
research papers

286 https://doi.org/10.1107/S2059798317000699 Acta Cryst. (2017). D73, 286–293

Received 8 November 2016

Accepted 13 January 2017

Edited by R. J. Read, University of Cambridge,

England

Keywords: random and systematic error;

correlation coefficient; eigenanalysis; sparse

data; isomorphism; classification;

dimensionality reduction.

Dissecting random and systematic differences
between noisy composite data sets

Kay Diederichs*

Department of Biology, University of Konstanz, Universitätsstrasse 19, 78457 Konstanz, Germany. *Correspondence
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Composite data sets measured on different objects are usually affected by

random errors, but may also be influenced by systematic (genuine) differences

in the objects themselves, or the experimental conditions. If the individual

measurements forming each data set are quantitative and approximately

normally distributed, a correlation coefficient is often used to compare data sets.

However, the relations between data sets are not obvious from the matrix of

pairwise correlations since the numerical value of the correlation coefficient is

lowered by both random and systematic differences between the data sets. This

work presents a multidimensional scaling analysis of the pairwise correlation

coefficients which places data sets into a unit sphere within low-dimensional

space, at a position given by their CC* values [as defined by Karplus &

Diederichs (2012), Science, 336, 1030–1033] in the radial direction and by their

systematic differences in one or more angular directions. This dimensionality

reduction can not only be used for classification purposes, but also to derive

data-set relations on a continuous scale. Projecting the arrangement of data sets

onto the subspace spanned by systematic differences (the surface of a unit

sphere) allows, irrespective of the random-error levels, the identification of

clusters of closely related data sets. The method gains power with increasing

numbers of data sets. It is illustrated with an example from low signal-to-noise

ratio image processing, and an application in macromolecular crystallography

is shown, but the approach is completely general and thus should be widely

applicable.

1. Introduction

Experimental data are a mixture of random and systematic

components. Random components are generally referred to

as ‘noise’. Systematic components are due to both genuine

features of the systems or objects being studied, and to the

specific way that the measurements are performed. Repeated

measurements of data sets on the same objects may differ

systematically if some experimental variables, such as the

orientation or the composition of the objects, cannot be

controlled. These systematic differences lead to systematic

errors if they are not modelled. There is no known general

procedure to distinguish between random and unknown (and

therefore not modelled) systematic differences of data sets,

which has given rise to a great number of specialized data-

processing and classification procedures, each utilizing specific

features of the system to analyze the data.

As an example, recent work in cryo-electron microscopy

(cryo-EM) produces thousands of noisy images of molecular

complexes that may be in slightly different conformations, or

may have different compositions owing to the loss of subunits.

Each image may be considered as a data set that can be

compared with all others to establish its agreement and suit-

ability for contributing to the molecular model of the complete

complex. In favourable cases, one or a few reference data sets
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are available to decide how to classify each experimental data

set. In the absence of reference data sets, a protocol may start

from a small number of data sets to arrive at statistics and

classifications describing all data sets. The danger associated

with the extraction of such seed data sets is that they may lead

to bias in the final results, as demonstrated by Shatsky et al.

(2009) and Henderson (2013) for the case of low signal-to-

noise cryo-EM images. More elaborate methods, which are

well established in cryo-EM, use principal component analysis

(PCA) followed by k-means clustering (Fu et al., 2007) to

extract common features, or a Bayesian maximum a posteriori

(MAP) algorithm (Scheres, 2012). With good data, these

methods perform adequately and have, for example, allowed

the recent surge in structural results obtained by cryo-EM.

As another example, a complete crystallographic data set

from a single large macromolecular crystal measured at a

conventional X-ray source, a synchrotron beamline or a free-

electron laser is usually comprised of thousands of unique

intensity values from which the structure of the molecule can

be derived. In the recently established field called ‘serial

crystallography’, up to thousands of noisy partial data sets

from tiny crystals may be measured and averaged to arrive at

the final complete data used to calculate the macromolecular

model. These data sets often do not only differ by random

error, but also systematically, owing to, for example, differ-

ences in the unit-cell parameters, composition or conforma-

tion of the molecules that build the crystal lattice.

