
research papers

496 https://doi.org/10.1107/S2059798316019276 Acta Cryst. (2017). D73, 496–502

Received 28 September 2016

Accepted 2 December 2016

Keywords: RELION; cryo-EM; single-particle

analysis.

Supporting information: this article has

supporting information at journals.iucr.org/d

A pipeline approach to single-particle processing in
RELION

Rafael Fernandez-Leiro and Sjors H. W. Scheres*

MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH,

England. *Correspondence e-mail: scheres@mrc-lmb.cam.ac.uk

The formal concept of a workflow to single-particle analysis of cryo-electron

microscopy (cryo-EM) images in the RELION program is described. In this

approach, the structure-determination process is considered as a graph, where

intermediate results in the form of images or metadata are the vertices, and

different functionalities of the program are the edges. The new implementation

automatically logs all user actions, facilitates file management and disk cleaning,

and allows convenient browsing of the history of a project. Moreover, new

functionality to iteratively execute consecutive jobs allows on-the-fly image

processing, which will lead to more efficient data acquisition by providing faster

feedback on data quality. The possibility of exchanging data-processing

procedures among users will contribute to the development of standardized

image-processing procedures, and hence increase accessibility for new users in

this rapidly expanding field.

1. Introduction

Recent advances in cryo-EM instrumentation and image-

processing software have substantially expanded the scope

of structure determination by single-particle analysis

(Fernandez-Leiro & Scheres, 2016). As a result, the field is

growing rapidly. With many new users turning to cryo-EM

structure determination, efforts in methods development are

increasingly focused on improving the accessibility of the

technique. Examples of this are the development of robots

for sample preparation and transfer of the sample into the

microscope (Cheng et al., 2007; Vos et al., 2008; Kim et al.,

2010; Coudray et al., 2011); the introduction of automated

data-acquisition and processing software (Suloway et al., 2005;

Stagg et al., 2006; Mastronarde, 2005; Li et al., 2015); the

introduction of image-processing software suites with conve-

nient graphical user interfaces (GUIs; Tang et al., 2007; Hohn

et al., 2007; Baxter et al., 2007; de la Rosa-Trevı́n et al., 2013);

and the development of integrated software environments and

file formats that allow convenient interchanging between the

different programs (Lander et al., 2009; de la Rosa-Trevı́n et

al., 2016; Marabini et al., 2016). It is interesting to note that a

similar development towards automation and ease of use

happened in the related field of macromolecular structure

determination by X-ray crystallography during the 1990s and

2000s (Blundell et al., 2002).

This paper describes the implementation of a pipeline

approach to cryo-EM structure-determination protocols in the

RELION program (Scheres, 2012b). RELION is based around

an empirical Bayesian approach to single-particle analysis

(Scheres, 2012a), where important parameters that describe

the signal-to-noise ratios of the data are inferred from the data

themselves. This reduces the need for expertise to run the

ISSN 2059-7983

http://crossmark.crossref.org/dialog/?doi=10.1107/S2059798316019276&domain=pdf&date_stamp=2017-04-20


program, and makes it intrinsically suitable for automation.

Since its introduction in 2012, a convenient GUI has further

enriched the ease of use of RELION, but until now the

concept of a workflow did not exist explicitly within the

program. To facilitate the generation of standardized and

(semi-)automated procedures for structure determination, we

describe here the formal description of a workflow, which we

call a pipeline, in the latest RELION release (v.2.0).

2. Implementation of the pipeline

2.1. Jobs and nodes

The process of cryo-EM structure determination can be

described as a directed acyclic graph, consisting of vertices and

edges. We will refer to the vertices as nodes, and a total of 14

different types of nodes, representing different forms of data

or metadata, have been defined in RELION-2.0 (Table 1).

