
research papers

Acta Cryst. (2018). D74, 143–151 https://doi.org/10.1107/S2059798317014565 143

Received 27 July 2017

Accepted 9 October 2017

Keywords: crystallographic computing;

distributed computing; data and project

management; web services; computational

cloud.

Distributed computing for macromolecular
crystallography

Evgeny Krissinel,* Ville Uski, Andrey Lebedev, Martyn Winn and Charles Ballard

Scientific Computing Department, STFC, Rutherford Appleton Laboratory, Didcot OX11 0FA, England. *Correspondence

e-mail: eugene.krissinel@stfc.ac.uk

Modern crystallographic computing is characterized by the growing role of

automated structure-solution pipelines, which represent complex expert systems

utilizing a number of program components, decision makers and databases.

They also require considerable computational resources and regular database

maintenance, which is increasingly more difficult to provide at the level of

individual desktop-based CCP4 setups. On the other hand, there is a significant

growth in data processed in the field, which brings up the issue of centralized

facilities for keeping both the data collected and structure-solution projects. The

paradigm of distributed computing and data management offers a convenient

approach to tackling these problems, which has become more attractive in

recent years owing to the popularity of mobile devices such as tablets and ultra-

portable laptops. In this article, an overview is given of developments by CCP4

aimed at bringing distributed crystallographic computations to a wide crystal-

lographic community.

1. Introduction

During the last decade, there has been remarkable progress in

methods for structure solution, in large part associated with

the development of automated expert systems that are

capable of delivering almost complete solutions with minimal

or no user intervention. Such systems represent complex

scripts (commonly called pipelines) built on top of more

elementary programs. Such automation is based on three

fundamental components: intrinsic knowledge (expressed in

the algorithms and decision makers that are used); extrinsic

knowledge (coming from external sources such as structure

and sequence databases); and sufficiently deep exploration of

known approaches and various parameters.

All robust structure-solution pipelines are intrinsically

complex and, algorithmically, aggregate expertise accumu-

lated from many use cases. They can perform rather complex

multi-stage actions, which once required a sufficiently high

level of user expertise. One of the first essentially automated

pipelines, Auto-Rickshaw (Panjikar et al., 2005), was initially

created in order to provide a quick answer to the question of

whether a diffraction experiment was successful or not, but it

then became a rather comprehensive and complex tool

available through a dedicated webserver. Auto-Rickshaw

starts with data processing and calculates a density map using

experimental phasing techniques (SAD, MAD or SIRAS).

The resulting density map could be interpreted using auto-

mated model building with the ARP/wARP server (Langer et

al., 2008) or Buccaneer (Cowtan, 2006). Another example of a

crystallographic server is given by PDB_REDO (Joosten et al.,

2014) for the final refinement and validation of solved struc-

tures.

ISSN 2059-7983

http://crossmark.crossref.org/dialog/?doi=10.1107/S2059798317014565&domain=pdf&date_stamp=2018-02-01


CCP4 includes several tools for automated structure solu-

tion. The molecular-replacement (MR) pipeline BALBES

(Long et al., 2008) consolidates expert knowledge in both

phasing and model preparation. For example, it may construct

multimeric molecular models if there is an indication of

possible protein oligomerization and doing so increases the

chances of solution. Finding suitable structural homologues is

crucial for the success of MR, and therefore MR pipelines

come with databases of conveniently prepared structural

domains [BALBES and MoRDa (Vagin & Lebedev, 2015)] or

try to construct models from raw PDB (Protein Data Bank;

Berman et al., 2000) files (MrBUMP; Keegan & Winn, 2008).

When a suitable structural homologue cannot be found,

AMPLE (Bibby et al., 2012) uses the ROSETTA (Rohl et al.,

2004) or QUARK (Xu & Zhang, 2012) structure-modelling

software to build molecular models from the sequence. This

procedure is based on sizeable databases of structural frag-

ments included in the QUARK and ROSETTA setups. Yet,

the main power of automatic solvers remains in the explora-

tion of different approaches and variation of intrinsic para-

meters, which results in relatively long calculation times.