Unfortunately, no current method is able to unambiguously

classify these data sets according to their degree of related-

ness, called ‘isomorphism’ in crystallography (and ‘homo-

geneity’ in many other fields). ‘Isomorphism’ in the strict sense

of similarity of unit-cell parameters does not imply similarity

of, for example, subunit composition and molecular confor-

mation. A hierarchical clustering approach (Giordano et al.,

2012) based on pairwise correlation coefficients can be used,

but correlation coefficients may be low owing to a high

random error in the intensity values of one or both of the data

sets being compared. This happens if the crystals are very

small or the exposure is weak, and should not be taken as a

sign of non-isomorphism. Current procedures are not satis-

factory because they may miss systematic differences, and may

thus lead to the inappropriate acceptance of data sets, or may

discard valuable (but weak) data sets. By using a target

function that measures the precision of the merged data, the

latter problem may be avoided (Assmann et al., 2016);

however, the multitude of ways in which non-isomorphism

between data sets may arise requires a multi-dimensional

approach.

Here, an algorithm is described which separates the inter-

data-set influences of random error from those arising from

systematic differences, and reveals the relations between data

sets represented as vectors in a low-dimensional space. It

allows the identification of those data sets that differ only by

random error, and could therefore, for example, be averaged

to increase the signal-to-noise ratio. The averaged data set

then corresponds to data from a single object, and reveals its

properties more accurately than any single data set. On the

other hand, groups of data sets that differ systematically,

potentially corresponding to different specific combinations of

object features, may be identified, clustered and analyzed.

2. Methods and theory

Multidimensional scaling (MDS) is a family of methods that

were developed more than 60 years ago (Torgerson, 1952).

The purpose of MDS is to approximate a bivariate function r

of N experimentally determined data sets X measured in a

high-dimensional space with a bivariate function l of variables

x in a low-dimensional space, with the intention of reducing

the dimensionality of the experimental problem in order to

help visualization, to allow clustering of the measurements

and to perform further analyses. The basic MDS equation is

 ðxÞ ¼
PN
i;j

½rðXi;XjÞ � lðxi; xjÞ�
2
! minimum;
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Table 1
Terms used in this paper.

Term Meaning Example(s)

M Number of value pairs for correlation-coefficient calculation
between data sets (Mij if specific for each i, j pair of data sets)

Number of unique reflections common to two data sets; number of
image pixels within a mask

N Number of experiments Number of data sets; number of images
n Dimension of reduced space 2
r Bivariate scalar function of data sets i and j Correlation coefficient between data sets with Mij common unique

reflections
l Bivariate scalar function of the representation of data sets i and j Scalar product in n-dimensional space
Xi Experimental data of data set i Reflection intensities of data set i; pixel values of image i
xi Representation of data set i in n-dimensional space (unit sphere) Points in plane representing images (Fig. 1) or data sets (Fig. 2)
CC Correlation coefficient CC1/2, CC*
� Estimated standard deviation Estimated error of intensity value
Systematic difference Changes of experimental result owing to features of particular

object; may be common to some data sets. Systematic differences
lead to non-isomorphism/inhomogeneity.

Different conformation of molecule leading to different image or
diffraction

Random error/
difference

Unpredictable change of experimental result arising from effects that
cannot be controlled by the experimenter and are unrelated to
changes in other measurements of the same data set or in other
data sets

Poisson statistics in photon-counting experiments; electronic noise in
measurement apparatus; statistical variation within samples drawn
from a homogeneous population
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Figure 1
Portrait of A. Einstein (Wikimedia). (a) Example of portrait with added noise; the signal-to-noise ratio is 1:9. (b) Symmetric result of averaging of noisy
images and mirror images. (c) Histograms of correlation coefficients (red, between images of the same type; blue, between images of different types;
green, sum of both histograms). (d) Result of two-dimensional analysis: each cross represents one image. Arrows point to images with a 1:13 signal-to-
noise ratio. The axes are unitless; only the relevant area of the possible range (a circle with radius 1) is shown. The angle between the two prototypic
directions is 65�; its cosine agrees with the correlation of 0.43 between the image and its mirror. (e) The result of averaging the 50 noisy original images;
the overall noise level is reduced by averaging. ( f ) as (e) but for the 50 noisy mirror images



