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In this work, two freely available web-based interactive computational tools that

facilitate the analysis and interpretation of protein–ligand interaction data are

described. Firstly, WONKA, which assists in uncovering interesting and unusual

features (for example residue motions) within ensembles of protein–ligand

structures and enables the facile sharing of observations between scientists.

Secondly, OOMMPPAA, which incorporates protein–ligand activity data with

protein–ligand structural data using three-dimensional matched molecular pairs.

OOMMPPAA highlights nuanced structure–activity relationships (SAR) and

summarizes available protein–ligand activity data in the protein context. In this

paper, the background that led to the development of both tools is described.

Their implementation is outlined and their utility using in-house Structural

Genomics Consortium (SGC) data sets and openly available data from the PDB

and ChEMBL is described. Both tools are freely available to use and download

at http://wonka.sgc.ox.ac.uk/WONKA/ and http://oommppaa.sgc.ox.ac.uk/

OOMMPPAA/.

1. Introduction

Technological advances in high-throughput crystallography

and protein–ligand biophysical and biochemical binding

assays have resulted in a rapid increase in the quantity of

liganded crystal structures and high-quality activity data

points for many protein targets (Badger, 2012; Zheng et al.,

2014). Concerted efforts to consolidate and store such data

have generated large and highly curated data sets both in the

private (for example corporate databases) and public domains

(Berman et al., 2003; Gaulton et al., 2012). Further, it is now

commonplace for an industry structure-based drug-design

(SBDD) programme to have access to many tens of liganded

crystal structures and many thousands of high-quality activity

data points.

At the same time, computational tools have not kept pace

with this influx of data. Analysis of the output of structural

ensembles is often carried out with tools such as PyMOL

(Schrödinger), which was designed for the evaluation of at

most a handful of structures at once. Such tools do not natu-

rally identify and highlight the core trends within a data set.

Furthermore, they do not lend themselves to the capture and

sharing of important observations from such ensembles. Fig. 1

shows three examples of such ensembles for three human

bromodomain targets. Much of the important information in
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each ensemble is obfuscated by the sheer quantity of data

available, which current software platforms are unable to

untangle in an intuitive and accessible manner. It is therefore

timely to create tools which consider all information from such

large data sets in a holistic and unbiased manner.

Analysis of activity data within an SBDD programme is also

challenging. One of the most widely used methods for the

analysis of such activity data is three-dimensional quantitative

structure–activity relationships (3D QSAR; Verma et al.,

2010). In 3D QSAR, statistical models are generated to relate

small-molecule bioactivity data to three-dimensional compound

properties. However, there are several well known problems

with 3D QSAR (Scior et al., 2009). Firstly, generating appro-

priate three-dimensional conformations, in particular when

dealing with varied binding modes, is highly challenging.

Secondly, if one uses simple methods (e.g. linear regression

models) they are unable to find nuanced features in activity

data. Finally, if more elaborate methods are used (e.g. machine

learning) they require careful expert implementation, can be

prone to overfitting (Hawkins, 2004) and can be difficult to

interpret (Cherkasov et al., 2014).

Analysing activity data in a pairwise manner can circumvent

some of the pitfalls and generalizations of 3D QSAR. A

method to carry out such pairwise analysis is matched mole-

cular pair analysis (MMPA; Dossetter et al., 2013). As shown

in Fig. 2, a matched molecular pair (MMP) consists of two

compounds that are identical apart from one small structural

alteration, known as a transformation (Hussain & Rea, 2010).

From analysing the aggregate effects of such transformations

over multiple different series, one can then assess the impact

of a specific transformation upon a given compound property

(e.g. protein–ligand binding affinity).