Table 1 presents the principal automatic structure-solution

pipelines distributed by CCP4. As can be seen from the table,

most of them require considerable CPU resources and the

combined size of the databases required is close to 40 GB. In

addition, AMPLE requires third-party software (ROSETTA

and QUARK), which needs to be installed and maintained

separately. While these requirements are suitable for medium-

size laboratories, individual researchers and small groups may

find the setup and associated maintenance burdensome.

The specifications of crystallographic structure-solution

pipelines, as outlined in Table 1, suggest that they are more

suited to a server-type deployment as against traditional local

setups on personal PCs. Server-based setups have obvious

advantages in that they eliminate the setup and maintenance

burden for users while providing access to CPU and data

resources. Yet, there are other factors which may have an

influence on the suitability of remote computations for end

users. Apart from restrictions on transmitting data to remote

servers, which are commonly met in both academic and

industrial environments, one of the greatest inconveniences

may be seen in changing between different (remote and local)

working environments. Unless implemented properly, such

switchovers leave users fully responsible for all associated data

management and keeping their projects in a consistent state

suitable for possible examination at a later date.

In this paper, we report the various approaches being

developed by CCP4 to providing distributed crystallographic

computation environments. The first approach is based on a

traditional web-server paradigm, in which particular pipelines

are framed as web services, communicating with the user

through file upload and download. The second approach

employs conventional CCP4 setups in a computational cloud,

with the facility to submit CPU-heavy jobs for remote

computation from the CCP4 Graphical User Interface 2

research papers

144 Krissinel et al. � Distributed computing for macromolecular crystallography Acta Cryst. (2018). D74, 143–151

Table 1
The main automated crystallographic pipelines distributed by CCP4.

Pipeline Description Use of databases Expected CPU time

xia2 Data processing 0 Minutes to hours
BALBES Molecular replacement 3 GB Hours to days
MoRDa Molecular replacement 3 GB Hours to days
MrBUMP Molecular replacement 26 GB Hours to days
AMPLE Ab initio modelling and molecular replacement ROSETTA Days to weeks
SIMBAD Contaminant searches and sequence-less MR 25 GB Hours to days
CRANK2 Experimental phasing (SAD, SIRAS, MAD) 0 Hours to days
ARCIMBOLDO Fragment-based MR �1 GB Hours to weeks
Phaser Automated phasing 0 Minutes to weeks
Buccaneer Model building 0 Minutes to hours
Nautilus DNA/RNA model building 0 Minutes to hours

Figure 1
Schematic of a conventional web-service setup. The setup contains four
basic elements: (1) a web-server machine, (2) data storage, (3)
computational machines connected to the web server via an internal
network and (4) client devices communicating with the web server via
http or https protocols. (1), (2) and (3) can all be placed on physical
machines individually or shared in any combination.



(CCP4i2; Potterton et al., 2018). The third line is represented

by a specialized web application, which may be seen as a

combination approach, having elements of both traditional

web services and cloud setups. In the following, we describe

the details and functionality of each line of development and

provide their comparative analysis from both user and main-

tenance points of view.

2. CCP4 web services

Automatic pipelines for structure solution, which consume

significant CPU resources and utilize custom databases, are

naturally suitable for deployment as web services. Fig. 1

presents a schematic of a conventional web-service setup,

which is characterized by the presence of a single internet

portal (1, the web server), data storage for keeping user data

and calculation results (2, the database), and number crunchers

(3). Depending on the anticipated workload, elements of the

web service may be deployed on individual machines, or

combined on fewer machines to optimize hardware resources.

It is not uncommon to keep the database and web server on

the same machine, although this is not desirable for security

reasons.

Since web services act as a shared resource, they typically

maintain user accounts with or without quotas for disk storage

and CPU time. In contrast to web applications, interactivity is

not an assumed property of web services, although certain

interactive elements, such as molecular graphics (CCP4mg;

McNicholas et al., 2011), can be used as part of the report

system. In the most straightforward implementation, a web

service is expected to provide a user with facilities to upload

data, start calculations and return results as a web page or/and

downloadable file or bundle of files.

