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Coot is a molecular-graphics program primarily aimed at model building using

X-ray data. Recently, tools for the manipulation and representation of ligands

have been introduced. Here, these new tools for ligand validation and

comparison are described. Ligands in the wwPDB have been scored by

density-fit, distortion and atom-clash metrics. The distributions of these scores

can be used to assess the relative merits of the particular ligand in the protein–

ligand complex of interest by means of ‘sliders’ akin to those now available for

each accession code on the wwPDB websites.

1. Introduction

For many years, the validation of macromolecular structures

has been a concern of practicing crystallographers and users

of the PDB (Berman et al., 2000) (and more recently the

wwPDB; Berman et al., 2003); see, for example, Brändén &

Jones (1990), Dodson (1998) and Davis et al. (2007). Since

2007, crystallographic diffraction data deposition has been

mandatory for structure depositions at the wwPDB sites. This,

and the increase in the number of deposited structures, has

enabled macromolecular model validation to be reconsidered

(Read et al., 2011) and the recommendations that were made

have been implemented by the wwPDB deposition sites to

provide access to a concise summary of well established

quality indicators.

Using these global metrics of structure quality, the users of

crystallographic models have been able to assess the overall

quality of models. However, the assessment of the quality of

local regions, and in particular ligands, has needed more

consideration and effort, and the interpretation of ligand

density and pathology of the atomic displacement parameters

has been problematic (Lamb et al., 2015).

To address this, in the context of information presented

about ligands by wwPDB sites, validation of ligands and

protein–ligand complexes has been proposed (Adams et al.,

2016). Building upon the Coot ligand tools described

previously (Debreczeni & Emsley, 2012), the tools and valid-

ation described here bear some relation to the recommenda-

tions therein.

A number of publications and services that have been, to

varying degrees, inspiration for the current work will be

discussed briefly. Weichenberger et al. (2013) noted that the

real-space correlation coefficient (RSCC) provides a good

measure of the fit of residues (and ligands) to the electron

density. The Twilight web server provides a spreadsheet of

ligands from the wwPDB that have had their RSCC assessed.

The ValidatorDB web site (Sehnal et al., 2015) available at

http://ncbr.muni.cz/ValidatorDB offers additional ligand

validation of deposited structures, with a particular focus on

chirality.
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Mogul (Bruno et al., 2004) is software available from the

Cambridge Crystallographic Data Centre (CCDC) that uses

a knowledge base derived from the Cambridge Structural

Database (CSD) to provide information on preferred bond

lengths, angles and other geometric criteria. The input is a

query in the form of a bond or angle description (or, more

generally and typically, a number of these derived from a

molecular description provided in the form of a PDB file or an

MDL MOL file). Mogul has been used to assess the torsion

strain energy of ligands in the PDB (Liebeschuetz et al., 2012);

the authors focused on torsions as bond and angle values are

more influenced by refinement target values.

VHELIBS (Cereto-Massagué et al., 2013) is a user interface

that helps in the validation of ligand-binding sites by allowing

the user to visually assess the fit of the ligand to the map, and

assesses ligands and the surrounding residues as ‘Good’,

‘Dubious’ or ‘Bad’.

2. Methods

The ligand-selection and scoring methods are described below.

2.1. Choice of ligand

It is not always clear from the content which ligand in a

protein–ligand complex was of interest to the original authors.

The ligands in this analysis were selected as follows.

For a given coordinate file the nonpolymer residue types are

enumerated. The largest ligand (judged as that with the most

non-H atoms for the given residue type in the dictionary) is

selected for analysis. There are a number of criteria to pass

before further analysis.

(i) The residue type is not annotated as obsolete in the

Chemical Component Dictionary (CCD; Westbrook et al.,

2015) entry.

(ii) The selected residue has no associated LINK record.

(iii) The selected residue has no atoms in alternate config-

urations.

(iv) The data are available and are not twinned.

2.2. Choice of metrics

Following similar reasoning to that of Weichenberger et al.

(2013), the RSCC of the ligand-omitted 2mFo � DFc map

(here called the ‘direct map’) at the ligand site was chosen as

one of the metrics.

The selected ligand is removed from the set of atoms from

which structure factors are calculated but, using appropriate

REFMAC (Murshudov et al., 2011) keywords, the ligand

coordinates are used for mask calculation.

One would imagine that in a well refined model there would

be little to no residual difference map density at the site of

the ligand. The RSCC of the difference map (as output by

REFMAC) is also considered (in this case, the ligand is not

omitted from the structure-factor calculation). Density-grid

coordinates that have density contributions from neigh-

bouring residues are masked out. The atomic radii used for

masking follow a similar function to that used in REFMAC for

adding density contributions.

