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A key challenge in the SAD phasing method is solving a structure when the

anomalous signal-to-noise ratio is low. Here, algorithms and tools for evaluating

and optimizing the useful anomalous correlation and the anomalous signal in a

SAD experiment are described. A simple theoretical framework [Terwilliger et

al. (2016), Acta Cryst. D72, 346–358] is used to develop methods for

planning a SAD experiment, scaling SAD data sets and estimating the useful

anomalous correlation and anomalous signal in a SAD data set. The

phenix.plan_sad_experiment tool uses a database of solved and unsolved SAD

data sets and the expected characteristics of a SAD data set to estimate the

probability that the anomalous substructure will be found in the SAD

experiment and the expected map quality that would be obtained if the

substructure were found. The phenix.scale_and_merge tool scales unmerged

SAD data from one or more crystals using local scaling and optimizes the

anomalous signal by identifying the systematic differences among data sets, and

the phenix.anomalous_signal tool estimates the useful anomalous correlation

and anomalous signal after collecting SAD data and estimates the probability

that the data set can be solved and the likely figure of merit of phasing.

1. Introduction

The single-wavelength anomalous diffraction (SAD) method

is a widely used experimental phasing technique (Dauter et al.,

2002; Hendrickson, 2014) that accounts for over 70% of

depositions of experimentally phased structures in the Protein

Data Bank (PDB; Berman et al., 2000). It exploits differences

observed between the intensities of reflections that are related

by inversion symmetry (Bijvoet, 1954) caused by the element-

and wavelength-dependent X-ray absorption characteristics of

atomic scatterers. Although this effect is universally present

in the Sohncke space groups most commonly encountered

in macromolecular crystallography, it is often not detectable

because of its small magnitude. The use of anomalous differ-

ences in experimental phasing typically requires a specific

element to be present at a limited number of sites in the

macromolecular structure and the choice of an X-ray wave-

length near an absorption edge. The ‘anomalous’ differences

are used to locate the atoms in the substructure (Weeks et al.,

1993; Terwilliger & Berendzen, 1999; Schneider & Sheldrick,

2002; Grosse-Kunstleve & Adams, 2003) and are then used
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along with the substructure to estimate phases for the entire

structure (Otwinowski, 1991; de La Fortelle & Bricogne, 1997;

Furey & Swaminathan, 1997; McCoy et al., 2004; Pannu &

Read, 2004).

In this work, we use the anomalous signal, defined as the

peak height in a model-phased anomalous difference Fourier

map at coordinates of atoms in the anomalous substructure

(Yang et al., 2003), as a measure of the information about the

substructure present in an anomalous data set. It has been

shown in Terwilliger et al. (2016) that the anomalous signal is a

good predictor of the ability to locate atoms in the substruc-

ture and that it is related to the experimental data by a simple

relationship,

hSobs
anoi ’ CCano

Nrefl

nsitesfB

� �1=2

: ð1Þ

Here, Sano
obs denotes the observed anomalous signal and CCano

is the useful anomalous correlation (Terwilliger et al., 2016).

The ‘useful anomalous correlation’ is defined as the correla-

tion of observed anomalous differences with ideal anomalous

differences from the final refined structure but considering

anomalous scattering only from the nsites atom included in the

anomalous substructure. It is essentially a measure of how

similar the observed anomalous differences are to the best set

of anomalous differences that could possibly be obtained for

the non-anomalously scattering atoms of this crystal and its

detectable anomalous substructure. All of the quantities in (1)

refer to the data set as a whole, so that, for example, CCano is

the overall mean useful anomalous correlation. The resolution-

dependence of measurements of anomalous differences is

reflected in CCano, which accordingly will typically become

lower as high-resolution data are included. The number of

unique reflections in the data set is Nrefl. The factor fB is the

second moment of the scattering factors of the anomalous

substructure, calculated using the anomalous scattering factors

fh,B (including atomic displacement) at the resolution corre-

sponding to each reflection in the data set,

fB ¼
hf 2

h;Bi

hfh;Bi
2 ; ð2Þ

where the average is over all reflections in the data set. The

factor fB is also dependent on resolution, typically becoming

larger when higher resolution data are included. The

combined effect of the decrease in useful anomalous corre-

lation CCano and the increase in fB with the addition of high-

resolution data is that the overall anomalous signal does not

normally increase proportionally to the square root of the

number of reflections and can even decrease (if random

anomalous differences are added).

In this work, we describe methods for scaling and merging

anomalous data from multiple crystals or data collections and

for estimating the useful anomalous correlation CCano and the

anomalous signal Sano
obs at different stages of the experiment.

We also develop empirical relationships between the anom-

alous signal Sano
obs and the probability of solving the substruc-

ture, and between the useful anomalous correlation CCano and

the expected quality of initial phases.

2. Methods

2.1. Scaling and merging anomalous data

Our procedure for scaling and merging SAD data from any

number of crystals or orientations of crystals involves seven

steps that are an expanded version of the local scaling

procedure used previously in SOLVE (Terwilliger &

Berendzen, 1999) and phenix.autosol (Terwilliger et al., 2009).

These are the following.

(i) Grouping of data sets with similar unit-cell parameters

and choice of the largest group, removing all other data sets

from consideration.

(ii) Calculation of and correction for the average anisotropy

of all of the data sets under consideration.

(iii) Splitting of data sets into sub-data sets containing at

most one observation of each unique index.

(iv) Local scaling of each individual sub-data set.

(v) Scaling of each sub-data set to a merged data set with an

overall scale factor.

(vi) Estimation of systematic differences between each

individual sub-data set and a merged data set.

(vii) Merging and averaging the scaled sub-data sets,

including the estimates of systematic differences between

individual data sets and the merged data set in the weighting

of each measurement.

These steps are described in groups in the following

sections.

2.1.1. Choice of data sets and correction to averaged
anisotropy. The first steps in our procedure for scaling and

merging of SAD data sets includes the choice of which data

sets to include in the process and the application of an

anisotropy correction to each data set so that all of the data

sets have anisotropy similar to the average of all of the original

data sets. When data sets from several crystals are available, a

group of data sets from crystals with similar unit-cell para-

meters is chosen. The required similarity among data sets can

be adjusted by the user. The default criteria for similarity

are unit-cell lengths matching within 1% and unit-cell angles

matching within 1�. An alternative criterion available for unit-

cell lengths is that they must match within a specified fraction

(typically one quarter to one half) of the high-resolution limit

of the data (Drenth, 1999). The group of data sets with the

largest total number of measured reflections satisfying these

criteria are chosen and the remainder of the data sets are set

aside.

Next, the average anisotropy parameters for the remaining

data sets are estimated using the tools in phenix.xtriage

(Zwart, 2005; Zwart et al., 2005). The anisotropy parameters

for all of these data sets are averaged to estimate the average

anisotropy. The data in all data sets are then adjusted so that

each data set has this average anisotropy. In this way, differ-

ences among the data sets are minimized while maintaining
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the anisotropy and fall-off with resolution of the data sets as a

whole.