The first CCP4 web service, BALBES, was released in 2008

(Long et al., 2008) with a setup closely matching that in Fig. 1

and with general specifications as described above. Further

web services were then gradually added following designer

solutions largely borrowed from the first BALBES imple-

mentation. The overall workflow of CCP4 web services is

shown in Fig. 2. In order to use the services, a user must be

registered with the system, which is necessary in order to

ensure that users can see only their own results and access

only their own data. After login, a user chooses one of the

available web services (tasks) to work with. For each task, the

corresponding page contains a list of finished and running jobs,

as well as a link to the submission form for a new job. The list

of jobs contains links to individual pages with job results,

where a user can see the job summary and log files, and can

download the resulting MTZ and/or PDB files. Where a web

service produces a considerable number of intermediate or

alternative results (for example multiple molecular models in

automatic MR pipelines), they are presented through a navi-

gation tree replicating the structure of the actual working

directory.

At present, CCP4 web services contain eight applications:

three automatic molecular-replacement pipelines (BALBES,

MrBUMP and MoRDa), two experimental phasing pipelines

[CRANK2 (Skubák & Pannu, 2013) and SHELX (Sheldrick,

2015)], MR with ab initio modelling (AMPLE), a space-group

validation pipeline (Zanuda; Lebedev & Isupov, 2014) and

crystal-packing and oligomerization analysis (jsPISA; Kris-

sinel, 2015). In routine cases (no crystal pathologies, complete

and good resolution data, correct sequence and a highly

similar structural homologue), MR pipelines will find correct

orientations and positions of molecules in the asymmetric unit

and a good approximation to the phases. BALBES and

MoRDa use conceptually similar databases of single-domain

MR models derived from the PDB in a semi-automatic way. In

the case of multi-domain and complex targets, they will also

automatically construct multimeric models and use data

generated by PISA (Krissinel & Henrick, 2007) for complexes.

In contrast to these pipelines, MrBUMP creates MR models

from the current PDB archive, which eliminates the need for

database support but may result in longer calculation times.

After phasing, the coordinates and density maps obtained can

be sent automatically to the ARP/wARP server at EMBL

Hamburg for model rebuilding and refinement. Successfully

built models can be sent further to the PDB_REDO server for

completion (final refinement and validation). Alternatively,

the structure may be downloaded and rebuilt/corrected at any

stage using the Buccaneer, Coot (Emsley & Cowtan, 2004) and

REFMAC (Murshudov et al., 2011) software from CCP4.

A significant advantage of the CCP4 online web services is

that they are very simple to use. Starting a job requires the

completion of a simple submission form to upload merged

reflection data and sequences (or a coordinate file in the case

of Zanuda and jsPISA) followed by pushing a ‘submit’ button.

Technically, CCP4 web services are relatively simple as well

and require no special software to be installed. In addition, the

services work well with modest broadband speeds (100–

research papers

Acta Cryst. (2018). D74, 143–151 Krissinel et al. � Distributed computing for macromolecular crystallography 145

Figure 2
General workflow of CCP4 web services.



200 kB s�1) and require minimal maintenance effort. On the

other hand, they represent only a limited slice of CCP4

functionality and, in contrast to the desktop GUI, do not

support structure-solution projects and have no data frame-

work. They can be used only to obtain a first approximation to

the target structure suitable for further structure completion

and ligand fitting with the ordinary (offline) CCP4 setup.

Currently, CCP4 web services are powered by an in-house

196-core cluster and complete about 500 structure-solution

queries every month.