where r and l are bivariate functions of arguments defined in

spaces of high (M) and low (n) dimensions, respectively (the

terms used in the paper are summarized in Table 1). If r and l

are metric data (e.g. distances), the method is called metric

MDS; if l measures Euclidean distances, metric MDS is

equivalent to a particular case of principal component analysis

(PCA). Applications of metric MDS in the natural sciences are

found, for example, in nuclear physics, cheminformatics and

bioinformatics, such as in aspects of protein structure model-

ling (Chen, 2013) and detection of evolutionary relationships

(Malaspinas et al., 2014). Nonmetric MDS (typically with

ordinal data) is mainly used in a social science context, such as

in sociometry, market research, psychology, psychometrics and

political science.

We recently described algorithms to resolve the twofold (or

fourfold) indexing ambiguity occurring in serial crystallo-

graphy, in certain space groups or for certain combinations of

cell parameters (Brehm & Diederichs, 2014). These algorithms

transform the (N2
� N)/2 relations between N crystallo-

graphic data sets, each given by the intensities of its unique

reflections, into an n = 2 (or n = 4) dimensional space, thus

allowing the visualization of inter-data-set relations.

We used the inter-data-set cross-correlation coefficients,

calculated from intensities Xi of unique reflections (equivalent

to greyscale values of pixels in images), as elements of the

(real symmetric) matrix r = {r(Xi, Xj)} of dimensions N � N.

The correlation coefficient was calculated only for those i, j

pairs of data sets for which the number Mij of common unique

reflections is high enough; we required at least five common

reflections. The best algorithm of Brehm & Diederichs (2014)

uses L-BFGS (Liu & Nocedal, 1989) to iteratively minimize, as

a function of the vectors xi and xj representing the data sets in

low-dimensional space (n = 2–4), the specific MDS equation

�ðxÞ ¼
PN�1

i¼1

PN
j¼iþ1

ðrij � xi � xjÞ
2

ð1Þ

where the double summation extends over all pairs of data sets

i and j with common reflections, r(Xi, Xj) = rij is the correlation

coefficient between data sets i and j, and xi�xj denotes the dot

product of xi and xj. The properties of this algorithm are

explained below and have, to my knowledge, not been

described before; they were only understood after the publi-

cation of Brehm & Diederichs (2014).

For this algorithm’s choice of r and l, the least-squares

solution may in principle be obtained algebraically by eigen-

analysis of the matrix r = {rij}. To this end, one writes x as a

column vector composed of the N n-dimensional xi and solves

xxT
¼ r: ð2Þ

The n strongest eigenvalue/eigenvector pairs of r can be

used for the construction of the N vectors xi (Borg & Groenen,

2005). These lie in the unit sphere (sphere of radius one)

within n-dimensional space. The n-dimensional solution thus

exists; it is unique except for rotations of x around the origin

and for changes of sign of one or more coordinate axes, since

the dot product is invariant to both operations. However,

when calculating the inter-data-set correlations, the N diag-

onal elements are not determined experimentally; therefore,

instead of a direct algebraic solution of (2), an iterative least-

squares solution of (1) may be obtained (Brehm & Diederichs,

2014). This procedure was found to be robust, for the specific

problem that Brehm and Diederichs solved, even in the

presence of a significant fraction of missing off-diagonal

elements of r owing to low numbers Mij of unique reflections

common to data sets i and j.

Common measurements (in crystallography, common

unique reflections) can be thought of as establishing a direct

connection by allowing the calculation of elements of r

between data sets; data sets with no common measurements

may still be connected indirectly through intervening data sets.

A unique solution, consistent with the invariance properties of

the dot product mentioned above, can be obtained from a

sparse r matrix as long as each data set has n or more different

direct or indirect connections to any other data set. This is

because the least-squares solution x is robust with respect to

the omission of specific rij as long as the minimal connectivity

of the data sets is maintained. As soon as the number of

connections falls short of n, many additional solutions arise.