Once the data sets have been selected and brought to a

common anisotropy, they are split, if necessary, into smaller

data sets containing at most one observation corresponding to

each unique index (h, k, l), where in this context ‘unique’

refers to the entire limiting sphere, not the reciprocal asym-

metric unit. This step is included so that the subsequent local

scaling step can be carried out on data sets that contain

no duplicate measurements. The assumption is made that

unmerged datafiles will group symmetry-related reflections

together, and within such a group of reflections the reflections

will be ordered based on order of measurement. The splitting

of measurements into separate sub-datafiles is therefore

carried out considering reflections in the order that they are

present in the input datafile. Within a group of symmetry-

related reflections, for any reflection for which the indices

duplicate a set of indices already found, the corresponding

reflection is placed in a new sub-datafile. When a datafile is

split into sub-datafiles, any sub-datafiles that contain less than

30% of the number of reflections in the largest sub-datafile are

typically discarded. Additionally, in order to reduce systematic

errors, an attempt is made to match Bijvoet mates within each

data set and to exclude measurements of acentric reflections

for which no Bijvoet mate was measured.

2.1.2. Local scaling of each individual data set or sub-data
set. The key scaling algorithm applied to an individual data

set or sub-data set in our procedure is local scaling (Matthews

& Czerwinski, 1975) as implemented in SOLVE and

phenix.autosol (Terwilliger & Berendzen, 1999; Terwilliger et

al., 2009; Adams et al., 2010). The idea of local scaling is that

any systematic errors that affect the intensity of a particular

reflection will tend to similarly affect the intensities of

reflections nearby in reciprocal space, which were presumably

recorded at nearly the same time during data collection. If

data set A is to be scaled to data set B, a local scale factor can

be calculated for each reflection in data set A based on the

ratio of the intensities of nearby reflections in data set B to the

corresponding reflections in data set A. The reflections for

calculating the scale factor are chosen in pairs symmetrically

arranged around the reflection to be scaled if possible, and

typically 30 or more reflections are chosen for estimating

the scale factor. The scaling procedure is carried out using

amplitudes (Terwilliger & Berendzen, 1999), but we empha-

size that the input data are unmerged intensities with original

hkl indices as assigned by the indexing and integration soft-

ware. The intensities are converted to amplitudes by taking

their square roots (or setting them to zero if negative) and

they are converted back to intensities at the end of the

procedures by squaring.

The procedure carried out here for local scaling of a single

data set begins by averaging all observations of each unique

reflection in the reciprocal-space asymmetric unit to create an

average data set to be used as a scaling target. The original

unmerged data set is then split into two: one with all the (F +)

observations that are symmetry-equivalent to each reflection

in the reciprocal-space asymmetric unit of the crystal and one

with the Bijvoet mates (F�) of these reflections. Each of these

partial data sets is scaled to the average data set with local

scaling. The F + and F� data sets are then combined without

further scaling to create a scaled anomalous data set with

scaled F + and F� values for each reflection in the reciprocal-

space asymmetric unit.

2.1.3. Estimation of systematic errors or features unique to
each data set and merging including estimates of systematic
differences. As the data sets that are to be merged may come

from different crystals and after different exposures of an

individual crystal, the anomalous differences for the various

data sets, even if measured and scaled perfectly, might not all

be equal. Our algorithm for scaling multiple data sets attempts

to identify the intrinsic differences between each individual

data set and the mean (or a selected data set) and then weights

the anomalous differences from each data set including these

data-set-based intrinsic differences. The procedure is first to

convert each pair of measurements of F + and F� to estimates

of the mean structure-factor amplitude �FF and the anomalous

difference �i. Next, an average data set is created by simple

merging of all of the observations of a particular anomalous

difference �i from all data sets i, with weights wi for each

observation based on the experimental uncertainties,

wi ¼
1

h�2
i i
: ð3Þ

Estimates of the intrinsic differences between anomalous

differences in each data set and the average (Di
2) are then

obtained by subtracting the sum of mean-square error esti-

mates for the mean (h�m
2
i) and individual data sets (h�i

2
i) from

the observed mean-square difference between the average

and individual data sets [h(�i � �m)2
i],

D2
i ¼ hð�i ��mÞ

2
i � ðh�2

i i þ h�
2
miÞ: ð4Þ

The logic of (4) can perhaps be most easily understood by

considering the case where many data sets are collected so

that �m is essentially the true mean anomalous difference for

an average crystal. In this case, the mean-square difference

between an individual measurement �i and the true anom-

alous difference for an average crystal �m would be the sum

of the mean-square measurement error in �i (h�i
2
i) and the

mean-square difference between anomalous differences for

crystal i and the average crystal (Di
2). This calculation slightly

underestimates the intrinsic differences because the mean

anomalous difference (�m) includes the value from the indi-

vidual data set (�i); however, if there are many data sets

included the effect will be small and it is ignored here. Finally,

the anomalous differences from all data sets are again aver-

aged together, this time including the intrinsic differences in

the weights,

wh ¼
1

D2
i þ h�

2
hi
: ð5Þ

The resulting anomalous differences are then recombined with

the estimates of the average structure factor ( �FF) to yield new

estimates of the members of the Bijvoet pair F + and F�.
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2.2. Calculation of metrics of anomalous data quality

We calculated the values of three metrics of anomalous data

quality. One is based on the half-data-set anomalous correla-

tion, one on the skew of the anomalous difference Patterson

and one on estimates of the ratio of the mean-square errors

in measurement to the mean-square anomalous differences.

These metrics of data quality will form the basis for Bayesian

estimation of the useful anomalous correlation CCano for a

data set.

2.2.1. Calculation of half-data-set anomalous correlation.

A half-data-set anomalous correlation is generally obtained

(Evans, 2006) by randomly assigning each reflection in a data

set into one of two groups, merging the data within each group

and calculating the correlation of anomalous differences

between the groups. In this work, several data sets were

typically combined to create merged data sets and we antici-

pated that the Bijvoet pairs in one data set might be system-

atically different from those in another data set. We attempted

to minimize the effects of such systematic differences by

keeping reflections measured from one crystal together when

the half data sets are created. If multiple SAD data sets were

available for a particular crystal structure, the data sets were

divided into two approximately equally sized groups, each half

data set was scaled with local scaling as described above and

the correlation of anomalous differences between the two half

data sets was calculated. If only a single unmerged data set was

available, it was split by choosing approximately half of the

observations of each unique reflection to be in each of two half

data sets. If the observations for a unique reflection were

grouped together in the data file, the reflections were simply

split into approximately the first and second half as they

appeared in the file, otherwise they were chosen randomly.

Using the half-data-set anomalous correlation we calculated

a metric that we anticipated would be a useful predictor of the

useful anomalous correlation CCano between the anomalous

differences for the entire data set and the anomalous differ-

ences expected from the true anomalous substructure. Our

metric is related to the widely used estimator for the expected

correlation of the intensities in a merged data set with true

intensities (CC*; Karplus & Diederichs, 2012). If a data set

containing multiple measurements of intensities for each

reflection is divided into two parts, each containing half of the

measurements of each reflection, then the expected correla-

tion CC* of the intensities in the merged data set with the true

intensities is given approximately by (Karplus & Diederichs,

2012)

CC� ¼
2CC1=2

1þ CC1=2

� �1=2

; ð6Þ

where CC1/2 is the correlation between intensities in the two

half data sets, known as the half-data-set correlation. A key

assumption in deriving this formula is that the observations

for each reflection can be split into two equally sized groups.