3. CCP4 Cloud

The computational cloud (Hassan, 2011) represents a new

model for everyday computing which is becoming increasingly

popular. Recent years have been marked by an explosive

development and spreading of

ultraportable devices, such as

tablets, Chromebooks and

smartphones, which may be seen

as mere cloud terminals. There is

also a clear trend towards cloud-

based operations in software

installed on conventional desk-

tops and laptops. Although cloud

computing may be seen as less

suitable in terms of data security,

for the majority of users it offers

at least four essential advantages:

(i) the elimination of local data

maintenance; (ii) the elimination

of data exchange between user

devices; (iii) independence of the

type of user device; and (iv)

access to considerable computa-

tional resources.

A pure cloud model assumes

full hardware virtualization

(Smith & Nair, 2005) with remote

access [usually via http(s)

protocol] to the respective virtual

machines [VMs; in practice, more

lightweight software containers,

such as Docker (Mouat, 2015),

may be used instead of a full

VM]. Such VMs are created from

prepared images that have all

necessary software pre-installed

and usually exist during the user

session only. When a job needs

to be submitted, a dedicated

number-crunching VM or a

virtual cluster is created. Large-

scale clouds, such as Amazon or

Azure, operate rather closely to

these principles.

It appears that a ‘pure cloud’

model is not the most convenient

one for crystallographic compu-

tations with the CCP4 software

suite. While a VM image with

CCP4 set up can be created, one

needs to associate a VM instance

with persistent storage in order to

keep all user data and projects

research papers

146 Krissinel et al. � Distributed computing for macromolecular crystallography Acta Cryst. (2018). D74, 143–151

Figure 3
CCP4 Cloud schematic. (1) Client device. (2) Front-end virtual machine. (3) Persistent data storage. (4)
Data-producing facility (for example a synchrotron). (5) Local number-crunching facility. (6) Number-
crunching virtual machines. Black lines indicate in-house communications; blue fuzzy lines correspond to
external http(s) connections.

Figure 4
A snapshot of the CCP4 Cloud FEVM desktop.



between sessions, and to receive results from number

crunchers even if the user session is closed. Fig. 3 presents a

schematic of the CCP4 Cloud setup, which is currently being

constructed by CCP4 in association with the Scientific

Computing Department of the Science and Technologies

Facilities Council UK (STFC/SCD). As shown in the figure,

the setup is a mixture of virtualized and ‘real’ elements. A user

(1) connects to a front-end virtual machine (FEVM) (2),

which presents the user with a Linux desktop (Fig. 4). The

virtual machine is created from a specially prepared image,

which contains the Linux OS and pre-installed CCP4 suite,

and also a mount link to the user’s own storage area (3). The

storage area exists independently of the front-end machine,

and is also accessible through a shared folder from the user’s

own device, such that all necessary data [merged and

unmerged MTZ files, coordinate files (PDB or mmCIF),

sequence files, ligand descriptors and others] can be uploaded.

Uploaded files appear in the front-end VM’s file system and

may be used via CCP4i2 in exactly the same way as in a local

CCP4 setup. X-ray diffraction images could also be uploaded

to the user’s storage, but this is less convenient because of the

high data volumes involved. In the future, images will be

loaded directly into the user’s persistent storage from data-

producing facilities, such as a synchrotron beamline (4), using

a dedicated transfer protocol. STFC/SCD keeps an archive of

all data collected at Diamond Light Source, which will be

made available to the CCP4 Cloud using the iCAT (Flannery

et al., 2009) data catalogue. The corresponding developments

are in progress.