Generally, the value of n required to construct the xi from

eigenvalues/eigenvectors such that they approximate the rij

depends on the properties of the data sets. Since Pearson’s

correlation coefficient can be written as a dot product (i.e.

component-wise multiplication then summation) in Mij-

dimensional space,

rij ¼ rXiXj
¼

Xi � XiP
ðXi � XiÞ

2
� �1=2

�
Xj � XjP
ðXj � XjÞ

2
� �1=2

; ð3Þ

the dot product xi�xj in n-dimensional space can be expected

to approximate it adequately if n is high enough. This also

applies to other types of correlation coefficients, such as

Fisher’s (noncentred) product-moment correlation coefficient

(Fisher, 1950) or Spearman’s rank correlation coefficient. With

ideal, error-free data, the value of � is zero if the dot products

xi�xj exactly reproduce the correlation coefficients rij. For a

given case, the eigenvalues can be calculated after replacing

(‘imputing’; Karhunen, 2011; Folch-Fortuny et al., 2015)

missing values in r = {rij} by those computed, for example, from

a least-squares solution. The minimum value of n can then be

identified because it corresponds to the number of strong

eigenvalues. This is still true if errors are present in the rij; in

this case, the n strongest eigenvalue/eigenvector pairs of r

produce the least-squares solution of (2), and the remaining

eigenvalues represent the noise.

Evidently, the rij are not error-free as they are calculated

from a finite-sized sample of noisy experimental data. This

means that the properties of the solution of (1), as discussed

below, are only approximately realised. However, the xi

vectors are better determined when the number N of experi-

mental data sets increases, since the number (N2
� N)/2 of

matrix elements grows faster than that of the (n � 1)*N + 1

unknown xi components. The accuracy of the components of xi

improves with the square root of N, in the same way as the
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average of N experimental measurements of a quantity

approaches the population mean.

One property of the solution is particularly noteworthy: if

several data sets Xi only differ in the amount of random error,

then, provided that other data sets Y differ systematically and

thus span the entire n-dimensional space, they are represented

by vectors xi in a one-dimensional subspace: a line through the

origin. This is because the subset of equations involving the

correlations of the Xi data sets can already be solved in n = 1

(see Appendix A); this subset solution is only consistent with

the properties of the dot product in n dimensions and the full

system of simultaneous equations, which also includes the Y

data sets, if the angles between the xi vectors remain zero in

n-dimensional space.

Vectors representing data sets consisting of random error

have a length close to zero since these data sets yield a

correlation close to zero with other data sets. On the other

hand, the length of vectors cannot rise above one; vectors with

a length of one represent the ‘proto’-types, i.e. the noise-free

type of the data set; the length of a shorter vector with the

same direction is given by its correlation with this prototypic

data set. The cosines of angles between vectors xi representing

different prototypic data sets are given by the correlation

coefficients between their data sets.

The lengths of vectors are thus inversely related to the

amount of random error, and the angles between vectors

represent genuine systematic differences.

An analytical relation for the signal-to-noise ratio of a given

data set and the vector length follows from recent insight

(Karplus & Diederichs, 2012) which defines a correlation with

prototypic (‘true’) data as the quantity CCtrue, and finds that

CCtrue can be estimated by CC*, an analytical function of the

intra-data-set correlation coefficient CC1/2, which in turn can

be calculated from repeated measurements that are part of the

same data set. This means that the value of CC* of a data set

Xi is an estimate of CCtrue, the length of the vector xi repre-

senting Xi; its prototypic data set resides on the sphere, at the

same spherical angles as those of xi.

As was also shown (Karplus & Diederichs, 2015), another

relation exists between CC1/2 and the signal-to-noise ratio

when the signal is normally distributed. The two equations

linking CC1/2 to CC* and the signal-to-noise ratio hIi/h�i,
respectively, can then be combined as

ðCC�Þ2 ¼
ðhIi=h�iÞ2

ðhIi=h�iÞ2 þ 1
; ð4Þ

which shows that for very low hIi/h�i CC* has a slightly lower

numerical value than hIi/h�i, and approaches one if hIi/h�i
approaches infinity. Similar equations exist for the (crystallo-

graphic) case of signal following an acentric or centric Wilson

distribution.

