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A key challenge in the SAD phasing method is solving a structure when the

anomalous signal-to-noise ratio is low. A simple theoretical framework for

describing measurements of anomalous differences and the resulting useful

anomalous correlation and anomalous signal in a SAD experiment is presented.

Here, the useful anomalous correlation is defined as the correlation of

anomalous differences with ideal anomalous differences from the anomalous

substructure. The useful anomalous correlation reflects the accuracy of the data

and the absence of minor sites. The useful anomalous correlation also reflects

the information available for estimating crystallographic phases once the

substructure has been determined. In contrast, the anomalous signal (the peak

height in a model-phased anomalous difference Fourier at the coordinates of

atoms in the anomalous substructure) reflects the information available about

each site in the substructure and is related to the ability to find the substructure.

A theoretical analysis shows that the expected value of the anomalous signal is

the product of the useful anomalous correlation, the square root of the ratio of

the number of unique reflections in the data set to the number of sites in the

substructure, and a function that decreases with increasing values of the atomic

displacement factor for the atoms in the substructure. This means that the ability

to find the substructure in a SAD experiment is increased by high data quality

and by a high ratio of reflections to sites in the substructure, and is decreased by

high atomic displacement factors for the substructure.

1. Introduction

1.1. Single-wavelength anomalous diffraction

The single-wavelength anomalous diffraction (SAD)

method is a remarkably powerful approach to macromolecular

structure determination (Hendrickson & Teeter, 1981; Wang,

1985; reviewed in Dauter et al., 2002; Hendrickson, 2014). It

has become the dominant method for the determination by

X-ray diffraction of structures that are not closely related to

any structure already present in the Protein Data Bank (PDB;

Berman et al., 2000), accounting for 73% of such new struc-

tures by 2013. In the SAD approach, the X-ray wavelength is

tuned to be at or near an absorption edge of an element that

is present at a limited number of sites in the macromolecule.

Depending on the element and the wavelength, part of the

scattering from the atoms in this substructure will then be

shifted in phase by �/2 relative to the ‘normal’ scattering from

other atoms in the structure. This results in a difference in

intensities for reflections related by inversion which otherwise

would have identical intensities (Bijvoet, 1954). The anom-

alous differences, which correspond to the atoms in the
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substructure (Kartha & Parthasarathy, 1965; North, 1965;

Strahs & Kraut, 1968), are then used to find the locations of

these substructure atoms (Weeks et al., 1993; Terwilliger &

Berendzen, 1999; Schneider & Sheldrick, 2002; Grosse-

Kunstleve & Adams, 2003). The substructure and the anom-

alous differences are then used together to estimate crystallo-

graphic phases for the entire structure (Hendrickson & Teeter,

1981; Wang, 1985; Otwinowski, 1991; de La Fortelle &

Bricogne, 1997; Furey & Swaminathan, 1997; McCoy et al.,

2004; Pannu & Read, 2004). An electron-density map can then

be calculated with these phases and the averages of structure

factors for Bijvoet pairs. This electron-density map is normally

then improved by density-modification techniques (Wang,

1985; Cowtan & Main, 1996; Abrahams & Leslie, 1996;

Terwilliger, 2000; Cowtan, 2010) and interpreted in terms of an

atomic model (see, for example, Jones et al., 1991; Perrakis et

al., 1999; Emsley et al., 2010; Terwilliger et al., 2008; Cowtan,

2006; Langer et al., 2008).

There are several crucial steps in carrying out a SAD

experiment (Dauter et al., 2002; Liu et al., 2011; Hendrickson,

2014). Some of these are experimental steps, such as having

a crystal with well ordered anomalous scatterers and making

accurate measurements of the intensities of Bijvoet pairs

of reflections without substantial radiation damage (see, for

example, Debreczeni et al., 2003; González, 2003; Garman,

2003; Krojer et al., 2013). Subsequent crucial steps involve

analysis of the experimental data, decisions about which data

to include, finding the locations of the atoms in the substruc-

ture, choosing the correct hand of the substructure and

obtaining sufficiently accurate phase information to allow

density-modification procedures to improve the phases and

yield an interpretable electron-density map (Hendrickson,

2014). Here, we describe a formulation for the useful anom-

alous signal and test it with several solved structures. In the

accompanying manuscript (Terwilliger et al., 2016), the appli-

cation of the formulation to data sets for unsolved structures is

described.

1.2. Measures of signal and noise in anomalous data

The anomalous differences between Bijvoet pairs of

reflections are generally small (typically 1–5%), so a key

overall consideration in a SAD experiment is obtaining

sufficient signal. Additionally, anomalous differences, even if

perfectly measured, are not the same as the structure factors

for the anomalously scattering substructure, so these differ-

ences can be thought of as having a high level of intrinsic

noise. Although these factors have been recognized for some

time, it has not been fully clear which metrics best describe the

signal in a SAD experiment and which values of these metrics

indicate that the substructure will be solved and a sufficiently

accurate electron-density map obtained.

1.2.1. Metrics predictable from experimental setup. A

measure of signal in anomalous data that can be estimated in

advance of carrying out an experiment is the Bijvoet ratio

h|F +
� F�|i/hFi (Hendrickson & Teeter, 1981; Wang, 1985).

As noted by Zwart (2005) and Dauter (2006), this measure is

useful for obtaining a general idea of how large the anomalous

signal might be, but the experiment and errors in measure-

ment substantially affect the actual anomalous signal. Addi-

tionally, this ratio is strongly affected by the atomic

displacement factors of atoms in the anomalous substructure

(Shen et al., 2003; Zwart, 2005).

1.2.2. Metrics calculated from measured anomalous
differences. An important set of metrics for signal in anom-

alous data are based on estimates of the accuracy of measured

anomalous differences. One of these is the ratio of the mean

anomalous difference to the mean estimated uncertainty in

the difference h|�ano|i/h�anoi (Schneider & Sheldrick, 2002;

Wang, 1985). This can be used to identify the resolution to

which the anomalous differences are useful (Schneider &

Sheldrick, 2002). A related measure is based on a normal

probability plot of normalized anomalous differences (Howell

& Smith, 1992). Another related metric used to identify which

anomalous differences are useful is the ‘measurability’ of

an anomalous data set (Parthasarathy & Parthasarathi, 1974;

Zwart, 2005), which describes the fraction of anomalous

differences that are very accurately measured (those with

anomalous differences at least three times the magnitude of

their uncertainties). A different metric used to identify

whether anomalous differences are useful is a comparison of

the merging �2 considering Bijvoet pairs as being equivalent

with the �2 considering them separately (Otwinowski &

Minor, 1997).

An estimate of signal that is based on experimental

measurements but that does not require the use of experi-

mental estimates of uncertainty is the anomalous scattering

ratio, Ras (Fu et al., 2004). This measure is the ratio of differ-

ences among measurements of equivalent acentric reflections

compared with measurements of equivalent centric reflections.

As centric reflections have no anomalous differences but the

errors in measurement are likely to be similar to those of the

acentric reflections, this comparison can be a good indicator of

the signal in the anomalous data. Its value for a series of data

sets for zinc-free insulin crystals (Fu et al., 2004) was closely

related to whether the substructure could be determined using

SHELXD (Schneider & Sheldrick, 2002).