The front-end VM can run CCP4 jobs in the same manner

as an ordinary desktop. This is probably the best option for

jobs taking no more than 5–10 min, such as molecular-model

preparations; quick molecular replacement with MOLREP

(Vagin & Teplyakov, 2010) or Phaser (McCoy et al., 2007); a

few cycles of refinement with REFMAC; density modifications

with Parrot (Cowtan, 2010); PISA analysis; GESAMT struc-

tural alignments and database searches (Krissinel, 2012); and

similar. Manual model building with Coot is also performed

directly in the FEVM. Longer jobs, however, such as auto-

matic MR solvers (MrBUMP, BALBES, MoRDa, AMPLE

and Phaser in expert mode), EP pipelines (CRANK2 and

SHELX), automatic model building with Buccaneer and some

others, need additional computing resources. At present,

CCP4 Cloud uses the SCARF facility at STFC/SCD, which is a

multi-core computational cluster. In order to run a job on

SCARF, the user should activate the job using the special ‘Run

on server’ button found in the CCP4 GUI toolbar. When a job

is dispatched to the remote computing facility, all of the job’s

input data are packed in a jobball together with the running

instructions and sent to the head node of the cluster, from

where it is submitted to the queueing system. After calcula-

tions are finished, all results with the corresponding metadata

are again packed in a ‘jobball’, which is then retrieved by

FEVM, unpacked and checked in the CCP4i2 database, after

which the results may be viewed by the user.

Although the current implementation of CCP4 Cloud is

based on using SCD’s SCARF facility for computationally

expensive jobs, it does not preclude the inclusion of other

cloud resources, such as the Amazon and Azure clouds, and

the European Grid Initiative (EGI; Kranzlmüller et al., 2010),

in the setup [facility (6) in Fig. 3]. In this case, the number-

cruncher VM should be created, upon job instantiation, from a

prepared image containing the full CCP4 setup. The jobball-

based communication protocol described above can then be

extended for using such resources, and the corresponding

developments are currently under way.

The CCP4 Cloud scheme has a significant advantage in that

it delivers full CCP4 functionality and is operated via the same

CCP4i2 interface that users are familiar with. CCP4 Cloud

projects are fully compatible with those a user may have on

local machines, which may be inter-exchanged with the Cloud

via CCP4i2’s dedicated export/import facilities. At the same

time, CCP4 Cloud requires substantial computational

resources for running FEVMs and a fast and stable internet

connection, and relies on the availability of IT expertise for

setting up virtual machines, their configuration and everyday

maintenance. At present, there is no possibility of providing a

ready out-of-box configuration of CCP4 Cloud, as many

details of each setup will depend on the technical features of a

particular cloud implementation. Although versatile and

convenient for users, CCP4 Cloud may only be used at large-

size facilities with an appropriate level of hardware infra-

structure and IT support.

4. CCP4 web application

Web application is a generic term for programs served from

remote locations but with front ends running on client

machines through a web browser (Shklar, 2009). Typically, the

front end and part of the server code of such applications are

written in Java or Javascript, and client–server communication

is based on AJAX (Asynchronous Javascript and XML)

technologies. Today, web applications successfully compete

with ordinary desktop applications and provide an equivalent

GUI experience, owing to the ability of modern web browsers

to create rich graphical content programmatically.

Over the last decade, a number of frameworks have been

created in order to facilitate the development of professional-

looking web applications [jQuery (Duckett, 2014), Dojo

(Russell, 2008), GWT (Tacy et al., 2013), Angular (Seshadri &

Green, 2014) and many others], which make the task no more

complex than creating ordinary desktop GUIs with Qt (Lazar

& Penea, 2016), Wx (Smart et al., 2005), GTK+ (Krause, 2007)

or similar. However, web applications may have a number of

architectural solutions depending on the nature of the tasks

solved, the anticipated number of users working simulta-

neously, CPU and storage demands and desired scalability. For

the CCP4 web application jsCoFE (JavaScript-powered Cloud

Front End), we have chosen the multi-server architecture

presented in Fig. 5. At first glance, it is rather similar to the

ordinary web-service setup presented in Fig. 1, and may be

seen as a version in which in-house communications between

the web server and number crunchers (NCs) are replaced with

http(s) connections. The latter makes the system extremely

research papers

Acta Cryst. (2018). D74, 143–151 Krissinel et al. � Distributed computing for macromolecular crystallography 147



scalable, as it allows NCs to be placed anywhere and plugged

in by a mere adjustment of configuration files on the front-end

(FE) machine.