Following the same analysis, substituting the half-data-set

anomalous correlation for the half-data-set correlation of

intensities, and considering the possibility that only a fraction

w of the reflections have been measured more than once,

the expected correlation of anomalous differences in a merged

data set with the true anomalous differences is given

approximately by

CC�ano ¼
2CCano

1=2

2� wþ wCCano
1=2

� �1=2

: ð7Þ

As the value of the estimated anomalous correlation CC* is

not defined when the measured half-data-set correlation CC1/2

is negative, our metric for anomalous data quality based on the

half-data-set correlation is instead the square of the expected

correlation, CC�2ano,

CC�2ano ¼
2CCano

1=2

2� wþ wCCano
1=2

: ð8Þ

As in (1), the values of these correlations are for the data set

as a whole (after scaling and merging). The values of the

correlations will normally decrease when higher resolution

data are added.

2.2.2. Calculation of the skew of an anomalous difference
Patterson function. An anomalous difference Patterson

function normally has strong positive peaks corresponding to

vectors between coordinates of atoms in the anomalous sub-

structure. A very high peak is always present at the origin.

Additionally, high peaks corresponding to translations that are

part of noncrystallographic symmetry may also be present

(Read et al., 2013). The skew (the third moment) of a function

reflects the positive and negative distributions of values in the

function. In the case of an anomalous difference Patterson, the

skew is generally positive if there are strong positive peaks

and few negative peaks. We have previously used the skew of

an electron-density map (Podjarny, 1976; Lunin, 1993) as a

measure of its quality (Terwilliger et al., 2009). Here, we use a

modified calculation of the skew of the difference Patterson

function as a metric of anomalous signal. The procedure is to

calculate an origin-removed anomalous difference Patterson

map, adjusting the mean to zero and calculating the r.m.s. (�)

of the resulting map, and then to truncate the map at �4�.

Optionally, the map is further truncated at �3� at all points

where the native Patterson function has a value outside the

range of �3� in order to reduce the effect of any translational

noncrystallographic symmetry (the default is not to carry out

this truncation). The skew s of the resulting adjusted anom-

alous difference Patterson is then calculated,

s ¼
h�3i

h�3i
: ð9Þ

Although there is no simple relationship between the skew of

the anomalous difference Fourier and the useful anomalous

correlation CCano between the anomalous differences and

those expected from the anomalous substructure, we antici-

pated that a higher value of CCano might be associated with

higher values of the skewness of the map.

2.2.3. Estimation of errors in measurement of anomalous
differences. During the process of measuring diffraction spots

and estimating X-ray intensities, the uncertainties in the
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intensities are normally estimated as well. It is well known,

however, that it is difficult to estimate these uncertainties

accurately (Dauter, 2006; Evans, 2006). We have adopted a

simple procedure for rescaling the uncertainty estimates for a

data set. Our procedure is related to the rescaling procedures

used in SCALA (Evans, 2006) and in HKL-2000 (Otwinowski

& Minor, 1997), but in our procedure the scale factor is

obtained using only anomalous differences and using only

data from the highest resolution shells. Our procedure is based

on two assumptions. One is that the relative uncertainties of

measurements within a data set are reasonably accurate, so

that an overall scale factor can be applied to all uncertainties

to improve their accuracy. The second assumption is that for

data measured near the highest resolution obtained in the

experiment the anomalous signal is much smaller than the

error in measurement. Our procedure for rescaling uncer-

tainties consists simply of finding a scale factor � to apply to

the uncertainties that will yield a mean-square uncertainty in

anomalous differences in the highest shell of resolution h�2
anoi

that is equal to the mean-square anomalous difference

h(�obs
ano)2
i,

hð�obs
anoÞ

2
i ¼ �2

h�2
anoi: ð10Þ

The mean-square values in the highest shell of resolution in

this calculation are extrapolated based on the values in several

shells of resolution. The tool get_sigma_ratio in phenix.get_

patterson_skew was used to carry out this calculation. All the

uncertainties in that data set are then multiplied by the scale

factor �. We further calculate a normalized error estimate e

for the entire data set based on the ratio of the mean-square

(rescaled) uncertainties to the mean-square observed anom-

alous differences,

e ¼
h�2

anoi
1=2

hð�obs
anoÞ

2
i

1=2
: ð11Þ

Note that, by construction, for the highest resolution shell the

value of e is essentially unity. This normalized error estimate e

was used as a metric representing the overall accuracy with

which the anomalous differences were measured. We note that

if there were no minor anomalous scatterers in a structure,

so that �ano
other = 0, then the overall normalized error in the

anomalous differences would be simply equal to e and the

useful anomalous correlation CCano would be expected to be

(cf. Terwilliger et al., 2016)

CCano ’ ð1� e2
Þ

1=2: ð12Þ

2.3. Estimators

2.3.1. Bayesian estimation of the useful anomalous corre-
lation. We previously created a simple tool for Bayesian

estimation (bayesian_estimator.py) and used it to estimate the

quality of electron-density maps from features of the map such

as its skewness (Terwilliger et al., 2009). This estimator starts

by constructing a two-dimensional histogram from a training

set of values of predictor variable/target variable pairs. The

estimator then uses the histogram to calculate the variance of

the predictor variable for a given value of the target variable.

Finally, given a particular value of a predictor variable, it

calculates the posterior probability distribution for the target

variable using Bayes’ rule and a flat prior probability distri-

bution. When more than one predictor variable is available,

the tool assumes independence of the predictor variables and

calculates a composite probability for the target variable.

Here, we use the same tool to estimate the correlation (CCano)

of anomalous differences in a SAD data set to the anomalous

differences corresponding to the true substructure. The

training data for the Bayesian estimator consists of data from a

set of 218 SAD data sets (166 of which have unmerged data

available) taken from SAD or MAD data deposited in the

PDB for 113 structures (see the list in x2.4), truncated at

resolutions varying from 1.5 to 6 Å to yield a total of 1874 data

sets with known structures. For each data set the true useful

anomalous correlation CCano was calculated from the

observed anomalous differences and the known anomalous

substructure. Additionally, the square of the estimated

anomalous correlation (CC�2ano), the skew of the anomalous

difference Patterson function (s) and the estimate of the

normalized error in the anomalous differences (e) were

calculated. For data sets where unmerged data were not

available, the expected useful anomalous correlation was not

calculated. The Bayesian prior (the information available

about the useful anomalous correlation CCano before making

any measurements) was simply the distribution of observa-

tions of the useful anomalous correlation in the training set.

Given a set of observations (CC�2ano, s and e), the useful

anomalous correlation CCano was estimated by weighting each

possible value of CCano by the prior probability for that value

of CCano multiplied by the probability that the observations

CC�2ano, s and e would have been made if that value of CCano

were correct (Hamilton, 1964; Terwilliger et al., 2009). The

estimator was trained on all the complete data sets used in this

work and separately for data truncated to high-resolution

limits from 1.5 to 6 Å in increments of 0.5 Å.

2.3.2. Bayesian estimation of atomic displacement factors
for atoms in the substructure. We developed a similar Baye-

sian estimator for the atomic displacement factor for atoms

in the anomalous substructure based on the Wilson B value

(Wilson, 1942) for the entire structure. Using 138 MAD and

SAD data sets from the PDB (listed in x2.4), the Wilson B

value for the data sets was estimated using the PHENIX tool

phenix.xtriage (Zwart et al., 2005), and the mean atomic

displacement factor for atoms in the anomalous substructure

was calculated from the deposited entry in the PDB. A

Bayesian estimator was trained as above with a list of Wilson

B values and corresponding mean atomic displacement factors

for the anomalous substructure.