The current set of ligand-validation tools described here

does not include chiral centre validation. It is straightforward

to check ligand models against the chiral centre definitions in

the REFMAC monomer library (where chirality is described

locally), but it is technically challenging to be able to convert

neutral-ligand R/S Cahn–Ingold–Prelog (CIP) chirality as

described in the CCD to a form that is useful for comparison

(for example, the deprotonation of phosphates can lead to the

removal of chiral centres).

Additionally, the validation of chiral centres produces a

result that is yes/no, which is a different form to the sliding-

scale results produced by the other validation tests described

here (which means that sliders would not be the most useful

representation of chiral validation information). Refinement

with inverted chiral restraints leads to distortions in bonds and

angles, and these features can be detected by the current

metrics.

2.3. Difference-map analysis

Tickle (2012) noted that there are problems with using the

real-space correlation and real-space R factor because the

values reflect both accuracy and precision. An alternative

electron-density validation statistic using the difference map is

proposed, with the challenge being to formulate an effective

metric. Tickle promotes the use of Q–Q (quantile–quantile)

plots for ��, and these are now available in Coot.

Differences from the diagonal line indicate that the

observed difference map does not conform to that expected

from a normal distribution of errors. The metric in Coot is not

global, since it only measures the distribution of the difference

map in the context of the specified residue (typically the

ligand) and its environment. In due course, analysis of the

density in the solvent region (which would largely be un-

influenced by errors in the atomic model) would provide an

estimate of �(��) and hence Z��, a measure of ligand model

accuracy (see x5.2 of Tickle, 2012).

2.4. Effective resolution

Using the nominal resolution (the Rnom presented in the

data file) to describe the quality of a data set can be misleading

(for example in the case of unusually weak or incomplete data;

Weiss, 2001). Measures to address this shortcoming have been

published (Urzhumtseva & Urzhumtsev, 2015). Here, a

modified value, Reff, was used, taking into account missing data

and the standard deviations of the reflection amplitudes

(Murshudov, 2016). See Appendix A for for the derivation of

Reff.

2.5. Bad contacts

H atoms are added to the model ligand and its environment

using Reduce (Word, Lovell, Richardson et al., 1999). Infor-

mation about the ligand bonding (including bonding infor-

mation about the H atoms) is generated from the mmCIF
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ligand dictionary and written to a connections file for use by

Reduce.

Probe (Word, Lovell, LaBean et al., 1999) is used to

generate atom contacts between the ligand and its environ-

ment. The number of atom pairs that have bad overlaps

between them are recorded for each ligand. In future an

overlap volume will be used, which will hopefully be more

precise than the integers that this module currently generates.

2.6. Mogul Z-worst

The canonical source of molecular information for this

ligand analysis is the entry for the ligand in the CCD (the term

‘comp-id’ will be used to represent the three-character

alphanumeric code that the wwPDB assigns to each chemical

component). The atom and bond information is extracted and

is combined with the coordinates of the atoms for the selected

ligand in the model to construct an internal representation of

the molecule (Landrum, 2010). Not all molecules pass this

step. An example of a failure is the ligand with comp-id 1MK,

where the molecular-sanitization (a check that the valence,

aromaticity, hybridization and conjugation of the molecule are

consistent) step fails.

Using RDKit and the RDKit molecule-export function,

an MDL MOL file (MDL Information Systems Inc., San

Leandro, California, USA) is generated as an input query for

Mogul. Some functional groups are modified as needed to

comply with the query preparation (Mogul User Guide and

Tutorials, x2.3).

A simple Mogul control script is generated corresponding

to the MDL MOL file, and the Mogul executable is invoked as

a separate synchronous process. Upon termination, the Mogul

output file is parsed, converting atom indices back to atom

names, allowing the representation of model geometrical

parameters in relation to the distribution of preferred values

corresponding to the relevant crystal structures in the data-

base.

The geometric parameter is compared with the mean and

standard deviation of the preferred values and a Z-value is

generated for that geometric parameter. This is repeated for

all bonds and angles in the ligand. Thus, we have a number of

Z-values: that chosen to represent the molecular geometry is

‘Mogul Z-worse’, the geometric parameter that has the highest

absolute Z-value.

For some unusual bonds or angles Mogul will only have a

handful of structural representatives (perhaps correlated), the

distribution of which will have unusually small standard

deviations. Making strong claims about problematic geometry

for which we have little prior knowledge should be avoided

in such cases, thus a lower-bounds �-cutoff is introduced

(0.015 Å for bonds and 1� for angles). This will consequently

lower the resulting Z-value for the given geometric feature.