Depending on the type, nodes are stored on the computer disk

in the form of STAR (Hall, 1991), PDF, MRC (Cheng et al.,

2015) or plain-text files. The edges of the graph represent

processes that act on these data. The edges are called jobs, and

a total of 18 different types of job have been implemented

(Table 2). With the exception of the ‘Import’ job, all job types

take one or more nodes as input and produce one or more

nodes as output. Different job types take different types of

input and output nodes (see Table 2). Using output nodes

from one job as input for the next job builds up a graph, which

we refer to as the pipeline.

The 18 job types have all been implemented in a new GUI

(Fig. 1), which aims to encapsulate the entire functionality that

is needed to perform cryo-EM structure determination. One

can start with the import of a set of two-dimensional micro-

graphs or movies, and proceed from there. (However, de novo

generation of a three-dimensional reference model from the

experimental images has not been implemented, and three-

dimensional references generated in other programs need to

be imported into the pipeline.) New jobs can be selected from

the job-type list on the top left of the GUI. Selecting a job type

from this list will load the corresponding parameter input

fields on the top right part of the GUI. In order to reduce the

risk of selecting incorrect input files, the fields that correspond

to input nodes have ‘Browse’ buttons

that will only display nodes with the

expected types that already exist in the

pipeline. Internally, the node-type-

specific browse buttons use a hidden

directory called Nodes/. Sometimes this

directory becomes corrupted, in which

case it can be re-generated using the

‘Remake.Nodes/’ entry from the File

menu on the GUI.

2.2. Job execution

When all parameters of a job have

been selected, a job can be executed

using the ‘Run now!’ button on the

GUI. All jobs that are executed through the GUI will be

added to the pipeline, which is stored as a STAR file on the

computer disk. This STAR file contains lists of all nodes and

all processes in the pipeline, as well as lists of which nodes are

used as input or output for which jobs. All jobs within a

pipeline are numbered consecutively, and a new directory is

created inside the project directory for every new job that is

executed. These directories are nested inside a higher direc-

tory that reflects the job type. For example, if a two-dimen-

sional (2D) classification job is the tenth job to be executed in

the pipeline, then its output will be stored in a directory called

Class2D/job010/. (See Table 2 for the higher directory

names for all job types.) To facilitate the recognition of jobs by

the user, the concept of a job alias has also been implemented.

An alias is a unique name, a text string that does not contain

special characters such as spaces or slashes, that provides a

more intuitive description of a job. The creation of an alias for

a job leads to the generation of a symbolic link to that job’s

output directory on the computer disk.

Upon execution of the job, its name (either its output

directory or its alias) is added to a list of ‘Running jobs’ on the

GUI, and it will remain there until the files of all output nodes

have been detected on the computer disk. When the files of all

expected output nodes are present, the status of the job will

change from running to finished, and on the GUI the job will

move to the list of ‘Finished jobs’. When a job is executed, the

GUI also creates a text file called note.txt inside the job’s

output directory, which will contain a time stamp when the job

was executed and the exact command-line arguments of the

program used. The GUI will also open a text-editor window

that allows the user to further comment on the intentions or

characteristics of the job. The latter could serve as an elec-

tronic logbook for the user.

Some jobs are stopped before they reach their intended

result. In order to finish such jobs, the ‘Run now!’ button on

the GUI changes to a ‘Continue now’ button when a job is

selected from any of the lists in the lower part of the GUI.

Continuing a job works in different manners for different

types of jobs. Pre-processing jobs such as ‘Motion correction’,

‘CTF estimation’, ‘Manual picking’, ‘Auto-picking’ and

‘Particle extraction’, as well as ‘Movie refinement’, will skip

research papers

Acta Cryst. (2017). D73, 496–502 Fernandez-Leiro & Scheres � Pipeline approach to single-particle processing in RELION 497

Table 1
Node types in RELION-2.0.