2.3.3. Estimation of the probability of obtaining a correct
substructure based on the anomalous signal. We used a simple

approach to estimate the likelihood of obtaining a correct

substructure based on values of the anomalous signal. The

complete and truncated SAD data sets described above were

grouped into bins based on their anomalous signal estimated
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with the Bayesian estimator just described. The HySS like-

lihood-based substructure-determination method (Bunkóczi

et al., 2014) was applied to each of the data sets and the

fraction of sites in the substructure that were obtained (within

3 Å of a correct site) was noted. A substructure was desig-

nated as ‘solved’ if 50% or more of the sites in the substructure

were obtained. The estimator of the probability of substruc-

ture solution for a particular value of anomalous signal

(grouped into bins) constructed with these data was then

simply the fraction of substructures with this anomalous signal

that were solved.

2.3.4. Estimation of the accuracy of phasing based on the
useful anomalous correlation. The same set of SAD data sets

and the same approach as in the previous section were used to

estimate the quality of initial phases and to compare them with

the useful anomalous correlation. For each data set, phase

calculations were carried out with Phaser (McCoy et al., 2004)

using the known anomalous substructure and the measured

anomalous differences for the data set. The resulting map

correlation to a model-phased map was then determined and

compared with the useful anomalous correlation (cf. Fig. 4 in

Terwilliger et al., 2016). The estimator for the expected accu-

racy of phasing given a value of the useful anomalous corre-

lation was then simply the mean correlation to the model-

phased maps for those data sets with similar values of useful

anomalous differences (calculated in bins of the useful

anomalous difference).

2.3.5. Estimation of anomalous signal before and after
collecting the data. We used (1) to estimate the expected

value of the anomalous signal Sano
obs in a crystal structure. This

expression requires values of the useful anomalous correla-

tion, the number of reflections and the atomic displacement

factors and number of sites in the anomalous substructure.

Even before measuring diffraction intensities, some esti-

mates of these values can be made based on the composition

of the crystal. After measuring the data, improved estimates

can be made. The useful anomalous correlation CCano can be

estimated after anomalous data are available as described in

the previous section. In advance of measuring the data the

useful anomalous correlation is not known, but it is related

(Fig. 2, below) to the normalized errors in the anomalous

differences e (11). It is not necessary to know e very precisely,

as the value of the anomalous signal approaches a maximum

value asymptotically as the normalized error decreases (12). In

our approach the user can specify the errors in measurement

in terms of the anticipated mean value of the ratio of intensity

to uncertainty in measurement of intensity hI/�(I)i. The

empirical relationship of e ’ 0.88/[hI/�(I)i] (derived from

a simple plot of these two variables for 82 of the data sets

examined in this work and with a squared Pearson correlation

coefficient r2 of 0.82 for this relationship) is then used to

calculate e and to estimate the useful anomalous correlation

using the Bayesian estimator described in x2.3.1.

The number of reflections Nrefl is of course known after the

data have been measured. In advance of this, it can be esti-

mated from the resolution to which diffraction data are to

be measured, the composition of the macromolecule and the

solvent content in the crystal. As the high-resolution limit for

data collection is generally not known before measuring the

data, several values can be examined. The solvent content for

many macromolecular crystals is near 50%, although occa-

sionally it may be much higher or lower (Matthews, 1968;

Kantardjieff & Rupp, 2003; Weichenberger & Rupp, 2014).

We used the PHENIX tool phenix.ncs_and_number_of_ha to

estimate the composition of the asymmetric unit of the crystal

and the solvent content. From the resulting estimate of the

volume Vau of the asymmetric unit in the crystal and the

resolution dmin to which data are to be collected, the number

of unique (non-anomalous) reflections can be estimated as

(following Ladd, 1998 and noting the caveat that this calcu-

lation includes centric reflections that will not contribute to

anomalous scattering)

Nnrefl ’
2�

3

Vau

d3
min

: ð13Þ

The number of sites in the anomalous substructure can often

be estimated from the sequence of the macromolecule, for

example in cases in which the anomalous substructure is part

of the macromolecule, such as in selenomethionine or sulfur

SAD experiments (Dauter, 2006). In other cases such as soaks

with noncovalent heavy-atom derivatives it may be necessary

to guess the number of sites. We use the PHENIX tool

phenix.ncs_and_number_of_ha to estimate the number of

sites.

The mean atomic displacement factor (needed to calculate

the second moment of the scattering factors fB with equation

2) for the atoms in the substructure is generally not known

in advance of measuring anomalous data, and in this case a

Bayesian estimate of its value is made based on the anticipated

resolution of data collection and the values of atomic displa-

cement factors for the anomalous substructure and resolution

for the 248 data sets used in x2.3.2 (these data are available

in the PHENIX software in the file $PHENIX/modules/cctbx/

mmtbx/scaling/ha_b_from_wilson.dat). Once the data have

been measured it could in principle be estimated from the fall-

off with resolution of anomalous differences, corrected for

errors in measurement. We have instead calculated the atomic

displacement factors for the anomalous substructure from the

Wilson B value of the data as a whole using a simple Bayesian

estimator as described in x2.3.2.

2.4. Test data from the PDB

We downloaded data sets from the PDB to serve as test

cases for our analyses. The data consisted of 218 MAD and

SAD data sets from 113 different PDB entries with diffraction

data extending to resolutions from 1.2 to 4.5 Å and with

anomalously scattering atoms including selenium, sulfur,

cobalt, mercury, zinc, nickel, iron, calcium, barium and

iridium. The MAD PDB entries were split into individual data

sets for each wavelength of X-ray data used to measure

diffraction data. The PHENIX tool phenix.sad_data_from_

pdb was used to extract the individual data sets from PDB

entries. The PDB entries used were 1vjn, 1vjr, 1vjz, 1vk4, 1vkm
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(Levin et al., 2005), 1vlm, 1vqr (Xu et al., 2006), 1xri (Aceti et

al., 2008), 1y7e, 1z82, 1zy9, 1zyb, 2a2o, 2a3n, 2a6b, 2aj2, 2aml,

2avn, 2b8m, 2etd, 2etj, 2ets (Kozbial et al., 2008), 2etv, 2evr

(Xu, Sudek et al., 2009), 2f4p, 2fea (Xu et al., 2007), 2ffj, 2fg0

(Xu, Sudek et al., 2009), 2fg9, 2fna (Xu, Rife et al., 2009), 2fqp,

2fur, 2fzt, 2g0t, 2g42, 2gc9, 2nlv (Hwang et al., 2014), 2nuj,

2nwv, 2o08, 2o1q, 2o2x, 2o2z, 2o3l, 2o62, 2o7t, 2o8q, 2obp,

2oc5, 2od5, 2od6, 2oh3, 2okc, 2okf (Hwang et al., 2014), 2ooj,

2opk, 2osd, 2otm, 2ozg, 2ozj, 2p10, 2p4o, 2p7h, 2p7i, 2p97,

2pg3, 2pg4, 2pgc, 2pim, 2pn1, 2pnk, 2ppv, 2pr1, 2pr7, 2prv,

2pv4, 2pw4, 2wcd (Mueller et al., 2009), 2xdd (Fineran et al.,

2009), 2zxh (Osawa et al., 2009), 3caz, 3din (Zimmer et al.,

2008), 3dto, 3fx0 (Lo et al., 2009), 3guw, 3gw7, 3hxk, 3hxp,

3lml, 3mv3 (Hsia & Hoelz, 2010), 3ov0 (Pokkuluri et al., 2011),

3pg5, 3zgx (Bürmann et al., 2013), 3zxu (Schmitzberger &

Harrison, 2012), 4acb (Leibundgut et al., 2004), 4asn (Aylett &

Lowe, 2012), 4bql (Lindås et al., 2014), 4cb0 (Mechaly et al.,

2014), 4cbv (Boudes et al., 2014), 4fsx (Du et al., 2012), 4g9i

(Tominaga et al., 2012), 4gkw (Qiao et al., 2012), 4h6y (He et

al., 2013), 4hkr (Hou et al., 2012), 4hnd (Zhou et al., 2014), 4ifq

(Sampathkumar et al., 2013), 4lck (Zhang & Ferré-D’Amaré,

2013), 4nsc (Wang et al., 2014), 4nt5 (Zhou & Springer, 2014),

4px7 (Fan et al., 2014), 4q8j (Schäfer et al., 2014), 4qka (Gao &

Serganov, 2014) and 4tq5 (Huang et al., 2014).