The example MMP shown in Fig. 2 is a two-dimensional

MMP (2D MMP), since three-dimensional coordinate infor-

mation is not provided. 2D MMP approaches have been

shown to be effective for a wide range of properties (Papa-

datos et al., 2010). A natural extension of 2D MMPPA is

to include three-dimensional structural information from

structure ensembles in the analysis (3D MMPA). A central

advantage of 3D MMPA is that structure–activity relation-

ships (SAR) can be projected between structurally and phar-

macophorically dissimilar series that have analogous binding

modes (Posy et al., 2013). Critically, 3D MMPA enables

analyses of transformations within the local residue environ-

ments, since this environment will directly affect the impact of

a given transformation. 3D MMPA also presents a number of

key advantages over 3D QSAR. Firstly, it provides a simple

and reliable route to three-dimensional conformation

generation (Klei et al., 2014; Posy et al., 2013). Secondly, it

generates models that are related to individual and assessable

pairwise comparisons. From this, nuanced trends (Bradley et

al., 2014) and confounding factors in data can be readily

observed.

The above challenges and developments in the analysis of

protein–ligand interaction data led to the development of the

WONKA and OOMMPPAA methods. WONKA is an analysis

tool for ensembles of protein–ligand structures, providing a

simple interactive tool to find trends within a set of structures

of the same protein. WONKA presents analyses of water
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Figure 1
The ensemble of liganded structures for human PHIP, BRD1 and BAZ2B bromodomains, respectively (left to right). The superimposition of structures
results in a visualization which is extremely difficult to interpret, especially when attempting to identify nuanced changes present in a minority of
structures. The proteins are shown as grey sticks, the ligands are shown as yellow sticks and waters are shown as blue spheres.

Figure 2
Example of a matched molecular pair (MMP). Molecule 1 and molecule 2
form a matched molecular pair. Bromine to chlorine is the transformation
and the context is a phenyl ring.



displacements, residue movements, ligand-binding sites and

ligand-based pharmacophores. These are then related to the

individual ligands in an ensemble. They, for example, allow the

user to quickly and easily determine which ligand or ligands

displace a given conserved water molecule. OOMMPPAA

extends upon WONKA by using a 3D MMPA approach to

incorporate available activity data into the context of known

structural data. From this, the distribution and nature of

the available SAR can be analysed in the context of the

protein binding site. OOMMPPAA uses pharmacophore-

based abstractions to then highlight concerted effects across

multiple ligands. Both tools are freely available to download

and try online.

In the following sections, we outline the two methods and

demonstrate their application to SGC data and data from the

Protein Data Bank (PDB) and ChEMBL databases.

2. Methods and materials

A full description of both the WONKA and OOMMPPAA

methods can be found in separate publications [Bradley et al.

(2015) and Bradley et al. (2014), respectively]. Data are stored

in a bespoke Python Django (Django Software Foundation,

2013) data model that is common to both applications. All

computational chemistry processing was carried out using

RDKit (Landrum; http://www.rdkit.org). The input data for

both tools are pre-aligned PDB files of protein–ligand

complexes. A comma-separated variable (CSV) file is required

to indicate the path to the PDB file, and the SMILES

(Weininger, 1988) specification is required for the ligand

bound to that protein. Additionally, for OOMMPPAA activity

data are required and are input as a separate CSV file. Here,

we give a brief overview of the methods.

WONKA processes its input data in four steps. Firstly, the

PDB files are parsed and the ligands are extracted. Secondly,

fragments and pharmacophores are generated from the bound

ligands. Thirdly, waters, residues, ligand pharmacophores,

ligand fragments and ligands are clustered in space. Finally,

these clusters are taken from the data model and displayed

in an interactive web-browser-based application. The

OOMMPPAA processing method consists of four further

steps that build upon the data processed by WONKA. Firstly,

the matched molecular pair database is formed using the

method of Hussain and Rea and the fragments generated from

WONKA (Hussain & Rea, 2010). Secondly, all matched

molecular pairs are found where one compound of each pair is

represented in a crystal structure and the other is not. The

compound with the crystal structure in each pair is used to

predict the coordinates of compounds for which no crystal

structure is available. Thirdly, pharmacophore differences

between compounds in each 3D MMP are found. Finally, the

differences found in this last step are displayed and can be

queried in the three-dimensional interactive viewer.