ID Node type Description

0 Movies A STAR file with two-dimensional movies and their metadata
1 Micrographs A STAR file with two-dimensional micrographs and their metadata
2 Particle coordinates A text file with the coordinate-file suffix
3 Particles A STAR file with individual particles and their metadata
4 Movie particles A STAR file with particle movie frames and their metadata
5 2D references A STAR file or MRC stack with two-dimensional (reference) images
6 3D reference A three-dimensional reference map (in .MRC format)
7 3D mask A three-dimensional mask (in .MRC format)
8 Model A _model.star file for selecting classes
9 Optimiser An _optimiser.star file for continuing optimizations
10 Half-map One of two unfiltered half-maps from an auto-refinement
11 Final map A post-processed map
12 ResMap A map with local resolution estimates
13 Logfile A PDF file with additional output from a process



any micrographs for which the expected output files are

already on the computer disk. The likelihood-optimization

jobs ‘2D classification’, ‘3D classification’ and ‘3D auto-refine’

can be continued from their last finished iteration by providing

the corresponding _optimiser.star file. Sometimes, it is not

necessary to continue a job that was stopped prematurely. In

this case, the user can also use the ‘Mark as finished’ option

under the ‘Job action’ button, which will move the job from

the ‘Running jobs’ to the ‘Finished jobs’ lists. In the case of a

likelihood-optimization job, the expected output nodes in the

pipeline will then be replaced for the output files of the last

finished iteration.

It is important to note that RELION does not retain control

over the running job: it will merely wait for the expected

output files to appear on the computer disk. This means that

there is no functionality for the user to kill a submitted job

through the GUI or to track its job ID, which should instead

be performed through the operating system or the job queue.

2.3. Browsing the project history

The user can conveniently browse through all jobs in the

pipeline by clicking jobs in the lists of ‘Finished jobs’,

‘Running jobs’ or ‘Scheduled jobs’. When the user clicks on a

job in these lists, the parameters of that job are read from a file

called run.job inside that job’s output directory, and these are

loaded into the parameter input fields on the top part of the

GUI. Moreover, any (upstream) jobs that generated the input

nodes for the selected job are shown on the GUI in the list

called ‘Input to this job’, and any (downstream) jobs that take

the output nodes of this job as input are shown in the list called

‘Output from this job’. Clicking on jobs in the latter two lists

allows convenient browsing back and forth through the history

of the project. In addition, the user can explore how jobs are

connected to each other by generating vector-based, and

thereby conveniently editable, flowcharts in PDF format.

2.4. Analysing results

For each job in the pipeline, the ‘Display’ button on the

GUI allows visualization of its own input and output nodes.

This guides the user by presenting only a few options of which

files to display for each job. For several job types, it is often

worthwhile to also inspect part of the intermediate results.

For this purpose, some job types will output a file called

logfile.pdf, which presents the most relevant necessary

intermediate results in a convenient, graphical manner.

Examples include the movement tracks of individual movies

from ‘Motion correction’ jobs, the B-factor plots and per-

particle movement tracks from ‘Particle polishing’, and FSC as

well as Guinier plots from ‘Post-processing’ jobs.

A more general display functionality that allows visualiza-

tion of any image, reminiscent of the ‘Display’ button in

previous versions of RELION, is still available through the

‘File’ menu.

2.5. Disk management

In a typical structure-determination project, pipelines can

quickly become complicated as many different ways to process

their data are explored. This may generate large amounts of

intermediate results that occupy substantial amounts of space

on the computer disk. The strict organization of output files in

a separate directory for each job facilitates file management.

The GUI implements functionality to delete jobs that are

deemed to be no longer necessary by removing their output

directories from the project directory. In addition, the user can

also choose to clean output directories of jobs, in which case

only intermediate files are removed but files necessary for the

pipeline are retained. Both functionalities are accessible

through the ‘Job actions’ button. To protect the user from

unwanted loss of data, upon deletion or cleaning of a job all

output files are initially moved to a Trash/ folder inside the

project directory. Entire jobs can be ‘undeleted’ from the

‘Jobs’ menu, while specific files can also be recovered manu-

ally using the Linux command line. To free disk space, files can

research papers

498 Fernandez-Leiro & Scheres � Pipeline approach to single-particle processing in RELION Acta Cryst. (2017). D73, 496–502

Table 2
Job types in RELION-2.0.