2.7. EDSTATS

EDSTATS (Tickle, 2012) was run for all of the ligands and

the statistics for the ligands were collected. The statistics from

EDSTATS were not used directly as part of the scoring system

but are available for exploitation by others.

2.8. Combining ranks

Once we have percentiles/ranks for individual metrics, we

can rather straightforwardly combine these ranks to obtain an

overall score, S, which can then be used itself to rank the

ligands. There are a number of plausible ways to combine

individual scores; that chosen currently (1) spreads out the top

end of the scores compared with linear addition. A future

implementation may use non-unit weights to allow for the fact
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Figure 2
Figure illustrating the resolution-dependence of the Mogul Z-worst value
of the ligand. There is little to no resolution-dependence of the Mogul
Z-worst values.

Figure 1
Resolution-dependence of the ligand direct-map correlations. There is a
mild change in the shape of the distribution for low-resolution structures.
There are relatively more structures with mediocre and poor correlations
compared with the ligand correlations for medium- and high-resolution
ligands. There is no resolution-dependence of the distribution of the
correlation coefficient in the current model.



that the ligand density correlation is probably more important

than the others.

S ¼ R2
dir þ R2

diff þ R2
mogulz

þ R2
bumps; ð1Þ

where Rdir is the rank of the direct-map correlation, Rdiff is the

rank of the difference-map correlation, Rmogulz
is the rank of

the Mogul Z-worst score and Rbumps is the rank of the ligand

bad-contacts score.

The values of S are typically then ranked and expressed as

an overall percentile.

2.9. Implementation

All ligand metrics have been entered into an SQLite data-

base generated from text parsing of the log or other output

files of the various programs used. The program to compile the

database is part of the Coot distribution and is called coot-

make-ligands-database. An additional stand-alone program

(coot-ligand-percentiles) is available that provides indices into

the distribution given metric scores.

The ligand-statistics generation interface is written using

the correlation functions of Coot (which are in turn based on

the map calculations of Clipper; Cowtan, 2003), and interfaces

to Probe and Reduce from MolProbity, EDSTATS from CCP4

and Mogul from the CCDC using the scheme-based API in

Coot. The SQLite database interface is optionally compiled,

and is written, like the bulk of Coot, in C++. The repre-

sentation of the metrics and percentile ranks is written in

Python and uses GTK.

The code described here is part of the current Coot source-

code distribution (v.0.8.7 at the time of writing).

3. Results

The ligand-selection system often picks buffer molecules or

cofactors. In the case of cofactors, these may not have been the

main ligand of interest in the model.

The ten most common comp-ids are PG4, CIT, MPD, MES,

NDP, ADP, FMN, NAP, NAD and FAD, which constitute 25%

of the ligands in this analysis. It is plausible that this is not an

optimal composition of ligands for use as a reference; this

suggests that the ligand array might usefully be split into

buffers, cofactors and ‘others’.

3.1. Histograms

With the statistics collected into a database, the data can be

queried to search for a number of trends: for example, is there

an improvement in ligand density correlation as time

progresses (i.e. with PDB deposition date)? Additionally, is

there a date-dependent improvement in the geometry of

ligand bonds and angles?

3.2. Resolution-dependence of metrics

We can split the metrics into resolution bins to see whether

there are changes in the shape of the distribution of ligand

correlations and geometry distortions as a function of reso-

lution (Figs. 1 and 2).

There is a mild shift of the distribution to lower correlations

for the relatively few low-resolution ligand structures. This

change in distribution as a function of resolution is not part of

the model when scoring input ligands against structures in the

database.

One would expect that for a well refined ligand, the density

at the ligand site would be fully explained by the atomic model

of the ligand (noting that regions of density with contributions

from neighbouring residues are excluded from the analysis):

ideally, the density at the ligand should be merely low-level

noise drawn from a Gaussian distribution. However, this

seems not to be the case for many ligands, in particular those

that are negatively correlated with the difference map. The

overall correlation to the negative difference map has a non-

zero median value of �0.073 (Fig. 3). To investigate whether

this negative correlation was owing to incorrect modelling of

the occupancy, several data sets with negative correlation were

selected and were re-refined with REFMAC with varying

occupancies. Fig. 4 shows the variation of the correlations of

the difference map and the direct map as a function of ligand

occupancy. Indeed, in most cases the correlation to the

difference map can be brought down to expected values, while

retaining a high direct-map correlation by reduction of the

ligand occupancy (typically, in these examples, to a value of

between 0.6 and 0.7).