For the estimation of the atomic displacement factors for

the atoms in the anomalous substructure in x2.3.2, an addi-

tional 25 PDB entries were used. These were 1hf8 (Ford et al.,

2001), 2ahy (Shi et al., 2006), 2b78, 2fdn (Dauter et al., 1997),

2hba (Cho et al., 2014), 2o0h (Sun et al., 2007), 2prx, 2wxw

(Zhou et al., 2010), 3fki (Meyer et al., 2009), 3i5d (Kawate

et al., 2009), 3iko (Nagy et al., 2009), 3k9g (Abendroth et al.,

2011), 3km3 (Abendroth et al., 2011), 3m6a (Duman & Löwe,

2010), 3p96 (Abendroth et al., 2011), 3qqc (Martinez-Rucobo

et al., 2011), 4a2n (Yang et al., 2011), 4ai6 (Schmidt et al., 2012),

4aj5 (Jeyaprakash et al., 2012), 4aki (Schmidt et al., 2012), 4b09

(Choudhury & Beis, 2013), 4biu (Mechaly et al., 2014), 4cv5

(Mathys et al., 2014), 4m2s (Li et al., 2014) and 4nha (Tian et

al., 2014).

3. Results and discussion

3.1. Scaling and merging of anomalous data from one or
more data sets while explicitly modeling inter-data-set
variation

Our procedure for scaling and merging SAD data has three

key elements. Firstly, our procedure uses local scaling

(Matthews & Czerwinski, 1975; Terwilliger & Berendzen,

1999) to minimize systematic differences between members of

Bijvoet pairs. Secondly, our procedure explicitly models the

differences between the data coming from different data sets

as a data-set-specific variance and weights the data from

different data sets accordingly. Thirdly, this data-set variance

is calculated based on anomalous differences, not the Bijvoet-

averaged amplitudes, so that the weighting of data sets opti-

mizes the anomalous differences, not the overall amplitudes.

Modeling the differences in data coming from different data

sets is essentially a way to replace the standard procedure of

outlier rejection with a method for down-weighting data

coming from data sets that are systematically different from an

average data set. For each data set (within a bin of resolution),

the anomalous differences measured for that data set are

compared with anomalous differences obtained by averaging

all data sets. This yields an estimate of the total variance

between that data set and the mean. Part of this total variance

can normally be accounted for by the experimental uncer-

tainties for the data set in question and from the estimated

errors in the averaged values. In our approach, the remaining

(unexplained) variance is considered to be inter-data-set

variation. This inter-data-set variance represents how different

this data set is from the average of all data sets. If the data sets

correspond to different crystals, the inter-data-set variance is

an estimate of how different the data obtained from this

crystal would be from data averaged over all crystals if all the

data were measured without error. Including this inter-data-

set variance in the weighting of the data during merging has

the effect of automatically reducing the contribution of data

sets that are very different from the others, but still including

an appropriate amount of information from these data sets.

In a SAD experiment, it is normally the accuracy of the

anomalous differences, rather than the accuracy of the

amplitudes obtained after averaging Bijvoet pairs of reflec-

tions to remove the anomalous contribution, that is most

critical for structure determination. In cases where there is

substantial inter-data-set variation, the variation between data

sets in Bijvoet-averaged amplitudes is not necessarily the same
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Figure 1
Useful anomalous correlation for NS1 merged data sets. Flavivirus NS1
data sets were individually scaled and merged. Anomalous differences for
each individually merged data set were compared with model anomalous
differences based on the deposited structure (PDB entry 4tpl) to yield
values of the useful anomalous correlation for individual data sets (black
open circles). The individually merged data sets were then combined
using phenix.scale_and_merge in three ways: modeling inter-data-set
variances based on anomalous differences (red closed circles), modeling
inter-data-set variances based on averaged Bijvoet pairs (green closed
triangles) or without modeling inter-data-set variances (blue closed
diamonds).



as the variation in anomalous differences. For example, a set of

data sets might be collected at slightly different X-ray wave-

lengths but otherwise be essentially identical. In this case the

inter-data-set variation for Bijvoet-averaged pairs might be

very small, but the variation for anomalous differences might

be very large. To obtain the most accurate estimate of

anomalous differences at one X-ray wavelength, then, it would

be important to down-weight data sets collected at other X-ray

wavelengths. This can be accomplished by using the anom-

alous differences themselves in the estimation of the inter-

data-set variation.

3.2. Utility of modeling inter-data-set variation when
merging anomalous data

Fig. 1 shows the utility of explicitly modeling inter-data-set

variation in merging of data from multiple crystals. The data

are taken from an analysis carried out by Akey et al. (2014) on

data from 28 crystals of the flavivirus NS1 protein. As the

structure of the NS1 protein is available (PDB entry 4tpl), we

were able to calculate expected (ideal) anomalous differences

from the known structure based on anomalous contributions

from the S atoms in the structure. These ideal anomalous

differences were compared with the anomalous differences

from individual data sets and from merging various groups of

data sets, and the correlation of anomalous differences (the

useful anomalous correlation, CCano) was used as a measure

of the quality of the experimentally determined and merged

anomalous differences. Using the useful anomalous correla-

tion as a metric, we ordered 26 of the 28 data sets from high

(0.35) to low (0.08) values of useful anomalous correlation

using data to a resolution of 6 Å (shown in Fig. 1). We then

created merged data sets containing from one to all 26 of these

individual data sets and scaling in one of three ways. The first

approach included modeling inter-data-set variation and

optimization of anomalous differences. The second included

modeling inter-data-set variation, but calculating the inter-

data-set variation using Bijvoet-averaged pairs instead of with

the anomalous differences, and the third used neither of these

methods. Fig. 1 shows that if no modeling of inter-data-set

variation is carried out at all, anomalous differences for the

first data set have a correlation with the model anomalous

differences of 0.38. Adding additional data sets with

decreasing useful anomalous correlation initially increases the

useful anomalous correlation of the merged data (up to a

maximum of 0.52), but as very poorly correlated data sets are

added the anomalous differences for the merged data set

becomes less correlated with the model anomalous differ-

ences, so that when all 26 data sets are merged the correlation

is 0.49. We then examined the effect of including inter-data-set

modeling of variance based on the anomalous differences. In

this case the correlation of anomalous differences for the

merged data continually increases with additional data sets,

even when the added data sets have very low correlation with

the model anomalous differences. When all data sets are

included, the correlation of anomalous differences with model

differences is 0.61. Finally, we examined the importance of

modeling the inter-data-set variation using anomalous differ-

ences. When the inter-data-set variation was based instead on

the inter-data-set variation of Bijvoet-averaged structure-

factor amplitudes [ �FF = 1
2(F + + F�)], the correlation of merged

anomalous differences with model differences were consis-

tently slightly lower than when modeling the inter-data-set

variation on the anomalous differences (�ano = F +
� F�), but

otherwise the results were quite similar. When all data sets

were included in this case, the correlation with model anom-

alous differences was 0.59.