ID Job type Input nodes Output nodes Output directory Description

0 Import — 0–7, 10 Import/ Import files into the pipeline
1 Motion correction 0 0, 1, 13 MotionCorr/ Wraps to external motion-correction programs
2 CtfFind 1 1 CtfFind/ Wraps to external CTF estimation programs
3 Manual picking 1 1, 2 ManualPick/ Manual picking of particles
4 Auto-picking 1, 5 2 AutoPick/ Automated picking of particles
5 Particle extraction 1–3 3 Extract/ Extraction of particle boxes from the micrographs
6 Particle sorting 3, 5, 8 3 Sort/ Sort particles based on statistics in differences from reference images
7 Subset selection 1–3, 8 1, 3, 5 Select/ Select classes or subsets from lists of micrographs or particles
8 2D classification 3, 9 3, 8, 9 Class2D/ Reference-free two-dimensional class averaging
9 3D classification 3, 6, 7, 9 3, 6, 8, 9 Class3D/ Unsupervised three-dimensional classification
10 3D auto-refine 3, 6, 7, 9 3, 6, 8–10 Refine3D/ Gold-standard three-dimensional auto-refinement
11 Particle polishing 0, 7 3, 11, 13 Polish/ Per-particle motion correction and radiation-damage weighting
12 Mask creation 6 7 MaskCreate/ Generate mask from binarized map
13 Join STAR files 0, 1, 3 0, 1, 3 JoinStar/ Join sets of particles, micrographs or movies
14 Particle subtraction 3, 6, 7 3 Subtract/ Subtract projections of (masked) maps from experimental particles
15 Post-processing 10, 7 11, 13 PostProcess/ Solvent-corrected FSC calculation and map sharpening
16 Local resolution 7, 10 12 ResMap/ Local resolution estimation
17 Movie refinement 4, 9 4, 6, 8, 10, 13 MovieRefine/ Extract particles from movies and align against three-dimensional reference



be removed permanently through an ‘Empty Trash’ option on

the ‘File’ menu.

3. On-the-fly processing and exchanging procedures

Instead of immediately executing a job once all its parameters

have been selected, the user can also use the ‘Schedule’ button

to schedule a job for execution at a later stage. Even though

the files for the output nodes of scheduled jobs do not exist

yet, they will still be added to the .Nodes/ directory that is

used by the ‘Browse’ buttons on the parameter input fields.

Thereby, once a job is scheduled one can select its expected

output nodes as input for another job, which can then also be

scheduled. In this manner, one can schedule multiple, conse-

cutive jobs for future execution.

Execution of scheduled jobs can be performed through the

‘Autorun’ menu on the GUI. This will launch a separate

window in which the user can select which of the scheduled

jobs to execute. In addition, the user can opt to cycle through

the selected scheduled jobs multiple times and specify a

minimum time between subsequent iterations. Combined with

the functionality to continue jobs explained above, this

provides a simple mechanism for on-the-fly processing of data

during acquisition. For example, one could schedule an

‘Import’ job that imports all movie files in a given directory,

followed by ‘Motion correction’, ‘CTF estimation’, ‘Auto-

picking’ and ‘Particle extraction’ jobs. This cycle of consecu-

tive jobs could be repeated many times while the data are

being acquired. In each iteration, the jobs will only act on

those movies that have not been processed before.

research papers

Acta Cryst. (2017). D73, 496–502 Fernandez-Leiro & Scheres � Pipeline approach to single-particle processing in RELION 499

Figure 1
The RELION-2.0 GUI.