The relevance of this connection is fourfold. Firstly, the

lengths of the vectors obtained by solving (1) can be inter-

preted as CC* values that are analytically related to CC1/2,

which measures the internal consistency of each data set.

Secondly, a noise level can be assigned to each data set

(through its vector length) if it is not already provided by the

experimental procedure, and data sets in or close to a one-

dimensional subspace (a direction in n-dimensional space) can

properly be averaged, with weights according to their hIi/h�i
ratios. Thirdly, a CC* value can be assigned to a data set even

if its internal consistency cannot be calculated owing to a lack

of repeated measurements. Finally, and maybe most impor-

tantly, the correlation coefficient rij between two data sets i

and j can be expressed as

rij ¼ CC�i � CC�j � cos½ffðxi; xjÞ�: ð5Þ

Thus, if CC�i and CC�j are available through calculation of

their CC1/2 values, as is often the case for crystallographic data,

the maximum possible correlation coefficient between the

data sets is given by the product of their CC* values, and any

reduction that the actual rij displays must be owing to

systematic error. The angle corresponding to the degree of

their non-isomorphism may then be readily calculated from

(5). This relation was unknown at the introduction of the CC*

concept (Karplus & Diederichs, 2012), and highlights its utility.

3. Results and discussion

These properties are first illustrated with a simple synthetic

example which was generated for this work and is related to

image analysis at weak signal-to-noise ratios. The face of

Albert Einstein was extracted from a photograph taken by

Sophie Delar in 1935, and 50 noisy synthetic images were

computed by adding ten levels (resulting in signal-to-noise

ratios of 1:4, 1:5, . . . , up to 1:13) of Gaussian noise with mean

zero to the original pixel values. This procedure was repeated

with the mirror image of Einstein; an example of an image

with a signal-to-noise ratio of 1:9 is shown in Fig. 1(a).

The resulting collection of images mimics a situation, for

example, in microscopy where two similar types of objects are

imaged multiple times at such a low signal-to-noise ratio that

the types of objects cannot be distinguished directly from the

images, or where an object with an approximate twofold

symmetry is imaged from its two different sides.

The problem in such experiments is to realise that different

groups of objects exist and to correctly assign the noisy images

such that they can be averaged within their respective group.

If no assignment is possible and all images are averaged, the

information about the difference between the objects is lost

and a symmetric image results (Fig. 1b). For the synthetic

example data, the inter-group and intra-group correlation

histograms (Fig. 1c) were calculated and found to overlap.

Thus, a separation of inter-group and intra-group correlation

coefficients would not be possible because the images are too

noisy to separate them into groups based on simple statistics

(the two classes of images would however be separable with

more elaborate classification methods).

The solution of (1) with the example data is shown in

Fig. 1(d). The vectors representing the two groups of different

images are well separated and easily distinguishable,

as they are located in one-dimensional subspaces of the
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two-dimensional diagram, as expected from the properties of

the method outlined above. The cosine of the angle between

the two groups of vectors indeed agrees numerically with the

correlation coefficient between the original image and its

mirror image. Consistent with the theory outlined above and

according to (4), Fig. 1(d) shows that the lengths of the vectors

are related to their signal-to-noise ratios, with short vectors for

the weakest signal-to-noise ratios and the longest vectors for

the highest (but at 1:4 still weak) signal-to-noise ratios.

This example not only achieves classification of images, but

also reveals their relations on a continuous scale: for system-

atically different images, the angle between the vectors

representing them, and for images that differ only randomly,

by the vector lengths.

It is noteworthy that the procedure achieves the clustering

of similar images without requiring any initial or seed images,

and could, for example, be used for the clustering of projec-

tions of three-dimensional objects rotated and translated in

space. If several subunit compositions or conformational

substates of the imaged object exist, the dimensionality, when

calculating the solution of (1), should be adjusted according to

the number of strong eigenvalue/eigenvector pairs of the r

matrix.

The procedure is fast since only a small number of eigen-

values/eigenvectors are required, and the eigenanalysis does

not depend on the number M of image pixels from which

the correlation coefficients are calculated. It may provide

unbiased seeds calculated from averages of images corre-

sponding to the same orientation, the same composition and

the same conformation for back-projection procedures that

re-constitute the three-dimensional object.