There is very little change in the distribution of Mogul

Z-worst values as a function of resolution (Fig. 2). This is

perhaps surprising because one might have imagined that if

better (which is to say, higher resolution) data were available,

it would be more easy to model the ligand with geometry

values corresponding to low strain. However, this seems not to

be the case. This might reflect historical refinements that were
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Figure 3
Histogram of difference-map correlations of the ligand. The histogram
has a large spread and the median is slightly negative, perhaps indicating
that many ligands have too much density at the ligand site, which is a
result of overestimation of the occupancy.



made against low-quality ligand-restraint dictionaries. It is

hoped that in the future, with increasingly easy access to the

sophisticated validation tools that are available (including

those discussed here) for both the wwPDB deposition sites

and the person solving the crystal structure in the first place,

that the rate of high-quality protein–ligand complex structures

will increase.

3.3. Sliders

With the distributions in place, we can compare them with

the metrics generated for the particular ligand under investi-

gation (‘how does this ligand compare to all ligands from the

wwPDB?’). Radar charts have been used to represent statis-

tics from macromolecular models (Urzhumtseva et al., 2009).

In this case, the percentile rank is then plotted in a similar

fashion to all-molecule percentile ranks as described by Read

et al. (2011) (Fig. 5).

3.4. Ligand-interaction representation

3.4.1. Three-dimensional representation. The lower panel

of Fig. 6 shows the interaction of the ligand with its environ-

ment represented as coloured dots. The dots are achieved by

running Reduce and then Probe in a similar fashion to that

described above. In this case, however, instead of enumerating

the bad contacts in the output file, the output of Probe is used

to represent the interactions. This tool can currently be acti-

vated by the ‘Isolated Probe Dots’ menu item of the ‘ Ligands’

menu.

3.4.2. FLEV. The mode of Lidia known as Flatland Ligand

Environment View (FLEV) provides a means to represent the

protein–ligand complex in the the style of Clark & Labute

(2007), which aims to provide an information-rich figure that

contains important distances and interactions, and at the same

time is aesthetically pleasing. The chemical diagram compo-

nent of the figure is created using the Compute2DCoords()

function of RDKit, to which a distance matrix and weight can
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Figure 4
Effects on the difference-map (solid circles) and direct-map (open circles) correlations by varying the occupancy of the ligand. For each of the given
structures the occupancy of the selected ligand was varied from 0.0 to 1.0 in steps of 0.05. The resulting model was refined with REFMAC for 30 steps.
The REFMAC output model was tested for ligand–map correlations. The difference-map correlation can be brought down to expected levels (about 0)
by decreasing the occupancy of the ligand. These structures were selected on the basis of having a combination of high-resolution data and (for the
deposited structure) an unusual correlation of the ligand density and the difference map.



be passed to allow, to some extent, the preservation of three-

dimensional distances in the two-dimensional layout; an

example is shown in Fig. 7.

4. Conclusions

Ligand-analysis tools have been integrated into the new

version of Coot and have been used to assess the ligands of

structures in the PDB. The resulting metrics can be used to

assess the quality of any particular ligand under refinement or

due for PDB data deposition. The combined ranks score gives

a single number which combines all of the metrics for a quick

assessment of a particular ligand.

Analysis of the ligand metrics (Figs. 1 and 2) shows little

variation as a function of resolution and thus, at least in the

current implementation, the resolution of the data set is not

part of the model of the expected statistics. In future, as more

modern dictionary generators, refinement and model-building

tools become used routinely, there may well be a substantial

resolution-dependence of ligand metrics and this will need to

be part of the model. This will have to be investigated in due

course.

The negative median value of the difference-map correla-

tion and the fact that this can be brought down to around zero

whilst still retaining a high correction to the direct map suggest

that many ligands in protein–ligand complexes are added with

an occupancy of 1.0: this is too high and suggests that ligand-

occupancy refinement should be a routine part of the refine-

ment process.

The median number of bad contacts of PDB ligands is 1

(Fig. 8). As a guideline, it is probably a good idea to try to

better this and aim for a score of 0. Using the ‘Isolated dots for

this Ligand’ interface to Probe in the new Coot interface

allows the straightforward determination of any problematic

interactions. These can be either remodelled by adjusting the

coordinates of the model or (in some cases) suggest an

adjustment of the H-atom nonbonded contact interactions

used during refinement.

After the per-accession-code combined scores, S, have been

calculated and sorted, the top-ranked nonbuffer ligand is from

a structure deposited by a pharmaceutical company; this is

consistent with the observation of Sehnal et al. (2015):

the overall quality of experimental drugs is clearly much higher

than the PDB-wide statistics for all ligands and non-standard

residues.