3.3. Estimating the useful anomalous correlation in a SAD
data set after measurement of anomalous data

It has been shown in Terwilliger et al. (2016) that the

anomalous signal and the useful anomalous correlation are

useful indicators of the utility of the anomalous differences in

a SAD data set. These metrics of data quality can only be

calculated directly after a structure has been solved, so

methods for estimating them from measured data would be

valuable. In this section, we will focus on estimating the useful

anomalous correlation using three measurable quantities

available once the data have been collected: the half-data-set

anomalous correlation, the skew of the anomalous difference

Patterson and the normalized error in measurement of the

anomalous differences.

3.3.1. Relationship between useful anomalous correlation
and half-data-set anomalous correlation. A measure of the

utility of anomalous differences is the half-data-set anomalous

correlation (CCano
half; Evans, 2006). A high value of the half-

data-set anomalous correlation indicates that the anomalous
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Figure 2
Useful anomalous correlation as function of estimated anomalous
correlation. The useful anomalous correlation is calculated from the
correlation of model-based and measured anomalous differences. The
estimated anomalous correlation is calculated from the half-data-set
anomalous correlation using (7).



differences can be reproducibly measured. Taking into

consideration the number of observations of each reflection

in each half data set, it is possible to use the half-data-set

anomalous correlation CCano
half to estimate how similar the

merged anomalous differences for a data set are to the merged

differences that would be obtained if infinitely many obser-

vations of them were made (Karplus & Diederichs, 2012;

equation 7). This estimated anomalous correlation CC�ano is

essentially a measure of how close the measured anomalous

differences are to the true anomalous differences for this

crystal. It is not, however, necessarily a measure of how close

the anomalous differences are to those that would be obtained

from an idealized crystal in which the only scatterers are those

in the anomalous substructure. Accurately measured anom-

alous differences can also reflect the anomalous scattering

from minor sites for the principal anomalous scatterers in the

structure as well as scattering from all of the weak anomalous

scatterers in the structure.

Fig. 2 shows the relationship between the estimated

anomalous correlation CC�ano and the useful anomalous

correlation CCano
obs for the subset of SAD data sets listed in x2.4

where unmerged data are available. The estimated anomalous

correlation is very closely related to the useful anomalous

correlation (squared Pearson correlation coefficient r2 of

0.85). It can be seen, however, that the useful anomalous

correlation is consistently less than the estimated anomalous

correlation (the slope of the least-squares fit of CCano
obs to CC�ano

in Fig. 2 is about 0.75). This suggests that for this group of

SAD data sets (and presumably others as well) there are

systematic differences between the measured anomalous

differences and those calculated from the final model for the

structure and substructure. These differences could come from

systematic errors in measurement, but another likely source of

such systematic differences would be that a substantial frac-

tion of the anomalous scattering is owing to anomalous scat-

tering not from the substructure itself. Extrapolation of the

relationship shown in Fig. 2 suggests that even if anomalous

differences were measured perfectly in these data sets, the

useful anomalous correlation would be only about 0.75.

We note that obtaining the relationship shown in Fig. 2

requires careful scaling and grouping of the anomalous data.

Single-wavelength anomalous data (SAD data) are often

collected from multiple crystals or from multiple orientations

of a single crystal. The various crystals may differ slightly

and even a single crystal may change during data collection.

Consequently, the scaling and merging of the data for a SAD

experiment is an important step in solving the structure. In

calculating the half-data-set anomalous correlation, all of the

data taken from the PDB were first split into half data sets

and rescaled using the phenix.scale_and_merge algorithm

described in x2.1. When half-data-set anomalous correlations

were calculated using data from the PDB without rescaling

and choosing half data sets randomly, the squared Pearson

correlation coefficient r2 for the relationship between CCano
obs

and CC�ano was only 0.37 (rather than 0.85 as in Fig. 2).

3.3.2. Relationship between useful anomalous correlation
and the skew of the anomalous difference Patterson.

Although the estimated anomalous correlation (CC�ano) as

estimated from the half-data-set anomalous correlation

(CCano
half) is a very good indicator of the useful anomalous

correlation (CCano
obs), in cases where multiple measurements of

anomalous differences have not been made or are not avail-

able it is helpful to have other metrics that are related to the

useful anomalous correlation. One of these that we have used

is the skew of the anomalous difference Patterson. The skew

of the values in a map is generally positive if there are many
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Figure 3
The skew of the anomalous difference Patterson function is calculated as
described in x2.2.2 (9).

Figure 4
Useful anomalous correlation as a function of estimated error in
anomalous differences. The useful anomalous correlation is as in Fig. 2.
The normalized error in the anomalous differences is calculated as
described in x2.2.3 (11).



positive peaks in the map and few negative ones, as should be

the case for a useful anomalous difference Patterson function.

We calculate the skew of a map after truncating very high

and very low values (see x2.2.2). Fig. 3 shows the relationship

between the skew (s) of anomalous difference Patterson

functions calculated using the SAD data sets listed in x2.4 and

the useful anomalous correlation (CCano
obs). It can be seen that

in general data sets that have a high useful anomalous

correlation have a high skew as well.

3.3.3. Relationship between useful anomalous correlation
and estimates of the normalized error in anomalous

differences. A third indicator of the useful anomalous corre-

lation that we have used here is an estimate of the normalized

error in measured anomalous differences. It is difficult to

obtain accurate estimates of uncertainties in anomalous

differences (or in intensity measurements; Dauter, 2006;

Evans, 2006). Here, we have made the assumption that error

estimates for a particular SAD data set might be propor-

tionally smaller or larger than the true errors, and we have

adopted a procedure designed to find this scale factor. Our

procedure (see x2.2.3) is simply to assume that at the highest

resolution where data were collected there is essentially no
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Figure 5
Cross-validation of Bayesian estimates of useful anomalous correlation. The Bayesian estimator described in x2.3.1 was used to generate estimates of the
useful anomalous correlation based on (a) the half-data-set anomalous correlation, (b) the skew of the anomalous difference Patterson, (c) the
normalized error in the anomalous differences and (d) all three. The data used are from the 166 SAD data sets in Fig. 2 where unmerged data were
available so that all three measures were available. To carry out the cross-validation the data set to be analysed was left out of the training set for the
estimator. The x coordinate for each point is the value of the useful anomalous correlation from the Bayesian estimator for one SAD data set and the y
coordinate is the actual value of the useful anomalous correlation for that data set.



anomalous signal, so that the anomalous differences are

entirely noise. Using this assumption, it is simple to rescale all

of the uncertainties in a data set and to calculate the ratio of

the r.m.s. uncertainty in measurement to the r.m.s. anomalous

difference, which we term the normalized error estimate (11).

Fig. 4 shows that these normalized error estimates are indeed

inversely related to the useful anomalous correlation, where

the normalized error estimates are small for cases where the

useful anomalous correlation is high, and is about one for

cases where the anomalous signal is near zero.