A very powerful measure of signal in an anomalous data set

that also does not require estimates of experimental uncer-

tainties is the correlation of anomalous differences measured

at different wavelengths, obtained from different crystals,

measured in different regions of reciprocal space, or simply

measured more than once. The correlation of anomalous

differences between data collected in different X-ray diffrac-

tion images obtained from crystals derivatized with heavy

atoms was used some time ago to confirm the presence of

anomalous differences using data collected on film (Colman et

al., 1972; Buehner et al., 1974). The correlation of anomalous

differences measured at different X-ray wavelengths of a

MAD experiment were used in SOLVE (Terwilliger &

Berendzen, 1999) and SHELXD (Schneider & Sheldrick,

2002) to identify the resolution to which the anomalous

differences were likely to be useful (Dauter, 2006). More

recently, the half-data-set anomalous correlation (Evans,
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2006), obtained by dividing an unmerged data set into two

parts and calculating the correlation of anomalous differences

in the two parts, has been widely used to evaluate the utility of

anomalous differences in SAD experiments.

1.2.3. Metrics requiring known structure. Even in the

absence of measurement errors, the anomalous substructure

does not fully account for the observed anomalous differences,

since this also contains a contribution from atoms that are not

detectable from the signal owing to their individual contri-

butions being very weak (for example having a low anomalous

scattering factor, low occupancy or high atomic displacement

parameters) or from anomalously scattering atoms in the

solvent continuum (Fourme et al., 1995). However, the

cumulative effect of such atoms can be substantial in experi-

ments such as sulfur SAD carried out at longer wavelengths

(for example 1.8 Å), where the anomalous signal from C, N

and O atoms becomes significant (Hendrickson, 2014), or in

SAD experiments with heavy-atom soaks, where there are

many minor sites, and even in selenomethionine SAD

experiments, where the selenomethionine side chains might

have multiple conformations.

In this work, we will define the ‘useful anomalous correla-

tion’ as the correlation between measured anomalous differ-

ences and the ideal anomalous differences that correspond to

the final refined structure considering anomalous scattering

from the detectable anomalous substructure in the crystal

only. This correlation of course cannot be calculated directly

unless the structure has been solved. Nevertheless, we will

show here that it is a useful way of quantifying the information

that is present in individual anomalous differences. The useful

anomalous correlation can be thought of as describing the

fraction of the measured anomalous differences that corre-

spond to the ideal anomalous differences coming just from

the substructure. It is also affected (typically decreased) by

measurement errors or radiation damage. As the useful

anomalous correlation reflects the information available for

phase calculation, it is anticipated to be related to the quality

of the electron-density map that can be obtained from a SAD

experiment (cf. Zwart, 2005, where the correlation of the

anomalous differences to the values of the true anomalous

structure factor FA is related to the ease of SAD structure

determination).

A second important metric is the ‘anomalous signal’,

defined here, as in the work of others, as the peak height in

an anomalous difference Fourier at the coordinates of the

atoms in the anomalous substructure (Yang et al., 2003). The

anomalous signal can also only be calculated after the struc-

ture has been solved. We will show here that it is a good

measure of the total information present per site in the

substructure , Jane S. Richardsonin all the anomalous differ-

ences in a data set. It can be calculated from the observed

anomalous differences and an atomic model for the structure

(without the need to consider anomalous scattering from the

structure or substructure). The anomalous signal has been

found to be closely related to whether the anomalous

substructure can be determined (Yang et al., 2003; Liu et al.,

2011, 2013; Akey et al., 2014; Bunkóczi et al., 2014; Weinert et

al., 2015).

1.3. Objectives

In this work, we develop a simple framework for describing

the relationships between measured anomalous differences,

useful anomalous correlation and the anomalous signal. We

show that the anomalous signal can be used to estimate the

probability of determining the anomalous substructure and

that the useful anomalous correlation can be used to estimate

the expected quality of the electron-density map that can be

calculated once the substructure is known.

2. Methods

2.1. Structure-factor relationships and anomalous differences
in anomalous scattering

We represent the scattering factor (form factor) for the

anomalously scattering atoms in the structure as

f tot
¼ f o
þ f 0 þ if 00; ð1aÞ

where f o + f 0 is the real part of the form factor and if 00 is the

imaginary part. Fig. 1 illustrates the structure-factor relation-

ships contributing to anomalous scattering for a particular

reflection in the simple case where there is a single type of

anomalous scatterer in the structure (for example sulfur or

selenium). The structure factor for all of the nonscattering

or weakly anomalously scattering atoms (carbon, nitrogen,

oxygen etc.) is written here as FP. The structure factor arising

from the real part of the scattering factor f o + f 0 for the
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Figure 1
Diagram of the relationships between structure factors and anomalous
differences. Structure factors corresponding to an acentric reflection with
indices (h, k, l) and to its Bijvoet mate with indices (�h, �k, �l) are
given. The structure factors for the Bijvoet mate are reflected across the
x axis for clarity in presentation. The structure factor for the non-
anomalous atoms in the structure is designated as FP. The part of the
structure factor originating from the real part of the form factor for the
atoms in the anomalous substructure (f o + f 0) is shown as FH and the part
of this structure factor coming from the imaginary part of the form factor
(if 0 0) is shown as FA.



anomalously scattering atoms is FH, and the part arising from

the imaginary part of the scattering factor if 00 for these atoms

is FA. The structure factors (F+, F�) for this Bijvoet pair of

reflections are then given (after reflection of the F� member

across the x axis; c.f. Kartha & Parthasarathy, 1965; Dauter et

al., 2002) by

Fþ ¼ FP þ FH þ FA; ð1bÞ

F�� ¼ FP þ FH � FA: ð1cÞ

We will assume here that the structure factor arising from the

imaginary part of the scattering factor for these atoms (FA) is

small relative to the other components. In this case, we can

write an approximation for the difference in magnitudes

between the members of this Bijvoet pair of reflections (F +
�

F�). This ‘anomalous difference’ (�ano) is approximately

given by

�ano � Fþ � F� ’ �2FA sinð�Þ; ð1dÞ

where � is the angle between the structure factors FP and FH

(Fig. 1).

2.2. Contributions to the anomalous signal

The anomalous signal (Sano; Yang et al., 2003) is the mean

peak height in an anomalous difference Fourier map at the

coordinates of the anomalously scattering atoms, normalized

to the r.m.s. value of the anomalous difference Fourier map.

The anomalous difference Fourier map is calculated with

coefficients based on the anomalous differences in (1d),

�anoðxÞ ¼
1

V

P
h

�ano;h exp ið’c
hÞ �

�

2

h i
exp½�2�iðh � xÞ�; ð2aÞ

where �ano,h is the anomalous difference for this reflection for

reflection h and ’h
c is the phase of the structure factor for the

non-anomalous part of the structure (FP). The anomalous

signal Sano is then

Sano �
h�anoðxjÞi

h�2
anoi

1=2
; ð2bÞ

where �ano(xj) is the value of the anomalous difference Fourier

at the position of the jth anomalously scattering atom and

h�2
anoi

1/2 is the r.m.s. of the map.