The advantage of the method is that no prior information

about the type of non-isomorphism (inhomogeneity) is

required. A possible disadvantage is that a particular dimen-

sion of the solution is not directly interpretable as a particular

object property, and data sets with strong components in that

particular dimension first have to be averaged and analyzed to

understand the ‘meaning’ of that dimension. The latter task is

simple in the illustrative example just given, but may be

nontrivial in other applications, such as in the next example.

In the following, the application of the method to experi-

mental data obtained from an X-ray free-electron laser

(XFEL) is shown. The femtosecond pulses produced by these

Figure 2
(a) Analysis of original photosystem I XFEL data shows two clusters corresponding to the two possible indexing modes. (b) Analysis of properly indexed
photosystem I XFEL data; projection on the xy plane. (c) Analysis of properly indexed photosystem I XFEL data; projection on the yz plane.



devices are, despite their short duration, so intense that they

allow only a single snapshot of the diffracted X-rays from a

crystal to be measured before the crystal explodes. Each

snapshot yields a partial data set, and many partial data sets

have to be merged and averaged into a complete data set that

can be analyzed to obtain the structure of the macromolecule.

Owing to a lack of analysis methods that can cope with the

high noise level of the individual partial data sets, it is

currently unknown which range of macromolecular confor-

mations the crystals sample, and whether structural insight

about molecular conformations can be captured and extracted

from these data. The usual current procedure is to merge and

average all partial data sets and thus to arrive at the averaged

structure, similar to what was seen in the previous example.

The specific data used for analysis are from a large

membrane-protein complex, photosystem I (36 proteins, 381

cofactors), and represent the first XFEL data obtained from a

macromolecule (Chapman et al., 2011). The indexing ambi-

guity present in the space group of these crystals was resolved

(Brehm & Diederichs, 2014) by solving (1). In that work, the

distribution of vectors in two-dimensional space (Fig. 2a) was

used for a binary decision for each of the 15 445 data sets

(maximum resolution 8.7 Å) that implied either re-indexing or

retaining the original reflection indices. Consistent with the

theory outlined above, the angle between the centres of the

clouds representing the two indexing choices is close to 90�; it

is actually less because the overall falloff of intensities in the

two indexing modes is the same, which results in a slightly

positive correlation of their intensities even if the indexing

mode differs.

For this work, these data were first re-indexed according to

the results of Brehm & Diederichs (2014), as represented in

Fig. 2(a), and subsequently subjected to the method described

above. If the indexing mode were the only type of systematic

difference between the data sets, the data sets would only

differ in random error and would give a single strong eigen-

value in an n = 1 analysis. However, the calculation yielded

eigenvalues beyond the first one that were more than ten times

higher than the root-mean-square value of the remaining

eigenvalues, and the calculation was therefore repeated with

larger values of n. The results for n = 3 are shown as projec-

tions in the xy plane (Fig. 2b) as well as in the yz plane

(Fig. 2c). Fig. 2(b) shows, as expected, the majority of data sets

(
10 000) in a single cluster elongated along its axial direction

which nearly coincides with the x axis, but reveals a significant

number of data sets that do not belong to it. Their locations in

three-dimensional space are visible in the yz projection

(Fig. 2c). Here, projecting along the x axis on the subspace of

systematic differences, the elongated main cluster appears at

the strongly populated centre, and is surrounded by five

smaller clusters of <1000 data sets each and one small cluster

of a few hundred data sets. Each of these additional clusters

represents a type of data set that differs systematically from

the type represented by the main cluster.

It can be assumed that some of the systematically different

types correspond to different contents of the crystals or

conformations of its constituents; other types may result from

peculiarities of the measurement or from artifacts of the

software used to process the data. Analysis of the smaller

clusters would give important insight about this experiment

and its biological objects, but needs additional information

that is not available for this experiment. The most straight-

forward use of the result consists of treating the data sets

outside the main cloud as outliers, and thus merging and

averaging only those data sets that have small systematic

differences and differ mainly in their random error. This

procedure is aided by the knowledge of the average noise

levels of the data sets, given by the lengths of their vectors

CC* and (4). However, such an analysis is beyond the scope of

this work, which focuses on introducing the method and

revealing its properties.