The FE machine should be based on a reasonably powerful

server, which works as a hub for all communications in the

system. All work on forming job packages and maintaining

user projects is performed on the corresponding client

machines, which exchange only brief instructions and

metadata (apart from uploading all necessary data such as

MTZ and PDB files and sequences) with the FE, usually at a

few kilobytes every few seconds. This type of communication

is very light and does not affect the interactivity of the client

GUI even at low broadband speeds (50–100 kB s�1).

Communication between the FE and NCs involves jobballs

containing each job’s data and metadata (usually 10–30 MB)

and therefore should be sufficiently fast. In practice, using an

internal 1 Gb network causes no obvious delays, especially in

comparison with the usual lags associated with starting a job

on computational clusters. Communicating with external NCs

via modern 50–100 Mb broadband connections could result in

few-second to minute transmission times, which are still

perfectly acceptable for CPU-intensive jobs that take from a

few hours to days or weeks to run. Communication with the

data-producing facility (5) is necessary mostly for acquiring

diffraction images directly, in order to avoid the upload of

image data of a few gigabytes in size from client machines.

This part of jsCoFE is currently under development.

A jsCoFE setup should be able to serve from tens to

hundreds of simultaneously working users without loss of

interactivity on client machines. This cannot be achieved with

the CGI-based techniques (Boutell, 1996) commonly used in

traditional web services, which launch a separate process in

answer to each request coming to the server. Instead, the

server application should always be active in order to elim-

inate the startup time. It is expected that most communica-

tions will involve a measurable transmission time but a

negligible number of CPU cycles. Therefore, all communica-

tions should be asynchronous, leaving the FE free and

responsive while data are being transmitted. These require-

ments are fulfilled by Node JS (Cantelon et al., 2013), which

was chosen as a platform for all server-side developments. The

client part of the system, jsCoFE,

is written in Javascript using

the jQuery framework. jsCoFE

supports user accounting,

authentication and login. Each

user account contains a list of

projects, which is shown immedi-

ately after login. Each project is

presented as a tree hierarchy of

jobs based on the parent–child

relations of the jobs automatically

derived from data flows.

Fig. 6 presents a snapshot of an

example jsCoFE project, giving

an idea of its basics. All jobs in

the project tree are selectable and

right/left-clickable. The toolbar

on the left-hand side of the tree

allows the currently selected job

to be added, cloned, deleted,

opened and stopped, and access

to documentation. The toolbar is

also available as a drop-down

menu by right-clicking on a job

research papers

148 Krissinel et al. � Distributed computing for macromolecular crystallography Acta Cryst. (2018). D74, 143–151

Figure 6
A snapshot of the jsCoFE project window.

Figure 5
Schematic of the CCP4 web application. (1) Front-end machine (FE). (2)
Data storage. (3) Client machines with optional local servers. (4) Number-
cruncher servers (NCs). (5) Data-producing facility. Black lines indicate
in-house communications; blue fuzzy lines correspond to http(s)
connections.



line. Opening a job (by double-clicking on the job line)

displays the Job Dialog, which contains the Input and Output

tabs. On input, the job will see all data imported or produced

up the tree branch, which can be selected with the corre-

sponding drop-down lists. If there are insufficient data of the

correct type for the job (for example no molecular-replace-

ment models were imported or generated), then the job will

not be created and an explanatory message is shown instead.

The output page can display the structured report, containing

graphs, tables and sections; all structural data and density

maps can be displayed using the UglyMol software (Wojdyr,

unpublished work). Report pages may be created program-

matically as part of Python wrappers written to execute tasks

on NCs, or generated automatically using CCP4 log-file

markup (‘Baubles markup’). Full log files are displayed in a

separate output tab for detailed inspection, if necessary.

jsCoFE may optionally include local servers, running on client

machines, for launching locally installed CCP4 desktop

applications such as Coot, CCP4mg or ViewHKL (Evans &

Krissinel, unpublished work); the corresponding buttons

appear automatically in report pages if a local server is

detected. When a local server is present, jsCoFE also allows

model-building tasks using Coot from the CCP4 suite installed

on the client. jsCoFE is currently under active development;

Table 2 lists the tasks available in the development version.