An anomalous difference Fourier is typically calculated in

order to show the positions of the atoms in the anomalous

substructure. It is related to the ideal Fourier map for these

atoms, except that the coefficients FH,hexp[i(’h
c + �h)] in the

ideal Fourier map are replaced by �ano,hexp[i(’h
c
� �/2)] in

the anomalous difference Fourier. We can see that this is

reasonable by rearranging these coefficients slightly and by

considering (1d). The coefficients in the ideal Fourier map are

FH;h exp½ið’c
h þ �hÞ� ¼ FH;h½cosð�hÞ þ i sinð�hÞ� expði’c

hÞ ð2cÞ

and the coefficients in the anomalous difference Fourier map

(using 1d) are

�ano;h exp i ’c
h �

�

2

� �h i
¼ 2FA;hi sinð�hÞ expði’c

hÞ; ð2dÞ

where h = (h, k, l) are the indices of a reflection, �ano,h is the

anomalous difference for this reflection, ’h
c is the phase of the

structure factor for the non-anomalous part of the structure

(FP) calculated from the known structure, �h is the angle

between the structure factor arising from the real part of the

form factor for the anomalous substructure (FH) and the

structure factor for the non-anomalous part of the structure

factors (FP; cf. Fig. 1). Inspecting (2c) and (2d), it can be seen

that the anomalous difference Fourier represents just the sine

term in (2c), and with a factor of 2FA,h (twice the anomalous

structure-factor amplitude) instead of FH,h (the real structure-

factor amplitude). It is therefore reasonable to expect that this

map will have peaks at the positions of atoms in the anom-

alous substructure, but that the map will have a high level of

intrinsic noise owing to missing the cosine term from (2c).

2.2.1. Anomalous signal for an ideal anomalous difference
Fourier. We can now calculate how high the anomalous signal

would be expected to be for an ideal anomalous difference

Fourier (i.e. one with no measurement errors). Assuming that

there is only one type of anomalous scatterer present, the

structure factor FA is perpendicular to FH (Fig. 1) and their

magnitudes are related for a particular reflection h by a factor

a that corresponds to the ratio of anomalous to real scattering

for the anomalous substructure and that depends on the

resolution of the reflection,

FA ¼ aFH; ð3aÞ

a ¼
f 00

f o þ f 0
; ð3bÞ

where f o + f 0 and f 00 are the real and imaginary parts of the

scattering factor for the atoms in the anomalous substructure

at the resolution of reflection h (1a). As the imaginary part of

the scattering is normally owing to core electrons close to the

nucleus, its real-space image can be adequately represented

by a delta function whose Fourier transform is constant as a

function of resolution. Consequently, the values of f 00 and f 0

are typically assumed to be constant with resolution but the

value of the form factor f o falls off with resolution (Chantler,

1995; Hendrickson, 2014).

We can use these relationships and (2c) and (2d) to calcu-

late the expected value of an anomalous difference Fourier

map at the coordinates of the atoms in the substructure as well

as the expected r.m.s. value of the map. Without loss of

generality, in this analysis we will assume that the space-group

setting chosen is a primitive setting (without centering). The

value of the density in an anomalous difference Fourier map at

coordinates represented by x = (x, y, z) can be written using

(1d) and (2b) as

�anoðxÞ ¼
1

V

P
h

�ano;h exp i ’c
h �

�

2

� �h i
exp½�2�iðh � xÞ�

’
1

V

P
h

� 2FA;h sinð�hÞ exp i ’c
h �

�

2

� �h i
exp½�2�iðh � xÞ�;

ð4Þ

where h, �ano,h, ’h
c and �h are as in (2c) and (2d) and V is the

volume of the unit cell. After rearrangement and using the
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scale factor a given above between the anomalous structure-

factor amplitude (FA) and the real part of the structure-factor

amplitude for the substructure (FH), this expression for the

density in an anomalous difference Fourier becomes

�anoðxÞ ’
1

V

P
h

f 00h
f o

h þ f 0h
FH;h exp½ið’c

h þ �hÞ� exp½�2�iðh � xÞ�

� ½1� expð�2i�hÞ�: ð5Þ

The structure factor arising from the real part of the form

factor for the anomalous substructure (FH,h; Fig. 1) can be

calculated from the scattering factors (fh
o + fh

0), coordinates (xj)

and atomic displacement factors (Bj) of the substructure as

FH;h � FH;h exp½ið’c
h þ �hÞ�

¼
P

j

ðf o
h þ f 0hÞ exp½�Bjðsin2 �h=�

2
Þ� exp½2�iðh � xjÞ�; ð6Þ

where sin(�h) is the scattering angle for reflection h and � is

the wavelength of the X-rays used in the experiment. Substi-

tuting this expression for FH,h into the approximation for the

density in an anomalous difference Fourier gives

�anoðxÞ ’
1

V

P
h

f 00h exp½�2�iðh � xÞ�½1� expð�2i�hÞ�

�
P

j

exp½�Bjðsin2 �h=�
2
Þ� exp½2�iðh � xjÞ�: ð7Þ

If all the atoms in the anomalous substructure are assumed

to have identical atomic displacement factors (Bj = B), then

this can be simplified slightly and rearranged to read

�anoðxÞ ’
1

V

P
h

fh;B½1� expð�2i�hÞ�
P

j

expf�2�i½h � ðx� xjÞ�g;

ð8Þ

where the factors fh,B are the anomalous scattering factors

adjusted for the effects of the atomic displacement factor B at

the resolution of reflection h and are given by

fh;B ¼ f 00h exp½�Bðsin2 �h=�
2
Þ�: ð9Þ

Noting that the expected value of the sum over all reflec-

tions
P

h expf�2�i½h � ðx� xjÞ�g is zero unless x is approxi-

mately equal to one of the coordinates xj of an atom in the

anomalous substructure, and noting that the phase angle �h

is the phase difference between the structure factor for the

non-anomalous part of the structure and the anomalous

substructure and is therefore essentially independent of the

anomalous substructure, the expected value of the map

h�ano(xj)i at atomic positions corresponding to the substruc-

ture is given by

h�anoðxjÞi ’
N

V
hfh;Bi; ð10Þ

where N is the number of reflections (including the entire

sphere, not just the asymmetric unit of the structure factors)

used to calculate the map, V is the volume of the unit cell and

hfh,Bi is the mean value of the anomalous scattering factors (9)

over all of the reflections included in the analysis.

A similar calculation can be made to estimate the mean-

square value of the anomalous difference Fourier map and

from it the r.m.s. of the map. The mean-square value of the

density in this map is given by

h�2
anoi ¼

1

V

R
V

dV

V

P
h

P
j

f h
j exp½2�iðh � xjÞ� exp½�2�iðh � xÞ�

� ½1� expð�2i�hÞ�

�
1

V

P
h0

P
j0

f h0

j0 exp½�2�iðh0 � xj0 Þ� exp½2�iðh0 � xÞ�

� ½1� expð2i�h0 Þ�: ð11Þ

The expected value of the mean-square density in the anom-

alous difference Fourier map is then given by

h�2
anoi ’

2Nn

V2
hf 2

h;Bi; ð12Þ

where, as before, N is the number of reflections and V is the

volume of the unit cell. The number of atoms in the anomalous

substructure in the entire unit cell is n, and hf 2
h,Bi is the mean-

square value of the imaginary component of the anomalous

scattering factors, including atomic displacement factors (9),

over all of the reflections included in the analysis.