2.1. Input data

In the following analysis, the input data for WONKA are

taken from the SGC database and are for the second
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Figure 3
A screenshot of the WONKA analysis page for PHIP. The Key Feature panel has four buttons: Ligands, Residues, Waters and Sites. Clicking on each
button allows the user to show different analysis in the Summary Panel. In this case the Water analysis is shown. The two-dimensional compound display
allows the user to view the available ligands for this target. Clicking on each compound in the two-dimensional display shows the three-dimensional
conformation of the ligands and their parent protein/water molecules in the three-dimensional protein display. The annotation and download tool allows
the user to make and share observations and download the data in ICB format.



bromodomain of human pleckstrin homology domain-

interacting protein (PHIP; UniProt accession Q8WWQ0). The

OOMMPPAA analysis is of human carbonic anhydrase 2

(UniProt accession P00918) and the first and second bromo-

domain of human bromodomain-containing protein 4 (BRD4;

UniProt accession O60885). The input activity data were taken

from ChEMBL v.19. The data were then filtered to only allow

in vitro IC50 and Ki data with a ChEMBL confidence score of 7

or greater. Structural data were derived from the PDB, in

which all ligand-bound structures were found. The lowest

resolution was 2.8 Å; however, the majority of the structures

were at better than 2.0 Å resolution. The BRD4 data set was

supplemented by 14 internal SGC protein–ligand structures.

Carbonic anhydrase and BRD4 data were chosen as they

exemplify the utility of OOMMPPAA with large (carbonic

anhydrase 2; 4140 activity data points and 286 liganded co-

crystal structures) and small (BRD4; 265 activity data points

and 90 liganded co-crystal structures) data sets. Protein–ligand

structures were aligned using Molsoft ICM sequence-based

alignment. The input data are summarized in Table 1.

2.2. WONKA analysis page

Fig. 3 shows a screenshot of the web-based WONKA

analysis page for PHIP. The page is made up of five main

components. Firstly, the Key Feature Panel allows the user

to select analyses based on Ligand, Residue, Water or Site,

respectively. Clicking on each button alters the information

shown in the second core component, the Summary Panel.

Each row in the Summary Panel relates to a different feature,

in this case conserved water molecules. Each column relates to

a different ligand and is coloured green if that ligand has that

conserved water (and is uncoloured if not). Thirdly, the three-

dimensional protein display is a fully interactive three-

dimensional visualization of the selected structural data and is

powered by ActiveIcmJS (Raush et al., 2009). Fourthly, three-

dimensional ligand structures and their respective waters and

proteins can be displayed or undisplayed using the two-

dimensional compound display. Finally. the annotation and

download tool allows the user to save and annotate interactive

three-dimensional snapshots and share them with anyone in

the world via a URL.
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Figure 4
A screenshot of the interactive web-based viewer for OOMMPPAA. Compounds are queried using the search bar at the top. The top-left check boxes
and sliders control the points shown in the three-dimensional display. The central display shows three-dimensional molecular visualizations. The right-
hand bar shows two-dimensional activity data selected by the user in the three-dimensional display.

Table 1
The structural and activity data sets used in this work.

Target Co-crystal structures Bioactivity data

PHIP 12 NA
Carbonic anhydrase 2 286 4140
BRD4 90 265
CDK2 261 1632



2.3. OOMMPPAA analysis page

The OOMMPPAA method provides a separate three-

dimensional visualization tool in which the activity data of a

target can be assessed in the context of the protein binding

site. Fig. 4 shows a screenshot of the OOMMPPAA web-based

display, showing the analysis of PDB data and ChEMBL data

for cyclin-dependent kinase 2 (CDK2). Firstly, in the top bar

the ligand shown in the three-dimensional display can be

changed by searching for the relevant SMILES specification

(two-dimensional molecular description; Weininger, 1988).

Secondly, the activity-improving or activity-reducing phar-

macophore points can be displayed using the left-hand panel.

As an example, one can display only hydrogen-bond acceptor

pharmacophore points that are associated with a log increase

in in vitro activity of greater than 1. Thirdly, the three-

dimensional ligand and protein coordinates can be controlled

and shown in the three-dimensional ActiveIcmJS display

(Raush et al., 2009). Finally, 3D MMPs can be selected and

their underlying activity data can be shown in the right-hand

panel.