Once enough particles have been extracted, the output from

the ‘Particle extraction’ job above may also be used as input

for a ‘2D classification’ job. This will lead to the calculation of

reference-free two-dimensional class averages, which typically

provide useful insights into the quality of the data. Probably

one would not want to perform the (computationally more

expensive) two-dimensional classification job as often as one

would want to pre-process the incoming movies. Therefore,

multiple executions of scheduled jobs can be run indepen-

dently. For example, one could pre-process new micrographs

from ‘Import’ to ‘Particle extraction’ every 5 min, but only

execute ‘2D classification’ with the extracted particles every

hour. Provided sufficient computer resources are at hand to

process the incoming data, this procedure allows the user to

assess data quality from the inspection of two-dimensional

class averages during data acquisition. Thereby, on-the-fly

data processing will allow the user to change their data-

acquisition scheme in case the data are unsatisfactory. Even

‘3D classification’ or ‘3D auto-refine’ jobs may be included in

on-the-fly processing. This may be particularly useful to assess

whether cofactors are bound to complexes, or whether the

acquired data are capable of reaching high resolution. It is also

possible to change the parameters of jobs that are scheduled

by clicking on the job in the scheduled jobs list, modifying its

entry fields and using the ‘Save job settings’ options in the

‘Jobs’ menu. This could be useful, for example, in the iterative

execution of two-dimensional or three-dimensional classifi-

cation where it becomes clear that too low a number of classes

was used initially.

The capability of executing multiple, previously scheduled

jobs is also relevant for developing standardized procedures

for image processing. To facilitate this, scheduled jobs can be

exported from the pipeline using the corresponding option

from the ‘Jobs’ menu. Exporting scheduled jobs will change

the directory structure with the numbered jobs from the

current pipeline to a more generic directory structure. This

generic structure can then be copied into the directory of a

different project, where it can be imported into the pipeline by

again using the corresponding option from the ‘Jobs’ menu.

This will allow different users to share their image-processing

procedures, which will be of help for inexperienced users and

may further facilitate the development of automated and

standardized procedures.

4. Results

4.1. Test-case description

To demonstrate the new pipeline, we reprocessed a data set

from the EMPIAR database (Iudin et al., 2016): entry 10028

(Wong et al., 2014). This cryo-EM data set comprises 1081

16-frame movies of 4096 � 4096 pixels that were collected

using a Falcon-II direct-electron detector on an FEI Polara

microscope. The sample contained a mixture of (cytoplasmic)

80S ribosomes (at 160 nM) that were purified from Plasmo-

dium falciparum parasites and a 1 mM solution of the anti-

protozoan drug emetine. In the original study, the structure

was solved to an overall resolution of 3.2 Å using a beta

version of RELION-1.3.

All experiments described below were performed on a

single desktop machine equipped with a Intel i7-6800K

3.4 GHz six-core CPU, 64 GB of RAM and two Titan-X

(Pascal) GPUs, which was recently acquired for less than

£3000. GPU acceleration was used for motion correction in

MotionCor2 (Zheng et al., 2016) and for CTF parameter

estimation in Gctf (Zhang, 2016), as well as for auto-picking,

classification and refinement in RELION-2.0 (Kimanius et al.,

2016).

4.2. Simulated on-the-fly processing

In an attempt to simulate the data-acquisition process, we

copied a single movie per minute into a micrographs directory.

The copying process was started at 14:00 in the afternoon and

continued throughout the night until 08:30 the morning after.

Although this is admittedly an oversimplification of the data-

acquisition process (for example, the data set only contains

high-quality images, did not stall etc.), our simulation still

illustrates the functionality of on-the-fly data processing,

which is already in active use at our cryo-EM facility.