The anomalous signal is the ratio of the expected value

of the density at coordinates of atoms in the anomalous

substructure to the r.m.s. value of the map for the model-

phased anomalous difference Fourier map. This can now be

estimated,

hSideal
ano i ’

N

2nfB

� �1=2

; ð13Þ

where N and n refer to the number of reflections including the

entire sphere and the number of sites in the entire unit cell,

respectively, and where the factor fB is the second moment of

the values of the scattering factors,

fB ¼
hf 2

h;Bi

hfh;Bi
2 : ð14Þ

Writing the total number of reflections as the number of

symmetry operators Nsym times the number of unique acentric

reflections Nrefl times two (for Bijvoet pairs of reflections),

N ¼ 2NreflNsym ð15Þ

and writing the number of atoms in the anomalous substruc-

ture for the entire crystal as the number of atoms in the

substructure in the asymmetric unit times the number of

symmetry operators,

n ¼ nsitesNsym; ð16Þ

we can rewrite the expected anomalous signal in an ideal

anomalous difference Fourier map as

hSideal
ano i ’

Nrefl

nsitesfB

� �1=2

; ð17Þ

where Nrefl is the number of unique noncentrosymmetric

reflections and nsites is the number of unique sites in the

substructure. As noted at the beginning of the section, this

analysis assumes that the space-group setting chosen is chosen
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to be primitive. As the number of unique reflections and the

number of unique sites do not depend on the setting chosen,

(17) can be applied equally well to centered space groups.

Sites that are at special positions do require special treatment

in (16), however (a site on a twofold will count as half the

amount of a site on a general position).

2.2.2. Anomalous signal for a realistic anomalous differ-
ence Fourier. In this section, we will expand the calculation

of expected anomalous signal to realistic cases where errors

can be present in the measurement and where there may be

significant anomalous scattering from minor sites. We can

write a simple expression for contributions to an observed

anomalous difference (�ano
obs ),

�obs
ano ¼ �ano þ�other

ano þ ": ð18Þ

Here, �ano is the ‘useful’ anomalous difference owing to the

anomalous substructure, �ano
other is the (true, but not useful)

anomalous difference owing to all other anomalously scat-

tering atoms and minor sites for the anomalous substructure

and " is the error in measurement (including the effects of

radiation damage). From this expression it can be seen that the

anomalous contributions (�ano
obs ) from sites that are not part of

the anomalous substructure and errors in measurement have

similar overall effects on the observed anomalous differences.

We will assume that the observed anomalous difference and

each term contributing to it have expected values of zero.

Further, we will assume that each term contributing to the

anomalous difference is uncorrelated with the other terms. We

define a normalized variance, E2, as the ratio of the sum of the

variances of the anomalous contribution from sites not part of

the substructure �ano
other and the errors in measurement " to the

mean-square value of the useful anomalous difference �ano,

E2
�
hð�other

ano Þ
2
i þ hð"anoÞ

2
i

h�2
anoi

: ð19Þ

With this definition, we are in a position to calculate the

expected value of the anomalous signal in the case where

minor sites and measurement errors are present. The density

in such a realistic anomalous difference Fourier map can be

written (see equation 4) as

�obs
anoðxÞ ¼

1

V

P
h

�obs
ano;h exp i ’c

h �
�

2

� �h i
exp½�2�iðh � xÞ�

’
1

V

P
h

½�2FA;h sinð�hÞ þ�other
ano;h þ "h�

� exp i ’c
h �

�

2

� �h i
exp½�2�iðh � xÞ�: ð20Þ

As in the previous section, this can be simplified and rear-

ranged, yielding an expression for the density in an anomalous

difference Fourier that is the sum of the density for a perfect

anomalous difference Fourier and a term that contains the

contributions from minor sites and errors in measurement,

�obs
anoðxÞ ’

1

V

P
h

fh½1� expð�2i�hÞ�
P

j

expf�2�i½h � ðx� xjÞ�g

þ
1

V

P
h

ð�other
ano;h þ "hÞ exp i ’c

h �
�

2

� �h i
exp½�2�iðh � xÞ�:

ð21Þ

As the expected value of each of the two error terms is zero,

the expected value of this density at the coordinates of atoms

in the anomalous substructure is the same as in the case

without errors (8), with the expected value given in (10). The

expected value of the mean-square density in this map,

however, is now higher owing to the error terms. It is given

(compare with equation 12) by

h�2
anoi ’

2Nn

V2
hf 2

h;Bi þ
N

V2
½hð�other

ano Þ
2
i þ h"2

anoi�: ð22Þ

We can simplify this in several steps. From (1d), it may be seen

that the expected mean-square value of the anomalous

difference corresponding to the substructure atoms (h�2
anoi) is

given by

h�2
anoi ¼ 4hF2

Aihsin2
ð�Þi ¼ 2hF2

Ai: ð23Þ

The value of hFA
2
i on the right-hand side of (23) can in turn be

calculated in two steps. Firstly, substituting (3a) and (3b) into

(6), assuming again that the atoms in the anomalous sub-

structure are assumed to have identical atomic displacement

factors (Bj = B), and then substituting in (9) yields an

expression relating the magnitude FA to the anomalous scat-

tering factor fh,B from (9) and the coordinates of the anom-

alously scattering atoms xj,

FA;h exp½ið’c
h þ �hÞ� ¼

P
j

f 00h exp½�Bðsin2 �h=�
2Þ� exp½2�iðh � xjÞ�

¼
P

j

fh;B exp½2�iðh � xjÞ�: ð24Þ

The mean-square value hFA
2
i can then be calculated as

hF2
Ai ¼

P
j

fh;B exp½2�iðh � xjÞ�
P

k

fh;B exp½�2�iðh � xkÞ�

¼ nhf 2
h;Bi; ð25Þ

where n is the number of sites in the asymmetric unit of the

crystal. Then, substituting (25) into (23), we have

h�2
anoi ¼ 2nhf 2

h;Bi: ð26Þ

Finally, using (26) along with the definition of E2 in (19) and

rearranging, we can simplify the estimate of the mean-square

density in the anomalous difference Fourier map with errors in

(22) to read

h�2
anoi ’

2Nn

V2
hf 2

h;Bið1þ E2
Þ: ð27Þ

Comparing (12) and (27), we see that the mean-square value

of the density overall in the anomalous difference Fourier map

is larger than that in a perfect anomalous difference Fourier

map by the factor 1 + E2. As noted above (see equations 8, 10

and 21), the mean value of the density in the anomalous

difference Fourier map with errors at coordinates of atoms

in the anomalous substructure is the same as that in a perfect
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map. This leads to an expression for the anomalous signal in

the presence of errors in measurement and minor sites,

hSobs
anoi ’