The CCP4 web application should be seen as a deep

modernization of the CCP4 web services, and will probably

replace them at some point in the future. It is superior to plain

web services in that it supports projects as a hierarchy of

related jobs leading to structure solution, and it also presents

the user with a richer interface and a more complete list of

tasks. On the other hand, it is somewhat more complex as an

application, and if a user wishes just to run BALBES, for

example, then the corresponding web server allows such a job

to be started in fewer clicks. Technically, jsCoFE is a highly

portable application, which can be installed locally with

minimal or no help from IT support. Adding new tasks to

jsCoFE is based on the developed framework and, in principle,

can be performed by an experienced programmer familiar

with development in Javascript and Python. Using the jQuery

library for client-code development makes it suitable for use

on both desktops/laptops and mobile devices.

5. Discussion

Distributed computations become increasingly more attrac-

tive an alternative to the more traditional approach based on

the possession and maintenance of local resources. Associated

benefits include not only access to potentially unlimited

computational power, but also to a centrally maintained CCP4

setup, databases and user projects available on any device

without the need for explicit export and import. The only

drawbacks of a distributed model include the requirement for

permanent internet access and concerns regarding data

security. While the former is a next-to-negligible factor these

days, the latter may still be a factor of deterrence in corporate

research papers

Acta Cryst. (2018). D74, 143–151 Krissinel et al. � Distributed computing for macromolecular crystallography 149

Table 2
CCP4 tasks currently available through jsCoFE.

Task Description

Data import Import of project data: merged and unmerged MTZ files, PDB/mmCIF files, sequence files. The file type is
recognized automatically and all data are arranged in data sets at the metadata level, such that all
subsequent jobs can operate with data sets rather than explicit reference to files. For example, MTZ files
can be logically split into several data sets, PDB files may be split into chains, and files with multiple
sequences are split into individual sequence entities.

Convert to structure Association of coordinate and density/phase data, usually after data import. In jsCoFE, coordinates and
density maps are associated to optimize data flows.

POINTLESS/AIMLESS POINTLESS/AIMLESS pipeline for scaling and merging data
Reindex Changing the space group, usually required in the case of reflection-data enantiomorphism
AsuDef Definition of the asymmetric unit and Matthews analysis
BALBES Automatic molecular replacement with BALBES
MoRDa Automatic molecular replacement with MoRDa
MR ensembling from sequence Making MR model ensembles through sequence searches in the PDB
MR ensembling from coordinates Making MR model ensembles from given coordinate data
MOLREP Molecular replacement with MOLREP
Phaser-MR Molecular replacement with Phaser
SHELX-MR After-MR autotracing with SHELXE
CRANK2 Automatic experimental phasing with CRANK2 (SAD, MAD, SIRAS)
SHELX-auto Automatic experimental phasing (SAD, MAD, SIRAS) using the SHELX suite
SHELX-Substr Heavy-atom location with SHELXC/D
Phaser-EP Experimental phasing with Phaser
Parrot Density modification with Parrot
REFMAC Macromolecular refinement with REFMAC
LORESTR Low-resolution refinement pipeline
Buccaneer-MR Automatic model building with Buccaneer after MR
MakeLigand Making ligand structure and restraints with AceDRG
FitLigand Fitting ligand with Coot
FitWaters Fitting water molecules with Coot
Zanuda Space-group validation with Zanuda
GESAMT Pairwise and multiple structural alignment and structural searches in the PDB with GESAMT
PISA Oligomeric state and interface analysis with PISA



environments. However, even there distributed computing

may be employed locally, for example within the network of a

particular company or a university laboratory.