To perform on-the-fly data processing, we scheduled

consecutive jobs to (i) import all movies in the micrographs

directory, (ii) run MotionCor2, (iii) run Gctf, (iv) run auto-

picking and (v) extract the particles. The scheduled jobs were

then executed in a continuous loop, with a minimum of 1 min

between subsequent iterations, during the entire copying

process. Motion correction was performed in five patches and

included dose-weighting. Gctf estimation used equiphase

averaging to increase the signal-to-noise ratios in the Thon-

ring images. Auto-picking (Scheres, 2015) was performed with

a single Gaussian blob as a template. The latter is a new option

in RELION-2.0 and involves the choice of two parameters:

the width and the height of the Gaussian. The width of the

Gaussian was chosen to be similar to the expected diameter of

the particles (270 Å). The height of the Gaussian is affected by

the signal-to-noise ratio in the images, and a suitable value

(0.3) was determined by a test run on the first few micro-

graphs. Threefold downscaled particles were initially extracted

in boxes of 120 � 120 pixels. The two GPUs on our machine

were used to process two movies in parallel, if needed.

The pre-processing procedure took approximately 1 min per

movie, half of which was taken by MotionCor2. Consequently,

data processing could be performed as fast as the data were

coming in, and the entire pre-processing finished only 4 min

after the last movie was copied.

After 111 movies had been copied, a second independent

loop of ‘2D classification’ jobs was also executed, with a

minimum of 1 h between subsequent iterations. These jobs

generated reference-free two-dimensional class averages for

all of the extracted particles that had been acquired thus far.

These jobs competed for the same two GPUs as were also used

by the pre-processing jobs. The execution times for the two-

dimensional classification jobs gradually increased as more

particles were extracted from the available micrographs. The

research papers

500 Fernandez-Leiro & Scheres � Pipeline approach to single-particle processing in RELION Acta Cryst. (2017). D73, 496–502



first job took only 50 min, whereas the last job took 3.5 h and

finished at 12:30 the next day, i.e. 4 h after the data copying

ended. Fig. 2(a) shows how the class averages developed

throughout the copying process. Excellent two-dimensional

class averages, showing different projections of 80S ribosomes

with many protein and RNA-like features, confirmed the high

quality of the data set during the early stages of copying.

Subsequently, by manually inspecting the final two-

dimensional class averages, we selected 126 101 particles, re-

extracted these in boxes of 360 � 360 pixels (without down-

scaling) and used these as input for a ‘3D auto-refine’ job. We

used the same initial three-dimensional reference (EMDB-

2275; Bai et al., 2013) as was used in the original study (Wong

et al., 2014). The refinement was followed by standard ‘Mask

creation’ and ‘Post-processing’ jobs. Finally, to estimate the

variations in local resolution throughout the reconstruction,

we used a new feature in the ‘Local resolution’ job of

RELION-2.0. In this feature, we use phase randomization

(Chen et al., 2013) to correct for the solvent effects of a small,

spherical mask, which is slided over the entire map. In total,

three-dimensional auto-refine, post-processing and local

resolution estimation took 16 h on our desktop machine.

Fig. 2(b) shows the automatically generated flowchart of the

data-processing pipeline, Fig. 2(c) shows the local resolution

estimates and Fig. 2(d) shows details of the reconstructed

density on top of the original atomic model (Wong et al., 2014).

4.3. Standardization and procedure exchange

To illustrate the functionality to exchange data-processing

procedures among users, we exported the entire pipeline for

the re-processing of the EMPIAR-10028 data set, as described

above, and provide a zip archive as Supporting Information to

this paper. Users interested in adopting or adapting this

procedure can uncompress this archive in their project direc-

tory and import the file called ./export1/exported.star

through the corresponding option on the ‘Jobs’ menu.

5. Conclusion

We describe how a pipelined approach to cryo-EM structure

determination formalizes the concept of a directed acyclic

graph in RELION-2.0. The new approach improves the user

experience by reducing the scope for errors, automating

bookkeeping, standardizing the organization of output files,

allowing straightforward browsing through the project’s

history and providing convenient disk-cleaning functionalities.