Nrefl

ð1þ E2ÞnsitesfB

� �1=2

; ð28Þ

where the second moment of the values of the scattering

factors fB is given in (14). We can relate the error term 1 + E2

to the correlation (CCano) between the measured anomalous

differences and the anomalous differences owing to the sub-

structure atoms. The useful anomalous correlation CCano is

given by

CCano �
h�ano�obs

anoi

h�2
anoi

1=2
hð�obs

anoÞ
2
i

1=2
: ð29Þ

Using (18) and (19), it may be shown that the expected value

of the useful anomalous correlation is given by

CCano ’
1

ð1þ E2Þ
1=2
: ð30Þ

This yields a simple formula for the expected anomalous signal

in the presence of minor sites and errors in measurement,

hSobs
anoi ’ CCano

Nrefl

nsitesfB

� �1=2

: ð31Þ

Comparison with (17) shows that the expected anomalous

signal in a realistic case is simply equal to its expected value in

an ideal case multiplied by the useful anomalous correlation

CCano.

2.3. Test data from the PDB

We downloaded data sets from the PDB to serve as test

cases for our analyses. The data consisted of 218 MAD and

SAD data sets from 113 different PDB entries with diffraction

data extending to resolutions from 1.2 to 4.5 Å. The MAD

PDB entries were split into individual data sets for each

wavelength of X-rays used to measure diffraction data. The

PHENIX (Adams et al., 2010) tool phenix.sad_data_from_pdb

was used to extract the individual data sets from PDB entries.

The PDB entries used were 1vjn, 1vjr, 1vjz, 1vk4, 1vkm (Levin

et al., 2005), 1vlm, 1vqr (Xu et al., 2006), 1xri (Aceti et al.,

2008), 1y7e, 1z82, 1zy9, 1zyb, 2a2o, 2a3n, 2a6b, 2aj2, 2aml,

2avn, 2b8m, 2etd, 2etj, 2ets (Kozbial et al., 2008), 2etv, 2evr

(Xu, Sudek et al., 2009), 2f4p, 2fea (Xu et al., 2007), 2ffj, 2fg0

(Xu, Sudek et al., 2009), 2fg9, 2fna (Xu, Rife et al., 2009), 2fqp,

2fur, 2fzt, 2g0t, 2g42, 2gc9, 2nlv (Hwang et al., 2014), 2nuj,

2nwv, 2o08, 2o1q, 2o2x, 2o2z, 2o3l, 2o62, 2o7t, 2o8q, 2obp,

2oc5, 2od5, 2od6, 2oh3, 2okc, 2okf (Hwang et al., 2014), 2ooj,

2opk, 2osd, 2otm, 2ozg, 2ozj, 2p10, 2p4o, 2p7h, 2p7i, 2p97,

2pg3, 2pg4, 2pgc, 2pim, 2pn1, 2pnk, 2ppv, 2pr1, 2pr7, 2prv,

2pv4, 2pw4, 2wcd (Mueller et al., 2009), 2xdd (Fineran et al.,

2009), 2zxh (Osawa et al., 2009), 3caz, 3din (Zimmer et al.,

2008), 3dto, 3fx0 (Lo et al., 2009), 3guw, 3gw7, 3hxk, 3hxp,

3lml, 3mv3 (Hsia & Hoelz, 2010), 3ov0 (Pokkuluri et al., 2011),

3pg5, 3zgx (Bürmann et al., 2013), 3zxu (Schmitzberger &

Harrison, 2012), 4acb (Leibundgut et al., 2004), 4asn (Aylett &

Lowe, 2012), 4bql (Lindås et al., 2014), 4cb0 (Mechaly et al.,

2014), 4cbv (Boudes et al., 2014), 4fsx (Du et al., 2012), 4g9i

(Tominaga et al., 2012), 4gkw (Qiao et al., 2012), 4h6y (He et

al., 2013), 4hkr (Hou et al., 2012), 4hnd (Zhou et al., 2014), 4ifq

(Sampathkumar et al., 2013), 4lck (Zhang & Ferré-D’Amaré,

2013), 4nsc (Wang et al., 2014), 4nt5 (Zhou & Springer, 2014),

4px7 (Fan et al., 2014), 4q8j (Schäfer et al., 2014), 4qka (Gao &

Serganov, 2014) and 4tq5 (Huang et al., 2014).

2.4. Software availability

We have developed software as part of the PHENIX

software suite (Adams et al., 2010) that calculates the

anomalous signal and anomalous correlation in a data set

(phenix.anomalous_signal).

3. Results and discussion

3.1. Dependence of the anomalous signal Sano
obs on CCano, Nrefl,

nsites and fB

The key theoretical result from this work (equation 31) is

that the expected anomalous signal Sano
obs for a SAD data set is

related in a very simple way to the useful anomalous corre-

lation CCano, the number of unique reflections Nrefl, the

number of sites in the anomalous substructure nsites and the

second moment of the scattering factors for the anomalous

substructure fB,

hSobs
anoi ’ CCano

Nrefl

nsitesfB

� �1=2

: ð31Þ

In (31) the anomalous signal Sano
obs is the mean value of a model-

phased anomalous difference Fourier at the coordinates of

atoms in the anomalous substructure. The anomalous signal

is the principal metric in this work for the useful signal in a

SAD data set. The useful anomalous correlation CCano is the

correlation between measured anomalous differences and

those expected of an ideal structure where the only anomalous

scatterers are those in the anomalous substructure and where

there are no errors in measurement (29). The useful anom-

alous correlation CCano is the principal metric in this work for

similarity between measured and ideal anomalous differences.

The number of reflections Nrefl includes all acentric reflections

that are unique under space-group symmetry, and the number

of sites nsites is the number contained in the asymmetric unit

of the crystal. The factor fB (14) is the second moment of the

scattering factors corresponding to the anomalous substruc-

ture. It is related to the fall-off with resolution of the scattering

from the anomalous substructure because it includes the

atomic displacement factors (assumed to all be equal; Bj = B;

equation 9).

3.1.1. Anomalous signal for an idealized crystal. The

significance of (31) is that it shows how the anomalous signal

depends on CCano, Nrefl, nsites and fB. If the data were

measured perfectly and if there were no anomalous scatterers

other than those in the substructure, then the useful anom-

alous correlation CCano would be unity. Further, if all of the

anomalous scatterers had atomic displacement factors of zero

(B = 0), then the second moment of the scattering factors fB
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would also be unity. The expected value hSano
B=0
i of the anom-

alous signal in this ideal case with atomic displacement factors

of zero is then simply equal to the square root of the ratio of

unique reflections to unique sites,

hSB¼0
ano i ’

Nrefl

nsites

� �1=2

: ð32Þ

(32) indicates that anomalous signal increases with the

number of unique reflections and decreases with the number

of unique sites in the anomalous substructure in a simple way.

In particular, if there are more sites in the substructure then

correspondingly more reflections must be measured to obtain

the same anomalous signal.

