute to an observed reflection spot. Because of the

simulation, the derivation of analytical functions for the

various effects is not needed and the Lorentz effect is impli-

citly taken into account. Moreover, the interference function

can be taken into account in our approach.

For the initial development of the method, we used an

experimental setup that allowed a direct comparison to the

conventional rotation method. Our analysis showed a

dramatic improvement in data quality after partiality and

Figure 8
Histogram of I(hkl)/hI(hkl)i. (a) Uncorrected, (b) partiality-corrected, (c) partiality and post-refined still data, (d) the same as (c) but omitting weak
reflections and (e) rotation data



Lorentz correction. Both data processing and structure

refinement showed that Lorentz correction is important and

that omission of the Lorentz correction strongly affects the

temperature factor. The anomalous sulfur densities increased

1.7-fold upon Lorentz and partiality correction of the still

data. Overall, our approach markedly improved the Rcomp

factor between the intensities derived from rotation and still

data from 26% to a final value of 4.7% after Lorentz and

partiality correction and post-refinement.

Concurrent with the improvement in the final data quality

upon Lorentz and partiality correction in EVAL, the internal

merging Rint decreased from 105 to 64%. When we were

developing the method, we hoped that post-refinement of the

parameters would improve the final unique intensity data as

well as further reduce the internal merging Rint factor. Post-

refinement improved the precision of the modelled unit-cell

dimensions and scale factor per image, although the error in

modelled crystal orientations remained �0.1�. These more

precise parameters indeed improved the resulting intensities

(Rcomp decreased from 5.3 to 4.7%). The internal statistics

improved as well (Rint decreased from 64 to 56%); however,

the final Rint factor remained high. This high Rint could be

owing to features that were not included in our ray-tracing

model, such as possible asymmetry in the focus, (anisotropic)

mosaic spread or crystal form, or absorption by the crystal.

Notably, crystal absorption may have a significant effect on the

presented data because a relatively large crystal was used in

this experiment. Crystal absorption is likely to be negligible

when data are collected from microcrystals or nanocrystals, as

is the case in serial crystallography. Obviously, further devel-

opment of our approach is needed to account for the experi-

mental conditions of serial (femtosecond) crystallography

using XFEL or synchrotron sources. Automated schemes will

be needed to model, for example, the large number of single-

crystal diffraction images and fluctuations in beam spectra.

In general, comprehensive modelling of the relevant experi-

mental conditions should improve both the internal merging

statistics and the resulting intensities. Not modelling signifi-

cant effects that are present in the data can only be overcome

by collecting more data to allow the averaging out of these

effects by the Monte Carlo approach. In a real-case scenario

the rotation data will not be available to evaluate the data

quality, and an Rint of�50% may possibly be a practical metric

to judge the resulting data quality.

Overall, we have shown that ray tracing can produce reli-

able partialities that improve the resulting data quality origi-

nating from still diffraction images. Moreover, our method is

versatile and allows the modelling of a wide variety of effects,

including those that yield non-Gaussian, asymmetric effects on

the diffraction spot. In particular, the approach can take the

interference function into account, which will be critical for

processing data obtained from nanocrystals. Thus, in this

paper we have presented the theoretical framework and

demonstrated the potential of the ray-tracing methodology for

processing still diffraction data.

The rotation and still diffraction images are available at

http://rawdata.chem.uu.nl/c003.

APPENDIX A
Comparison with Laue interference function

The diffracted intensity reflected by a small crystal bathed in

an incident monochromatic beam is proportional to the shape

transform of the crystal. The reflected intensity received by

the detector in a small cone of solid angle d�, while the

reciprocal-lattice vector d�hkl has a small deviation " of the

Bragg angle �, is given by the Laue interference function

(Laue, 1936; James, 1958) and is used in papers by Kirian et al.

(2010) and White et al. (2012),

I0jFj
2p

e2

mc2

� �2
sin2 ��N1

sin2 ��

sin2 ��N2

sin2 ��

sin2 �N3

sin2 �
d� d": ð12Þ

N1, N2 and N3 are the number of unit cells in the three

dimensions of the parallepiped crystal. � is the scalar product

�k 	 a and in near-Bragg condition it is equal to h + �h, and

likewise for the other directions. As we are only interested in

the diffracted intensity close to the Bragg condition, we

introduce a local reciprocal axis system and replace � by the

nonperiodic �h. The terms in the denominator of (12) can

then be written as (��h)2 because they concern only small

numbers,

I0jFj
2p

e2

mc2

� �2
sin2 ��hN1

ð��hÞ
2

sin2 ��kN2

ð��kÞ
2

sin2 ��lN3

ð��lÞ
2 d� d":

ð13Þ

It is more convenient to choose the reciprocal axes system

such that �l is along the reciprocal-lattice vector d�hkl and �h

and �k are parallel to the diffracting Bragg plane hkl

(Authier, 2001). Such a transformation can be carried out

because the normal to the Bragg plane is always a reciprocal-

lattice vector. (Note that �h, �k and �l are dimensionless.)

The Jacobians of the transformation of the integration vari-

ables are d� = V�cell(dhkl/sin�)�2 d(�h)d(�k) and d" = �/

(2dhkl cos�)d(�l) (Authier, 2001), leading to

I0jFj
2p

e2

mc2

� �2
�3

Vcell sin 2�

sin2 ��hN1

ð��hÞ
2

�
sin2 ��kN2

ð��kÞ
2

sin2 ��lN3

ð��lÞ
2 d�h d�k d�l: ð14Þ

By integration over �h and �k the diffracted intensity for a

given value of " is obtained,

I0jFj
2p

e2

mc2

� �2

�3 N1N2

Vcell sin 2�

sin2 ��lN3

ð��lÞ
2 d�l: ð15Þ

The equivalence of this expression to that of James (1958) and

Buerger (1960), as we use in EVAL, is shown by the following.

How does �l depend on a small deviation �� = "? We write �l

= d(l)/d� = d(c/dhkl)/d� = d(cd*
hkl)/d� = c2cos�/�. cN3 can be

written as ldhklN3, and further we use the property that the

volume of the crystal Vcrystal= N1N2N3Vcell and B = 2�dhkl cos�/
�. Writing (14) in terms of d" gives
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I0jFj
2p

e2

mc2

� �2

�2 N1N2

Vcell sin 2�

2ldhkl cos �

�

�
sin2 2�ðN3ldhkl cos �=�"Þ

ð2� ldhkl cos �=� "Þ2
d": ð16Þ

Using N1N2/Vcell = Vcrystal/V
2
cell(1/N3) (James, 1958, p. 43) and

dhkl = �/2sin�, we can write

I0jFj
2p

e2

mc2

� �2

�3
Vcrystal

V2
cell

1

2 sin2 �

1

N3l

sin2 �N3lB"

ð�B"Þ2
d": ð17Þ

(17) is exactly the equation used in EVAL (2), as the number

of layers s = N3l, and using n = N1N2N3/Vcrystal we can write

Vcrystal/V
2
cell = n2Vcrystal.
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