The functionality to schedule multiple, consecutive jobs for

research papers

Acta Cryst. (2017). D73, 496–502 Fernandez-Leiro & Scheres � Pipeline approach to single-particle processing in RELION 501

Figure 2
Results for the EMPIAR-10028 data set. (a) Two representative reference-free two-dimensional class averages at different times during the data-copying
process. (b) Automatically generated flowchart of the data-processing process. (c) Front view and slice through a map that is filtered according to the
local resolution as estimated by RELION. (d) Close-up views of details in the map (a �-strand, an RNA base pair and the emetine compound).



future execution, and the option to execute these jobs in

iterative loops, allows on-the-fly processing of the data while

they are being acquired. This will lead to more efficient use of

microscopy time, as more informed assessments of data

quality can be made while the data are still being acquired.

Finally, the possibility of exporting and importing (parts of)

pipelines will allow the exchange of data-processing strategies

between users, which will further improve the accessibility of

the technique to inexperienced users and facilitate the

development of standardized data-processing procedures.

RELION-2.0 is open-source software. For download instruc-

tions and documentation, please refer to the RELION Wiki

pages at http://www2.mrc-lmb.cam.ac.uk/relion. For user

questions and feedback, please use the CCPEM mailing list at

http://www.jiscmail.ac.uk/CCPEM.

Acknowledgements

This work was funded by the UK Medical Research Council

(MC_UP_A025_1013 to SHWS).

References

Bai, X.-C., Fernandez, I. S., McMullan, G. & Scheres, S. H. W. (2013).
eLife, 2, e00461.

Baxter, W. T., Leith, A. & Frank, J. (2007). J. Struct. Biol. 157,
56–63.

Blundell, T. L., Jhoti, H. & Abell, C. (2002). Nature Rev. Drug.
Discov. 1, 45–54.

Chen, S., McMullan, G., Faruqi, A. R., Murshudov, G. N., Short, J. M.,
Scheres, S. H. W. & Henderson, R. (2013). Ultramicroscopy, 135,
24–35.

Cheng, A., Henderson, R., Mastronarde, D., Ludtke, S. J., Schoen-
makers, R. H. M., Short, J., Marabini, R., Dallakyan, S., Agard, D.
& Winn, M. (2015). J. Struct. Biol. 192, 146–150.

Cheng, A., Leung, A., Fellmann, D., Quispe, J., Suloway, C., Pulokas,
J., Abeyrathne, P. D., Lam, J. S., Carragher, B. & Potter, C. S. (2007).
J. Struct. Biol. 160, 324–331.

Coudray, N., Hermann, G., Caujolle-Bert, D., Karathanou, A., Erne-
Brand, F., Buessler, J.-L., Daum, P., Plitzko, J. M., Chami, M. &
Mueller, U. (2011). J. Struct. Biol. 173, 365–374.

Fernandez-Leiro, R. & Scheres, S. H. W. (2016). Nature (London),
537, 339–346.

Hall, S. R. (1991). J. Chem. Inf. Model. 31, 326–333.
Hohn, M., Tang, G., Goodyear, G., Baldwin, P. R., Huang, Z.,

Penczek, P. A., Yang, C., Glaeser, R. M., Adams, P. D. & Ludtke,
S. J. (2007). J. Struct. Biol. 157, 47–55.

Iudin, A., Korir, P. K., Salavert-Torres, J., Kleywegt, G. J. &
Patwardhan, A. (2016). Nature Methods, 13, 387–388.

Kim, C., Vink, M., Hu, M., Love, J., Stokes, D. L. & Ubarretxena-
Belandia, I. (2010). J. Struct. Funct. Genomics, 11, 155–166.

Kimanius, D., Forsberg, B. O., Scheres, S. H. W. & Lindahl, E. (2016).
Elife, https://doi.org/10.7554/eLife.18722.

Lander, G. C., Stagg, S. M., Voss, N. R., Cheng, A., Fellmann, D.,
Pulokas, J., Yoshioka, C., Irving, C., Mulder, A., Lau, P.-W.,
Lyumkis, D., Potter, C. S. & Carragher, B. (2009). J. Struct. Biol. 166,
95–102.

Li, X., Zheng, S., Agard, D. A. & Cheng, Y. (2015). J. Struct. Biol. 192,
174–178.