In this ideal case with atomic displacement factors of zero,

the maximum possible expected anomalous signal hSano
max
i for

a crystal is obtained if there is a single site in the anomalous

substructure (32). The value of the maximum possible

expected anomalous signal is just the square root of the

number of reflections,

hSmax
ano i ’ N

1=2
refl : ð33Þ

.

3.1.2. Dependence of the anomalous signal for an
idealized crystal on resolution. Up to this point, the influ-

ence of the resolution of the data on the anomalous signal

has not been considered. If the anomalous scatterers in an

otherwise idealized crystal have nonzero atomic displacement

factors, then the contributions from these anomalous scat-

terers will be resolution-dependent (simply owing to the

fall-off of intensities with resolution). Correspondingly, the

anomalous signal (the peak heights at coordinates of anom-

alously scattering atoms in the anomalous difference Fourier)

will not increase as the square root of the number of reflec-

tions as in (33), but rather by some smaller factor. This rela-

tionship is given in (17), where the effect of the fall-off of

intensities with resolution is captured by the factor fB, the

value of the second moment of the scattering factors including

atomic displacement factors. If the anomalously scattering

atoms have nonzero atomic displacement factors, the value of

the second moment of the scattering factors, fB (14), will be

greater than one. In such an idealized case, the anomalous

signal hSano
ideal
i will be depend on the resolution of the data

through the factor fB in (17),

hSideal
ano i ’

Nrefl

nsitesfB

� �1=2

: ð17Þ

The second moment of the scattering factors fB depends on

how much the scattering factors vary over the resolution of the

measured reflections (cf. equation 14, noting that a distribu-

tion with many large and many small values will have a large

value of the second moment while a narrow distribution will

have a small second moment).

3.1.3. Anomalous signal for anomalous data measured with
errors from a real crystal. For a real crystal, some of the true

anomalous differences will come from minor sites of the

principal anomalously scattering atom and from the weak

anomalous scattering from atoms not considered to be part of

the anomalous substructure. Furthermore, the anomalous

differences will be measured with experimental errors. In this

case the measured anomalous differences will have a corre-

lation CCano to those measured perfectly from an ideal crystal.

The consequence of a useful anomalous correlation of less

than unity is that the anomalous signal will be reduced based

on this correlation,

hSobs
anoi ’ CCano

Nrefl

nsitesfB

� �1=2

: ð31Þ

In this realistic case, the overall expected anomalous signal is

just the product of the useful anomalous correlation and the

square root of the number of reflections (Nrefl) divided by the

number of sites in the anomalous substructure and the second

moment fB of the scattering factors for the anomalous sub-

structure.

3.1.4. Anomalous signal and resolution of the data
included in the calculation. In this analysis (31), the anom-

alous correlation CCano is the overall average for the entire

data set. As the accuracies of anomalous differences typically

decrease at high resolution, if additional high-resolution, low-

accuracy anomalous differences are included in a data set,

then the overall value of CCano will decrease. Inspecting (31),

it can be seen that as the resolution of data included in the

calculation increases, the net effect on the anomalous signal is

a combination of three factors. These are (i) an increase owing

to the number of reflections Nrefl, (ii) a decrease owing to the

decrease in average anomalous correlation CCano and (iii) a

decrease owing to the increase in the second moment fB of the

scattering factors for the anomalous substructure, averaged

over all reflections included. The combined effects of

increasing the number of reflections and increasing the

average second moment of the scattering factors for the

anomalous substructure, as discussed above, is that adding

reflections that have negligible contributions from the anom-

alous substructure (e.g. at resolutions where the structure

factors are essentially zero) has no effect on the overall

anomalous signal.

The net effect of increasing the number of reflections and

decreasing the anomalous correlation, however, can be either

an increase or a decrease in the anomalous signal. If high-

resolution data were measured with accuracy similar to that of

lower resolution data, then the anomalous correlation CCano

would be approximately constant as additional data are

included and the anomalous signal would increase as the

square root of the number of reflections. In contrast, if high-

resolution data were measured with poor accuracy and the

anomalous differences at these resolutions were essentially

random, then the additional data would contribute only noise

to the anomalous difference Fourier map (2b). This would

neither increase nor decrease the average peak height at

positions of anomalously scattering atoms (the numerator in

equation 2b), but it would increase the overall r.m.s. of the

map (the denominator in equation 2b). Therefore, as

expected, the inclusion of essentially random anomalous
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differences will decrease the overall anomalous signal Sano.

This behavior can also be seen if (29) and (31) are examined.

The anomalous correlation is defined in (29),

CCano �
h�ano�obs

anoi

h�2
anoi

1=2
hð�obs

anoÞ
2
i

1=2
: ð29Þ

Imagine adding random anomalous differences, and suppose

that they are about the same in magnitude as those that are

already in the data set. In this case, the value of the r.m.s.

observed anomalous difference h(�ano
obs )2
i

1/2 will not change.

In contrast, the mean value of the product of the true and

observed anomalous difference, h�ano�ano
obs
i, will decrease. If n

random anomalous differences are added to N well measured

anomalous differences its value will decrease by a factor of N/

(N + n). This means again that adding in anomalous differ-

ences that are random will reduce the overall anomalous

signal Sano. We emphasize again that all of these effects are

captured in (31), where the values of the anomalous correla-

tion, number of reflections and second moment of scattering

factors of the anomalously scattering atoms are all the overall

values for all reflections considered.

3.1.5. Comparison of expected and actual anomalous
signal. We carried out a comparison of the anomalous signal

expected from (31) with the actual anomalous signal in data

sets downloaded from the PDB. We used 113 MAD and SAD

data sets from the PDB to serve as test cases for evaluating

our theoretical analysis. The MAD data sets were split into

separate ‘data sets’, each containing the data measured at one

X-ray wavelength, yielding a total of 218 data sets for analysis.

The high-resolution limits of these data sets ranged from 1.2

to 4.5 Å and the anomalously scattering atoms included sele-

nium, sulfur, cobalt, mercury, zinc, nickel, iron, calcium,

barium and iridium. Each data set was used to the full reso-

lution limit except as noted below.

As all of the structures are known, we could calculate ideal

anomalous differences �ano based on the anomalous sub-

structure in the model. We used these ideal differences along

with the measured anomalous differences �ano
obs to calculate the

useful anomalous correlation (CCano; equation 17). From the

X-ray data and model, we could identify the number of sites in

the anomalous substructure (nsites) and the number of unique

measured reflections (Nrefl). We calculated the second moment

of the scattering factors of atoms in the substructure (fB) using

(9) and (14) and using the mean value of the atomic displa-

cement factors for the atoms in the substructure in (9). These

calculations allowed us to estimate the value of the anomalous

signal Sano
obs using (31). Note that all of the data are included in

the calculation of the anomalous signal Sano
obs. The resolution

dependence of the anomalous signal is captured in the reso-

lution dependence of the number of reflections, the anomalous

correlation and the second moment of scattering factors of

atoms in the substructure. We then obtained the actual value

of the anomalous signal from the mean peak height at coor-

dinates of atoms in the substructure in an anomalous differ-

ence Fourier map (2b). Fig. 2 shows that the values of the

anomalous signal obtained from (31) are very similar to the

actual values obtained from an anomalous difference Fourier

map using (2b), indicating that our simple theoretical analysis

gives a good description of the overall contributions to the

anomalous signal.