2.4. Application of OOMMPPAA to a small data set

In this section, we outline the use of OOMMPPAA in

analysing available structural and activity data for BRD4. For

this target only limited activity data are available (265 activity

data points). Fig. 5 shows the first bromodomain of BRD4 with

I-BET151 bound (PDB entry 3zyu; Dawson et al., 2011). Each

three-dimensional matched molecular pair is shown as a

sphere which is coloured based on activity change from blue

(low) to red (high). The coordinates of each sphere are the

centres of mass of the nonmatching moiety in the 3D MMP, i.e.

the transformed component of the compound. In this way, the

points indicate the coverage of available activity data for this

protein target.

Two conclusions can be drawn from the distributions of

points. Firstly, the density of points is low and the coverage of

points is not uniform, as would be expected for a target with

such little activity and few structural data. For example, no

spheres (MMPs) can be found near the region where the

isoxazole ring binds to the asparagine residue (red square in

Fig. 5). This analysis would suggest that the synthesis and

testing of compounds exploring this region may be instruc-

tional. Secondly, the functionally important methyl substituent

(circled) is surrounded by spheres. Most of these spheres are

red, indicating that many of the transformations in this region

involve large activity changes. Exploration of this SAR

through OOMMPPAA indicates that replacing a methyl

group in this region with a chloro, bromo, hydroxyl or amino

group reduces activity. This information would therefore

discourage these transformations in the future.

As discussed in x1, the pairwise analysis in OOMMPPAA

can be used to detect confounding factors in analysis. In the

inset in Fig. 5 we show an example of such a confounding

factor. The 3D MMP shown presents an activity change of

over four orders of magnitude on converting an amino group

to a methyl group. This is unusually large for such a minor

transformation. Inspection of the data within OOMMPPAA

shows that the fragment with a dimethylated isoxazole has
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Figure 6
An example of analysing a larger data set. An OOMMPPAA view of
available carbonic anhydrase 2 data. Each matched molecular pair is
shown as a sphere coloured by the activity change associated with it from
blue (low) to red (high). Firstly, the high data density of this larger data
set can be observed by the concentration of points compared with BRD4.
Secondly, different regions of binding in the carbonic anhydrase can be
observed. Thirdly, one of these sites contains only red and orange spheres,
indicating that the associated MMPs convey large activity changes.

Figure 5
An OOMMPPAA view of available 3D MMP activity data for BRD4.
The ligand (I-BET151) bound to BRD4 (PDB entry 3zyu) is shown as
thick cream sticks and the protein as white sticks and ribbon. Each
matched molecular pair is shown as a sphere coloured by the activity
change associated with it from blue (low) to red (high) and positioned at
the centre of mass of the nonmatching moiety of the 3D MMP. In the red
box, the isoxazole motif key for binding is highlighted. In the black circle
several red spheres (high activity changes) are around a putatively
important methyl group. Transformations corresponding to these spheres
(not shown) indicate several transformations from a methyl fragment to
other substituents, all of which cause a drop in activity. One of these
transformations (inset) shows a large activity change.



subnanomolar (Ki = 0.8 nM, pKi = 9.10) activity. It is highly

unlikely that a fragment of only 13 heavy atoms would present

such a high activity. Inspection of ChEMBL data indicates that

the same fragment measured in bioactivity assays by a sepa-

rate research group showed an activity of 84.2 mM, which is

more appropriate for such a fragment. Both activities were

IC50 values but were from different assay types: the first

(0.8 nM) was from a fluorescence anisotropy assay and the

second (84.2 mM) was from a peptide-displacement assay.

Such inconsistencies will always exist in databases, in

particular when the data are collated from multiple labora-

tories using different assay formats, as ChEMBL is. In 3D

QSAR model building, for example, such data sets must be

cleansed before use. This cleansing often occurs in an auto-

mated manner resulting in, at best, the removal of these data

and, at worst, a poor choice of which data points in the set to

be kept. Clearly, the benefit of pairwise comparison of data

and enabling the user to inspect the data themselves allows

such confounding factors to be observed and acted upon,

whilst not losing any available data. In the above examples, we

have shown that the 3D MMPA in OOMMPPAA can provide

useful but limited analysis for smaller data sets and can be

used to find confounding factors within activity data sets.