4. Summary

The analysis demonstrated here has the novel and funda-

mental ability to explicitly separate random and systematic

components of differences between data sets. Specifically, each

vector representing a data set is placed within the n-dimen-

sional unit sphere such that its length estimates CCtrue

(Karplus & Diederichs, 2012), the correlation to the ‘proto-

typic data set’ at the same spherical angles on the surface of

the sphere. Furthermore, the n � 1 spherical angles describing

the direction of the radius vector parameterize the n � 1

orthogonal ways in which the data sets differ systematically.

One advantage of the method is that the systematic ways in

which the data sets differ do not have to be known before-

hand; the number of dimensions required to describe the

systematic differences is a result of the analysis. A potential

disadvantage is that any particular dimension of the solution

does not immediately reveal the object property that it para-

meterizes; this requires additional downstream analyses.

In structural biology, the procedure allows the solution of,

for example, the classification problems associated with the

averaging of data sets in the presence of inhomogeneity (‘non-

isomorphism’ in crystallography), and links measures of the

internal agreement of data sets (CC1/2) and a recently intro-

duced correlation (CC*; Karplus & Diederichs, 2012) with a

prototypic (usually not accessible ideal) data set to random

and systematic differences of data sets as assessed by pairwise

correlation coefficients. The method achieves dimensionality

reduction and allows the prediction of, as in the case of XFEL

data, the relations between data sets that have no common

measurements and thus cannot be directly compared. It offers

a way to extract structural information from noisy data sets,

for example, in serial crystallography, and potentially in

imaging techniques, that go beyond or at least complement the

methods that are currently available. ‘No quantity has been

more characteristic of biometrical work than the correlation

coefficient, and no method has been applied to such various

data as the method of correlation’ (Fisher, 1950). Since

correlation coefficients are used ubiquitously in all sciences,

many applications of the method are conceivable beyond

structural biology. For example, correlations between physio-

logical data of patients may be analyzed to identify prototypes
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of diseases, correlations of stock prices may yield improved

portfolio choices, or communication events may be analyzed

to reveal clusters to which the participants belong, and their

relations. These and many more kinds of data can be analyzed,

if correlations can be calculated, within the general framework

outlined here, to classify and quantify systematic effects, and

to separate them from random noise.

APPENDIX A
Correlation of data sets that differ only by random
error

The definition of Pearson’s correlation coefficient is

rij ¼

P
ðXi � XiÞðXj � XjÞP

ðXi � XiÞ
2 P
ðXj � XjÞ

2
� �1=2

ð6Þ

where the summation index is left out. Suppose that T

represents the noise-free data of a prototypical object. Further

suppose that the experimental data sets Xi and Xj differ from

T by unrelated error terms """i and """j with zero mean, respec-

tively. They may additionally differ by some scale factor, but

since the correlation coefficient is invariant to scale factors,

these scale factors can be taken to be 1. We may write rij as

rij ¼

P
YiYjP

Y2
i

P
Y2

j

� �1=2
; ð7Þ

with Yi = Xi � Xi, Yj = Xj � Xj. Then, with s = T � T, we

obtain

Yi = s + """i and Yj = s + """j. It follows that

rij ¼

P
ðsþ """iÞðsþ """jÞP

ðsþ """iÞ
2 P
ðsþ """jÞ

2
� �1=2

’

P
s2

P
ðsþ """iÞ

2
� �1=2 P

ðsþ """jÞ
2

� �1=2

¼

� P
s2P

ðsþ """iÞ
2

�1=2

�

� P
s2P

ðsþ """jÞ
2

�1=2

ð8Þ

since the sum over the terms s"""i, s"""j and """i"""j can be neglected.

With the same argument, the last line can be identified as the

product of Pearson’s correlation coefficients of Xi and Xj,

respectively, with T.

This means that the correlation coefficient of two multi-

dimensional data vectors that differ only by unrelated random

noise from a third data vector (T) can be represented as the

product of the two correlation coefficients against the third

data vector. This result, although easy to derive, appears to be

difficult to find in the statistical literature; it was also used to

derive equation (15) of Read & McCoy (2016).
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