3.2. Relationship between the anomalous signal and the
solution of the anomalous substructure

As noted above, the anomalous signal has been found to be

a good indicator of whether the anomalous substructure can

be obtained in a SAD experiment (Yang et al., 2003; Liu et al.,

2011, 2013; Akey et al., 2014; Bunkóczi et al., 2014; Weinert et

al., 2015). Fig. 3 illustrates this relationship for 1874 complete

and truncated data sets extracted from the 218 SAD data sets

used above. These data sets were constructed by truncating

the data at resolutions ranging from 1.5 to 6 Å. For each

complete or truncated data set, the anomalous signal was

calculated using an anomalous difference Fourier map and the

coordinates of the atoms in the anomalous substructure. The

same data were then used as input to the HySS substructure-

search tool using likelihood-based substructure completion

(Bunkóczi et al., 2014), and the fraction of the true sites in the

substructure is plotted in Fig. 3 as a function of the anomalous

signal of the corresponding data set. Fig. 3 also illustrates the

mean fraction of complete and truncated SAD data sets that

are solved as a function of the anomalous signal. Those cases

where at least 50% of the sites were found (sites placed within

3 Å of an atom or a symmetry-equivalent atom in the known

substructure) were considered to be ‘solved’ for this analysis.
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Figure 2
Comparison of anomalous signal estimated with (31) and the actual
anomalous signal. Each point in the figure corresponds to data measured
at one X-ray wavelength taken from one entry in the PDB. The x
coordinate of each point is the anomalous signal estimated as described in
the text using (31) and the y coordinate is the anomalous signal calculated
directly from a model-phased anomalous difference Fourier map using
(2b).



It can be seen from Fig. 3 that for data sets where the

anomalous signal is less than about 7–10 few of the SAD data

sets could be solved with likelihood-based methods, while for

those where the anomalous signal is greater than about 10–15

most of the data sets could be solved, supporting the earlier

observations that the anomalous signal is a good indicator of

whether a SAD data set can be solved. The fraction of data

sets that could be solved (the solid line in Fig. 3) reaches about

50% at an anomalous signal of about 9.

3.3. Relationship between useful anomalous correlation and
the quality of phase calculation

The useful anomalous correlation (CCano
obs ; equation 29) is a

measure of how well the measured anomalous differences

reflect those expected from the anomalous substructure in the

crystal. As discussed by Zwart (2005), the accuracy of crys-

tallographic phases that can be calculated from a set of

anomalous differences using knowledge of the anomalous

substructure is related to the useful anomalous correlation.

Fig. 4 illustrates the relationship between useful anomalous

correlation and the map correlation to a model-phased map

obtained after phase calculations are carried out using Phaser

(McCoy et al., 2004) with the known anomalous substructure

and the measured anomalous differences for the data sets

shown in Fig. 2. Fig. 4 shows that for these data sets the map

quality increases substantially with useful anomalous corre-

lation.

3.4. Relationship between number of sites in the anomalous
substructure and the anomalous signal

(31) indicates that the anomalous signal is proportional to

the inverse of the square root of the number of sites in the

substructure. It is appropriate to consider how structure

determination would be affected in a realistic situation by

varying the number of sites. This is not quite as straight-

forward as it might seem, as increasing the number of sites in

the substructure would normally also increase the anomalous

differences. Consequently, if all other

crystal-size and data-collection condi-

tions were the same, the crystal with

more sites in the substructure would

have a higher useful anomalous corre-

lation (CCano
obs; equation 29), partially

offsetting the decrease in anomalous

signal expected from (31). Two limiting

situations can be considered. In the case

where anomalous differences are

measured very accurately and the useful

anomalous correlation is already very

near unity, increasing the number of

sites cannot increase the useful anom-

alous correlation (CCano
obs) further, so the

increase in the number of sites will

decrease the anomalous signal

according to the square root of the

number of sites as in (31).

In the more common case where the useful anomalous

correlation (CCano
obs) is lower, increasing the number of sites

will have a smaller effect on the anomalous signal than would

be found with a constant value of the anomalous correlation.

The extent of this effect can be seen by rewriting (31) to

explicitly account for the contributions of the useful anom-

alous differences to the useful anomalous correlation by

including the relationship between the normalized variance

(E2; equation 19) and the number of sites. Assuming inde-

pendence of the terms in (18), we can write an expression for
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Figure 4
Phase accuracy as a function of useful anomalous correlation. Each point
represents one SAD data set. The useful anomalous correlation is
calculated from the correlation of model-based and measured anomalous
differences. The measured anomalous differences are used along with the
known anomalous substructure to calculate crystallographic phases.
The phase accuracy is represented as the correlation between a map
calculated using these phases and a map calculated using model phases.

Figure 3
Success in substructure determination as a function of the anomalous signal in SAD data sets. Each
point in the plot represents the fraction of the anomalous substructure found using likelihood-based
methods for a complete or a resolution-truncated SAD data set as described in the text. The line
represents the fraction of data sets where at least 50% of the sites in the substructure were found, as
calculated in bins of resolution.



the expected mean-square measured anomalous difference

h(�ano
obs )2
i,

hð�obs
anoÞ

2
i ¼ h�2

anoi þ hð�
other
ano Þ

2
i þ hð"anoÞ

2
i: ð34Þ

Then, considering (28), we can rewrite this in terms of the

number of sites in the anomalous substructure n,

hð�obs
anoÞ

2
i ¼ 2nsitesNsymhf

2
h;Bi þ hð�

other
ano Þ

2
i þ hð"anoÞi: ð35Þ

Substituting into (19), we obtain an expression for the

normalized variance E2 that depends on the number of sites,

the mean-square anomalous difference �ano
other from sources

other than the substructure, the errors in measurement "ano

and the scattering from an individual site in the substructure

fh,B,

E2 ’
hð�other

ano Þ
2
i þ h"anoÞ

2
i

2nsitesNsymhf
2
h;Bi

: ð36Þ

Factoring out the dependence of the normalized variance on

the number of sites nsites, we can write that

E2
’

e2

nsites

; ð37Þ

where e2 is the ratio of the total mean-square errors in the

anomalous differences to the expected mean-square useful

anomalous differences for a single site in the substructure,

e2
’
hð�other

ano Þ
2
i þ hð"anoÞ

2
i

2Nsymhf
2
h;Bi

: ð38Þ

Using (37) and (38), we can rewrite (31) (or equation 28) in a

way that explicitly includes the number of sites and the ratio of

the total mean-square errors in the anomalous differences to

the expected mean-square useful anomalous differences for a

single site in the substructure,

hSobs
anoi ’

Nrefl

ðnsites þ e2ÞfB

� �1=2

: ð39Þ

It can be seen from (39) that if the ratio e2 is much smaller than

the number of sites nsites then increasing the number of sites

will decrease the anomalous signal Sano
obs approximately

according to the square root of the number of sites. This

corresponds to the situation where the data are very accu-

rately measured and there are only small anomalous differ-

ences arising from any atoms other than those in the

substructure, as in x3.1.2. In contrast, if the ratio e2 is

comparable to or larger than the number of sites, then chan-

ging the number of sites will have a smaller effect, but the

anomalous signal will still always decrease with increasing

numbers of sites in the substructure. This corresponds to the

situation in which the total mean-square error in the anom-

alous differences is comparable to or larger than the total

mean-square useful anomalous difference.