2.5. Application of OOMMPPAA to a large data set

OOMMPPAA analysis of freely available carbonic anhy-

drase 2 data demonstrates the power of the tool to analyse

larger data sets. Fig. 6 shows the carbonic anhydrase 2 protein,

with the active site shown as white sticks and the protein

backbone as a ribbon. Each 3D MMP is shown as a coloured

sphere (with the coordinates being the centre of mass of the

transformed moiety of the MMP in each case), coloured by the

activity change, from blue (low) to red (high), associated with

that 3D MMP. Two core observations can be made from this

figure. Firstly, a much larger density of points can be seen in

Fig. 6 than in Fig. 5. Protein–ligand structures of 286 unique

ligands are available for this target and 4140 unique

compounds have been tested in bioactivity assays. The scale of

this data set is more representative of that found in significant

SBDD programmes such as those in industrial settings.

Secondly, the major regions of SAR for this target can be seen

in the context of the protein binding site. OOMMPPAA

displays three major clusters (main site, site 2 and site 3) and

two less populated regions of SAR (activity-modulating series,

other minor site).

OOMMPPAA can then be used to highlight and then

investigate interesting SAR within such large data sets. The

red box in Fig. 7(a) highlights an ‘activity-modulating series’.

The spheres in this region are coloured orange and red,

meaning that they represent relatively large activity changes.

In Fig. 7(a) we show the two-dimensional transformations and

activity data for these 3D MMPs. Within this series a one log

gain in activity is seen on adding a methyl, ethyl or isopropyl

group, indicating that hydrophobic alkyl groups are favoured.

Fig. 7(b) shows an OOMMPAA screenshot of the available 3D
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Figure 7
(a) The matched molecular pairs corresponding to these spheres indicates a series of low-molecular-weight molecules with large activity changes from
very minor molecular transformations (e.g. adding a methyl group increases activity by over one log unit). (b) The three-dimensional conformations of
these compounds (rainbow sticks) project into a hydrophobic pocket (tryptophan, TRP; tyrosine, TYR; phenylalanine, PHE), rationalizing the
favourability of hydrophobic substituents. The protein is shown as white sticks in (b).



MMPs in these series, placing the two-dimensional SAR in

Fig. 7(a) into the protein context. It shows that these alkyl

groups project into a hydrophobic pocket of carbonic anhy-

drase 2 containing a phenylalanine, a tyrosine and a trypto-

phan residue. By combining the information from Figs. 6, 7(a)

and 7(b), OOMMPPAA highlights an interesting series of

ligands that show large activity changes. Investigation of these

series then provides clear experimental evidence of the posi-

tive effect of hydrophobic residues on in vitro activity in this

pocket of carbonic anhydrase 2. In this example, we show how

OOMMPPAA can summarize the data for a large data set in a

clear and intuitive manner and highlight interesting SAR in

the context of the protein binding site.

3. Conclusions

In this paper, we describe the background for and use of the

WONKA and OOMMPPAA platforms. Both methods are

freely available interactive computational tools designed to

analyse and describe the influx of protein–ligand interaction

data associated with SBDD programmes. WONKA is a tool to

summarize large ensembles of protein–ligand structures of the

same protein target. WONKA also provides a platform for

annotation and data sharing within and between research

groups, a feature that is invaluable in the context of working

in a multi-disciplinary team. OOMMPPAA builds upon

WONKA to incorporate available activity data in the context

of the binding sites of protein–ligand structures using a 3D

MMP approach. Further, we show the use of OOMMPPAA in

interrogating available activity data for smaller (BRD4) and

larger (carbonic anhydrase 2) structural and activity data

sets. Both WONKA and OOMMPPAAA are freely

available to try online and are free to download at

http://oommppaa.sgc.ox.ac.uk/OOMMPPAA/ and http://

wonka.sgc.ox.ac.uk/WONKA/.
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