3.3.4. Bayesian estimation of the useful anomalous
correlation after obtaining anomalous data. We created a

simple Bayesian estimator (x2.3.1) that uses information from

three sources, the half-data-set anomalous correlation, the

skew of the anomalous difference Patterson function and the

normalized error in the anomalous differences, to predict the

useful anomalous correlation. To evaluate the utility of this

estimator, we carried out a cross-validation analysis in which

one data set was excluded at a time in the training of the

estimator and this version of the estimator was then used to

predict the value of the useful anomalous correlation for this

data set. We carried out this analysis for estimators created

with each source of information separately and for all three

sources together. Fig. 5 illustrates this cross-validation

analysis. The squared Pearson correlation coefficient (r2)

between the predicted and observed useful anomalous

correlation ranged from 0.64 based on the skew of the

anomalous difference Patterson function (Fig. 5b) to 0.77

based on estimates of the normalized error in measurement

(Fig. 5c) to 0.87 using the half-data-set anomalous correlation

(Fig. 5a) and 0.89 using all of these measures together (Fig.

5d). This analysis indicates that it is possible to obtain quite

accurate estimates of the quality of anomalous differences

(their useful anomalous correlation) based on simple

measures that can be calculated from the measured data. If

unmerged data are available so that the half-data-set anom-

alous correlation can be calculated, estimates of the useful

anomalous correlation can be particularly accurate (Figs. 5a

and 5d).

3.4. Planning a SAD experiment and evaluating a SAD data
set

As shown in Terwilliger et al. (2016), the anomalous signal

in a SAD data set is a very good predictor of whether the

anomalous substructure can be determined using likelihood-

based methods. The anomalous signal in turn is a simple

function of the useful anomalous correlation, the number

of unique reflections, the number of sites in the anomalous

substructure and the atomic displacement factors for the

anomalous substructure (1). If estimates can be made of these

factors, then it would be possible to estimate the anomalous

signal in a SAD data set and subsequently the probability

of finding the anomalous substructure. We have developed

simple tools for carrying out this estimation of the anomalous

signal and the probability of determining the anomalous

substructure both before and after measuring the diffraction

data.

3.4.1. Planning a SAD experiment. Estimates of the

anomalous signal for a SAD experiment before measuring the

diffraction data would be of considerable use in planning an

experiment. If the number of atoms in the anomalous sub-
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Figure 6
(a) Anomalous signal predicted using information available before the
measurement of diffraction data for SAD data sets. The 218 SAD data
sets are those shown in Fig. 3. The anomalous signal was predicted from
the composition of the crystal, the wavelength of data collection and
the resolution of data collection as described in the text. The actual
anomalous signal is the normalized value of the anomalous difference
Fourier map at coordinates of atoms in the anomalous substructure. (b)
The fraction of the substructure correctly determined by likelihood-based
substructure search as a function of the probability of structure solution
estimated using information available before measurement of diffraction
data. Each point is the fraction of correct sites for one SAD data set. The
line is the smoothed average.



structure were known and the atomic displacement factors

could be guessed, it would be possible to identify how many

reflections would have to be measured to find the substructure

if the data were measured perfectly (1). Further, our Bayesian

approach for estimation of the useful anomalous correlation

CCano
obs from the normalized error in anomalous differences e

(x2.2.3) could be used to identify how accurately the anom-

alous differences would need to be measured to find the

substructure with real data.

We have created a PHENIX tool, phenix.plan_sad_experi-

ment, that estimates the anomalous signal in a SAD experi-

ment in advance of collecting the anomalous data (see x2.3.5).

The tool uses the composition of the macromolecule in the

crystal, any available information about the type and number

of anomalous scatterers and the wavelength of planned data

collection. The approach then uses (1) to estimate, for various

high-resolution limits in data collection, how accurately the

data would have to be measured (what value of mean intensity

divided by uncertainty in intensity) in order to achieve an

anomalous signal of about 15 or greater (if such a signal can be

achieved at all). The tool uses the Bayesian estimator intro-

duced in x2.3.3 to calculate the probability of determining the

anomalous substructure with likelihood-based methods using

data to these various resolution limits and measured with this

accuracy. The tool also estimates the accuracy of phasing that

could be expected if the substructure is solved (x2.3.4).

Fig. 6 illustrates the accuracy of the overall predictions that

could have been obtained by using the phenix.plan_sad_

experiment tool on the 218 SAD data sets listed in x2.4 before

measuring the diffraction data. The information provided to

the tool consisted of the sequence of the macromolecule, the

identity of the anomalously scattering atom, the wavelength of

data collection and the high-resolution limit of data collection.

The high-resolution limit was provided so that the tool would

estimate the anomalous signal at a resolution matching the

actual data, but we note that this did provide some informa-

tion to the tool that might not be available in a real situation.

The high-resolution limit was used to estimate the atomic

displacement factors for the anomalously scattering atoms.

The number of sites in the anomalous substructure was not

provided to the tool but was instead guessed from the

sequence and the type of anomalous scatterer using the

phenix.ncs_and_number_of_ha method in PHENIX. The

phenix.plan_sad_experiment tool was then used to predict the

anomalous signal and the probability of successful substruc-

ture determination. Fig. 6(a) shows the predicted and actual

anomalous signal for each SAD data set. For most of the data

sets the actual anomalous signal was within about a factor

of two of the predicted signal, and the squared Pearson

correlation coefficient r2 for this prediction is 0.58. Fig. 6(b)

shows the fraction of substructure atoms correctly identified

for each SAD data set as a function of the estimated prob-

ability of successful substructure determination. The

(smoothed) mean fraction of sites found is plotted as a solid

line in Fig. 6(b), and it can be seen that the estimated prob-

ability of success is fairly close to the actual success rate. The

reason the lowest values of predicted success are not zero, but

rather are about 20%, is that there are some cases where the

anomalous signal estimated before collecting any data was

very low but there was significant anomalous signal and the

substructure could still be determined.

3.4.2. Analyzing a SAD data set and estimating the
probability of substructure solution and expected accuracy
in phasing. Once SAD data have been collected, improved

estimates of the useful anomalous correlation and anomalous

signal can be obtained because several of the factors in (1) can

be estimated with increased accuracy. The Bayesian estimator

described in x2.3.1 can be applied to the half-data-set anom-

alous correlation, the skew in the anomalous difference

Patterson function and the normalized error estimate for the

anomalous differences to obtain a realistic estimate of the

correlation CCano
obs between measured anomalous differences

and those expected for an ideal structure where anomalous

differences come only from atoms in the substructure.

Fig. 5(d) illustrates a cross-validation analysis of predicted and

actual useful anomalous correlation calculated in this way for

those data sets where all three sources of information are

available (i.e. those for which unmerged data are available so

that the half-data-set anomalous correlation can be obtained).

The squared Pearson correlation coefficient r2 for this rela-

tionship was 0.89.

Once the data have been collected, the number of unique

reflections Nrefl is of course known. Additionally, some infor-

mation becomes available about the atomic displacement

factors for the anomalous substructure. The mean atomic

displacement factors could in principle be estimated from the

anomalous differences and the errors in measurement. In this

work, we simply estimate them from the Wilson B value

(overall atomic displacement factor) for the measured data

(Wilson, 1942) as described in x2.3.2. The relationship between

the overall Wilson B value and mean atomic displacement

factor for the anomalous substructure is shown in Fig. 7. It can

be seen that the mean atomic displacement factor for the
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Figure 7
Mean atomic displacement factor for atoms in the anomalous sub-
structure as a function of the Wilson B value (see text for details).
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anomalous substructure is larger than the Wilson B value by

about 40% on average, although there is considerable varia-

tion (the squared Pearson correlation coefficient r2 for the

linear fit shown is 0.79).