4. Conclusions

Our simple theory (31) shows how the anomalous signal in

a SAD data set depends on the correlation of anomalous

differences with those corresponding only to the anomalous

substructure, the number of unique reflections measured, the

number of sites in the substructure and the atomic displace-

ment factors for the atoms in the substructure. Combining this

with the empirical observation that the anomalous signal is a

predictor of solving the anomalous substructure (Fig. 2) gives

a clear idea of the features of the crystal and the experiment

that determine whether the substructure can be obtained.

(31) shows that even if the data are measured precisely, the

anomalous signal is limited by several factors. These are the

number of reflections measured, the number of sites in the

substructure, the atomic displacement factors of the atoms in

the substructure and the presence of minor sites. The limits

on obtainable values of the anomalous signal can be used to

ensure that substructure solution is at least possible when

designing an experiment. (31) further shows that if errors in

measurement are present, or if not all the anomalous scat-

tering comes from the anomalous substructure, the anomalous

signal is reduced by the value of the useful anomalous

correlation CCano
obs (the correlation of anomalous differences

with those expected from a crystal where anomalous differ-

ences come only from the substructure and where there are

no experimental errors). We emphasize that throughout this

analysis the value of each parameter in (31) is the value

corresponding to all reflections in the data set, and the para-

meters in (31) may change as higher resolution, lower accu-

racy data are included. Although including high-resolution,

low-accuracy anomalous differences will increase the total

number of reflections, which would seem to increase the

anomalous signal through (31), this effect could be offset by

the resulting lower value of the overall anomalous correlation

CCano
obs. Consequently, in order to use (31) effectively to decide

which data to include in an analysis it is important to consider

how each parameter in (31) would be expected to change as

additional data are included.

There are two principal bottlenecks in structure determi-

nation using the SAD method. One is finding the locations of

atoms in the substructure, as discussed above, and the other is

the calculation of crystallographic phases (Liu et al., 2013).

Fig. 4 indicates that the accuracy of experimental phases in the

SAD method are closely related to the useful anomalous

correlation CCano
obs. This is consistent with the observations of

Zwart (2005) and provides a basis for predicting experimental

map quality before and after the collection of SAD data.

Taken as a whole, our theoretical treatment of the contri-

butions to the anomalous signal and useful anomalous corre-

lation provide a foundation for evaluating whether a SAD

experiment is likely to lead to successful substructure and

phase determination.
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Debreczeni, J. É., Bunkóczi, G., Ma, Q., Blaser, H. & Sheldrick, G. M.

(2003). Acta Cryst. D59, 688–696.
Du, J., Zhong, X., Bernatavichute, Y. V., Stroud, H., Feng, S., Caro, E.,

Vashisht, A. A., Terragni, J., Chin, H. G., Tu, A., Hetzel, J.,
Wohlschlegel, J. A., Pradhan, S., Patel, D. J. & Jacobsen, S. E.
(2012). Cell, 151, 167–180.

Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. (2010). Acta
Cryst. D66, 486–501.

Evans, P. (2006). Acta Cryst. D62, 72–82.
Fan, J., Jiang, D., Zhao, Y., Liu, J. & Zhang, X. C. (2014). Proc. Natl

Acad. Sci. USA, 111, 7636–7640.
Fineran, P. C., Blower, T. R., Foulds, I. J., Humphreys, D. P., Lilley,

K. S. & Salmond, G. P. C. (2009). Proc. Natl Acad. Sci. USA, 106,
894–899.

Fourme, R., Shepard, W., Kahn, R., l’Hermite, G. & Li de La Sierra, I.
(1995). J. Synchrotron Rad. 2, 36–48.

Fu, Z.-Q., Rose, J. P. & Wang, B.-C. (2004). Acta Cryst. D60, 499–506.
Furey, W. & Swaminathan, S. (1997). Methods Enzymol. 276, 590–620.
Gao, A. & Serganov, A. (2014). Nature Chem. Biol. 10, 787–792.
Garman, E. (2003). Curr. Opin. Struct. Biol. 13, 545–551.
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(2004). EMBO J. 24, 11–22.
Levin, I. et al. (2005). Proteins, 59, 864–868.
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Acta Cryst. D70, 492–500.
Liu, Q., Liu, Q. & Hendrickson, W. A. (2013). Acta Cryst. D69, 1314–

1332.
Liu, Z.-J., Chen, L., Wu, D., Ding, W., Zhang, H., Zhou, W., Fu, Z.-Q.

& Wang, B.-C. (2011). Acta Cryst. A67, 544–549.
Lo, Y.-C., Lin, S.-C., Rospigliosi, C. C., Conze, D. B., Wu, C.-J.,

Ashwell, J. D., Eliezer, D. & Wu, H. (2009). Mol. Cell, 33, 602–615.
McCoy, A. J., Storoni, L. C. & Read, R. J. (2004). Acta Cryst. D60,

1220–1228.
Mechaly, A. E., Sassoon, N., Betton, J.-M. & Alzari, P. M. (2014).

PLoS Biol. 12, e1001776.
Mueller, M., Grauschopf, U., Maier, T., Glockshuber, R. & Ban, N.

(2009). Nature (London), 459, 726–730.
North, A. C. T. (1965). Acta Cryst. 18, 212–216.
Osawa, T., Ito, K., Inanaga, H., Nureki, O., Tomita, K. & Numata, T.

(2009). Structure, 17, 713–724.
Otwinowski, Z. (1991). Proceedings of the CCP4 Study Weekend.

Isomorphous Replacement and Anomalous Scattering, edited by
W. Wolf, P. R. Evans & A. G. W. Leslie, pp. 80–86. Warrington:
Daresbury Laboratory.

Otwinowski, Z. & Minor, W. (1997). Methods Enzymol. 276, 307–326.
Pannu, N. S. & Read, R. J. (2004). Acta Cryst. D60, 22–27.
Parthasarathy, S. & Parthasarathi, V. (1974). Acta Cryst. A30,

649–654.
Perrakis, A., Morris, R. & Lamzin, V. S. (1999). Nature Struct. Biol. 6,

458–463.
Pokkuluri, P. R., Londer, Y. Y., Duke, N. E., Pessanha, M., Yang, X.,

Orshonsky, V., Orshonsky, L., Erickson, J., Zagyanskiy, Y.,
Salgueiro, C. A. & Schiffer, M. (2011). J. Struct. Biol. 174, 223–233.

Qiao, R., Cabral, G., Lettman, M. M., Dammermann, A. & Dong, G.
(2012). EMBO J. 31, 4334–4347.

Sampathkumar, P. et al. (2013). Structure, 21, 560–571.
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