It might be reasonable to change from unit weights, so that

(for example) the Rdir rank is more highly weighted than

the others, but this has not as yet been implemented. The
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Figure 6
The new ligand validation in Coot in action. Shown here is the ligand CQ8
from PDB entry 4zzn. The ligand model corresponds well to the density
map (shown in both panels) and (from the top panel) the bond and angles
of the ligand model correspond well to expected values [the Z-values
for each bond and angle are displayed on a sliding scale, with green
corresponding to the most likely values (Z-values of 1 or less) and red
corresponding to Z-values of 5 or greater]. The hint of red that one can
see at the bottom right comes from the underlying molecule representa-
tion of ketone double-bonded oxygen. The lower panel illustrates that the
manner of interaction of the ligand with the protein environment is via
hydrogen bonds of typical length and that there are no bad contacts
between the ligand and the protein. The colour scheme of the dots is as
follows: hydrogen bonds are olive-green dots, wide contacts are purple,
close contacts are light green, small overlaps are orange and bad contacts
(not appropriate for this ligand model) would be red.

Figure 5
Screenshot of the sliders for a particularly well scoring ligand structure
(PDB entry 4zzn).



top-ranking nonbuffer ligand using the current scoring system

was the ligand in PDB entry 4zzn (Ward et al., 2015; Fig. 6).

This analysis does not cover geometric features such as

distortions from planarity of aromatic, delocalized or other

sp2-hybridized systems. To make claims about distorted plane

geometry one must have a reliable understanding of chemistry,

and until recently it was not clear that dictionary generators

could provide this.

Although the values from wwPDB ligands are in the data-

base, this analysis does not score (generate a percentile rank)

and provide slider representation for the RSZD and RSRZO

scores from EDSTATS for ligands to be evaluated. This

should be straightforward to implement in the future.

The software on which this analysis depends is readily

available (and freely available for academics) on the desktop

(Mac OS X and other Unix-like systems), with the exception

of Mogul. To increase the availability of these analyses it is

hoped that in the future AceDRG (Long et al., 2017) output

will be sufficiently robust that, instead of using Mogul, the test

of ligand internal geometry can be performed against a

dictionary (quite possibly that with which the structure was

refined).

This analysis does not take linked ligands into considera-

tion. A useful addition would be to extend the set of ligands

able to be assessed to include peptide ligands.

APPENDIX A
Effective resolution

Let us define the effective number of reflections Neff as the

sum of some function � which takes as parameters the

observed data and the Wilson sigmas,

Neff ¼
P
�ðFo;FtÞ: ð2Þ

If all reflections in a sphere are ideally measured then the

correlation between these reflections and the true reflections

is 1.0 and, similarly, if these reflections have random

measurement errors then the correlation will be less than 1.0.

The effective number of observations can be constructed from

the sum of correlations between measured reflections and true

reflections. We then ask ‘what is the radius of the sphere that

has this number of observations?’ Given N as the number of

possible observations up to resolution s and that the number

of observations is proportional to the volume of a sphere, then

Nnom /
4�

3
s3

nom; ð3Þ

Neff /
4�

3
s3

eff ð4Þ

and thus

Neff

Nnom

¼
s3

nom

s3
eff

; ð5Þ

seff ¼
Neff

Nnom

� �1=3

snom; ð6Þ

so, in terms of ångströms, the effective resolution Reff will be

Reff ¼ Rnom

� Neff

Nnom

� �1=3

; ð7Þ
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Figure 8
Histogram of the number of bad contacts of ligands with their
environment for ligands in the wwPDB. The median number of bad
contacts for a ligand is 1. Instead of aiming to be better (fewer bad
contacts) than the median number of bad contacts, it is recommended to
target a value of zero bad contacts.

Figure 7
An example of FLEV using the 6-hydroxy-1,6-dihydropurine nucleoside
in PDB entry 1a4m (Wang & Quiocho, 1998).



Now we need to calculate �(Fo, Ft). Assuming that

Fo ¼ Ft þ n; ð8Þ

where n is noise, assuming that the signal (Ft) and noise are

independent and that the average noise is 0, we obtain

�ðFo;FtÞ ¼
hF2

t i

hF2
t i þ hn

2i

� �1=2

: ð9Þ

hFt
2
i is Wilson’s sigma and hn2

i is the variance of the noise

(experimental sigma).

Thus, Reff will have a lower (‘worse’) resolution for data

that, for a given nominal resolution, have lower F/�(F) values.
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