Fig. 8(a) illustrates calculations of the anomalous signal

obtained with (1) for all data sets using estimates of the useful

anomalous correlation, the number of reflections and atomic

displacement factors for the substructure available after

collecting the data. The squared Pearson correlation coeffi-

cient r2 for the linear fit shown is 0.73. This prediction is less

accurate than that shown in Fig. 5(d) for the useful anomalous

correlation. This is partly because the anomalous signal

depends on the number of sites and the atomic displacement

factors for the sites in the substructure, each of which are

known only approximately. The lower accuracy of the

prediction of the anomalous signal in Fig. 8(a) compared with

the useful anomalous correlation shown in Fig. 5(d) is also

owing to the fact that all data sets from x2.4 are included in

Fig. 8(a) but data sets without unmerged data are excluded in

Fig. 5(d).

Using the anomalous signal estimates available after

collecting the data from Fig. 8(a), we estimated the probability

of successful substructure determination as described in x2.3.3.

Fig. 8(b) illustrates the actual fraction of substructure sites

found as a function of this estimated probability. Comparing

Fig. 8(b) with Fig. 6(b), it can be seen that the discrimination

between data sets that are likely to lead to a successful

substructure determination has been improved by using the

data in the prediction. The squared Pearson correlation

coefficient r2 for the relationship between predicted success in

substructure determination and the actual fraction of sites

found increases from 0.34 to 0.48.

Once data have been collected and the useful anomalous

correlation CCano
obs has been estimated, it is possible to obtain

improved estimates of the quality of experimental phasing

that can be obtained if the substructure is determined.

Fig. 8(c) compares estimates and actual values of the accuracy

of experimental phasing, as measured by the correlation

between experimentally phased electron-density maps and the

corresponding maps calculated using a refined model.

Figure 8
(a) Anomalous signal estimated after measurement of X-ray data. The anomalous signal for each SAD data set was estimated as described in the text
using the values of useful anomalous correlation in Fig. 5(d) and (1). (b) Fraction of the substructure correctly determined by likelihood-based
substructure search as a function of the estimated probability of structure solution, as in Fig. 6(b), except that the predictions are made after obtaining
the X-ray data. (c) Estimation of the experimental map quality obtainable once the substructure has been determined based on estimates of useful
anomalous correlation. Map quality is defined here as the correlation of values at grid points in the experimental map with the corresponding values in a
2mFo � DFc �A-weighted map (Read, 1986) based on a final refined model.



4. Conclusions

There are two crucial steps in structure determination using

SAD phasing. The first is determining the locations of the

atoms in the substructure and the other is the estimation of

crystallographic phases (Liu et al., 2013). Empirical studies

have shown that the two steps depend on two related but

different aspects of the data in a SAD experiment. Success in

substructure solution is most closely related to the anomalous

signal (Bunkóczi et al., 2014; Terwilliger et al., 2016). The

anomalous signal is the mean peak height at coordinates in a

model-phased anomalous difference Fourier, and as such is a

measure of the overall information about each anomalously

scattering atom in the structure. Consequently, it is not

surprising that the ability to find the locations of these atoms is

closely related to the anomalous signal. In contrast, the quality

of experimental phases in the SAD method is found to be

most closely related to the useful anomalous correlation CCano
obs

(Terwilliger et al., 2016). This observation is also not surprising

because the quality of experimental phases is dependent on

how closely the measured anomalous differences represent

the useful anomalous differences corresponding to the atoms

in the substructure, and the useful anomalous correlation

describes this similarity. This analysis is consistent with the

observations of Zwart (2005) and provides a basis for

predicting experimental map quality before and after

collecting SAD data. The anomalous signal is related to the

useful anomalous correlation in a simple way (1) that depends

on the square root of the number of reflections divided by the

number of sites in the anomalous substructure and the second

moment of the scattering factors of the anomalously scattering

atoms. Before the collection of the data, an upper limit on the

value of the useful anomalous correlation can be estimated

from the anticipated errors in measurement. In this work, we

add an additional step and calculate an expected value of

the useful anomalous correlation with a Bayesian estimator

(x2.3.1) trained on the uncertainties in measurement and

useful anomalous correlations found in the SAD data sets

examined here. After measurement of X-ray data, much

better estimates of the useful anomalous correlation can

be obtained. In particular, the estimates of uncertainties in

measurement obtained from the experiment, calculations of

the skewness of the anomalous difference Patterson function

obtained from the anomalous data and calculation of the half-

data-set anomalous correlation all provide substantial infor-

mation about the useful anomalous correlation. As the

anomalous signal is related to the anomalous correlation

through (1), after collection of the X-ray data both can be

estimated much more accurately than before carrying out the

experiment. Consequently, both the probability of substruc-

ture determination and the expected accuracy of experimental

phases can be estimated more accurately after collection of

the data (cf. Fig. 6 versus Fig. 8).

The phenix.scale_and_merge software tool described here is

useful for carrying out local scaling on one or more anomalous

data sets and merging the resulting scaled data sets into a

single data set with estimates of the intensities of each unique

reflection and its Bijvoet mate. This tool is designed to take

data-set-specific differences explicitly into account, so that if a

few data sets are systematically different from all the others,

intensities from those few data sets are included with much

lower weights and are effectively excluded from the analysis.

The phenix.plan_sad_experiment and phenix.anomalous_

signal tools both carry out estimation of the probability of

finding the substructure and of the quality of experimental

phases expected in a SAD experiment. The phenix.plan_sad_

experiment tool only uses information available before

carrying out the experiment and the phenix.anomalous_

signal tool takes advantage of the information obtained from

the experiment itself to improve the estimates. Taken together,

these tools provide a practical implementation of our theor-

etical analysis of the anomalous signal and useful anomalous

correlation in data from a SAD experiment and their impli-

cations for structure determination.

Finding the substructure of anomalously scattering atoms

and calculating an initial electron-density map with a parti-

cular phase accuracy does not in itself define whether a

structure can be solved. This work could be extended by

developing an estimator of the probability of structure solu-

tion based on prediction of map quality combined with solvent

content and noncrystallographic symmetry present in the

crystal. Our Bayesian estimator linking the anomalous signal

in a data set to the likelihood of substructure solution could

potentially be integrated into data-processing procedures

optimizing integration parameters, selecting the most useful

sub-data sets from radiation-damaged data and combining

multiple data sets to produce optimized data for likelihood-

based substructure determination.
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Aylett, C. H. S. & Löwe, J. (2012). Proc. Natl Acad. Sci. USA, 109,

16522–16527.
Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N.,

Weissig, H., Shindyalov, I. N. & Bourne, P. E. (2000). Nucleic Acids
Res. 28, 235–242.

Bijvoet, J. M. (1954). Nature (London), 173, 888–891.
Boudes, M., Sanchez, D., Graille, M., van Tilbeurgh, H., Durand, D. &

Quevillon-Cheruel, S. (2014). Nucleic Acids Res. 42, 5302–5313.

research papers

372 Terwilliger et al. � SAD phasing Acta Cryst. (2016). D72, 359–374

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5235&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5235&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5235&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5235&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5235&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5235&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5235&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5235&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5235&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5235&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5235&bbid=BB5
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5235&bbid=BB5
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5235&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5235&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5235&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5235&bbid=BB7
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5235&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ba5235&bbid=BB8
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