Marabini, R., Ludtke, S. J., Murray, S. C., Chiu, W., de la Rosa-Trevı́n,
J. M., Patwardhan, A., Heymann, J. B. & Carazo, J. M. (2016). J.
Struct. Biol. 194, 156–163.

Mastronarde, D. N. (2005). J. Struct. Biol. 152, 36–51.
Rosa-Trevı́n, J. M. de la, Otón, J., Marabini, R., Zaldı́var, A., Vargas,

J., Carazo, J. M. & Sorzano, C. O. S. (2013). J. Struct. Biol. 184, 321–
328.

Rosa-Trevı́n, J. M. de la et al. (2016). J. Struct. Biol. 195, 93–99.
Scheres, S. H. W. (2012a). J. Mol. Biol. 415, 406–418.
Scheres, S. H. W. (2012b). J. Struct. Biol. 180, 519–530.
Scheres, S. H. W. (2015). J. Struct. Biol. 189, 114–122.
Stagg, S. M., Lander, G. C., Pulokas, J., Fellmann, D., Cheng, A.,

Quispe, J. D., Mallick, S. P., Avila, R. M., Carragher, B. & Potter,
C. S. (2006). J. Struct. Biol. 155, 470–481.

Suloway, C., Pulokas, J., Fellmann, D., Cheng, A., Guerra, F., Quispe,
J., Stagg, S., Potter, C. S. & Carragher, B. (2005). J. Struct. Biol. 151,
41–60.

Tang, G., Peng, L., Baldwin, P. R., Mann, D. S., Jiang, W., Rees, I. &
Ludtke, S. J. (2007). J. Struct. Biol. 157, 38–46.

Vos, M. R., Bomans, P. H. H., Frederik, P. M. & Sommerdijk,
N. A. J. M. (2008). Ultramicroscopy, 108, 1478–1483.

Wong, W., Bai, X.-C., Brown, A., Fernandez, I. S., Hanssen, E.,
Condron, M., Tan, Y. H., Baum, J. & Scheres, S. H. W. (2014). eLife,
3, e03080.

Zhang, K. (2016). J. Struct. Biol. 193, 1–12.
Zheng, S., Palovcak, E., Armache, J.-P., Cheng, Y. & Agard, D. (2016).

bioRxiv, https://doi.org/10.1101/061960.

research papers

502 Fernandez-Leiro & Scheres � Pipeline approach to single-particle processing in RELION Acta Cryst. (2017). D73, 496–502

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5096&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5096&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5096&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5096&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5096&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5096&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5096&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5096&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5096&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5096&bbid=BB5
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5096&bbid=BB5
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5096&bbid=BB5
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5096&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5096&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5096&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5096&bbid=BB7
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5096&bbid=BB7
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5096&bbid=BB7
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5096&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5096&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5096&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5096&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5096&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5096&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5096&bbid=BB11
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5096&bbid=BB11
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5096&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5096&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5096&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5096&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5096&bbid=BB14
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5096&bbid=BB14
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5096&bbid=BB14
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5096&bbid=BB14
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5096&bbid=BB15
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5096&bbid=BB15
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5096&bbid=BB16
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5096&bbid=BB16
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5096&bbid=BB16
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5096&bbid=BB17
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5096&bbid=BB18
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5096&bbid=BB18
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5096&bbid=BB18
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5096&bbid=BB19
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5096&bbid=BB20
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5096&bbid=BB21
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5096&bbid=BB22
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5096&bbid=BB23
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5096&bbid=BB23
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5096&bbid=BB23
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5096&bbid=BB24
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5096&bbid=BB24
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5096&bbid=BB24
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5096&bbid=BB25
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5096&bbid=BB25
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5096&bbid=BB26
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5096&bbid=BB26
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5096&bbid=BB27
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5096&bbid=BB27
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5096&bbid=BB27
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5096&bbid=BB28
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5096&bbid=BB29
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5096&bbid=BB29