Realising many benefits of distributed computing for end

users, CCP4 is exploring a few approaches, described above,

which may potentially appeal to the crystallographic

community. Table 3 summarizes the key factors which we used

to estimate their practicality from the points of view of both

users and maintainers/developers. The resulting picture is

rather mixed, and it is not possible to unambiguously identify

the most suitable approach. The weakest point of traditional

web services appears to be the absence of user projects;

however, this makes the user interface much easier, where any

task can be run in just a few clicks, which may be seen as

advantage by some users. Adding user projects to web services

would make them equivalent to the CCP4 web application,

which currently loses to CCP4 Cloud in terms of functionality;

in particular, the interactive model-building tool (Coot) is

missing there. CCP4 Cloud is the most convenient solution

from the narrow perspective of CCP4 core maintainers,

because it levies all the complexity of setup and maintenance

on local IT support. However, running the CCP4 desktop GUI

in a browser window is not the most convenient option for

mobile device users owing to the specifics of desktop graphical

widgets and the extensive use of left/right mouse clicks. Cloud

setups are also demanding in terms of hardware and band-

width, which limits their deployment to sites with a high level

of computing infrastructure.

6. Current availability

Most of the work presented in this paper is currently in

progress and the corresponding software and service will be

released in the shortest time subject to progress. CCP4

web services are fully available at https://www.ccp4.ac.uk/

ccp4online/ with free registration. CCP4 Cloud is in test mode;

registration is available on demand to users with a UK FedID.

The CCP4 web application, jsCoFE (http://rcccp4serv1.

rc-harwell.ac.uk/jscofe/), is being prepared for alpha release

and is available for test volunteers upon registration at the

jsCoFE home page.

7. Conclusion

In the present publication, we have given an overview of the

current CCP4 activities towards distributed computations for

the MX crystallographic community. While ordinary desktops

and laptops will be in use for the foreseeable future, the rising

popularity of mobile devices and cloud-based approaches to

data and software services is fairly obvious. With respect to

structure-solution tasks requiring access to supercomputing

and databases, the move to cloud models is already recognized

as a necessity. From the approaches that we have discussed,

CCP4 Cloud represents a good solution for corporate setups

with a developed computing infrastructure. CCP4 web appli-

cation is a relatively lightweight solution that is easy to install

and maintain virtually anywhere, but it needs further devel-

opment to match the functionality of CCP4 Cloud. CCP4 web

services remain a well targeted collection of useful CPU-

intensive tasks with easy and efficient access, obviously

appealing to its �600 regular users. It may take a few more

years before clarity is reached on which approach, if any, will

appeal to CCP4 users most.

Acknowledgements

The authors are grateful to all CCP4 developers for their

suggestions and useful discussions. Many feedback and bug

reports from CCP4 users have helped to considerably improve

CCP4 web services over a number of years. CCP4 Working

Group 2 has given valuable input on many aspects following

research papers

150 Krissinel et al. � Distributed computing for macromolecular crystallography Acta Cryst. (2018). D74, 143–151

Table 3
Comparison of the discussed approaches to distributed computing models and the traditional CCP4 desktop setup in crystallography.

Criteria Web services CCP4 Cloud CCP4 web application Traditional desktop setup

Functionality Limited to automatic
structure-solution
pipelines

Full Subject to the level of
development; currently lacks
a number of tasks and inter-
active graphical tools (Coot)

Full

Interface complexity Easy to use Usual Usual Usual
User projects support No Yes Yes Yes
Bandwidth requirements Low High Medium to low N/A
Suitability for standalone use

on desktops
Not suitable Can execute jobs on remote

servers from ordinary CCP4
setups

Allows desktop setups in
flexible configurations

Fully suitable

Suitability for use on mobile
devices

Yes Not very suitable owing to the
specific graphical design and
extensive use of mouse

Yes No

Hardware requirements Low beyond number-
crunching facilities

High in addition to number-
crunching facilities

Low beyond number-
crunching facilities

Medium for most tasks; high for
automatic structure solvers

Additional software
requirements

None High Low N/A

Portability (suitability for
corporate deployment)

May require a custom
installation

Requires IT support with cloud
setup experience

High N/A

Maintenance burden Low Dependent on local IT support Low Low to medium



CCP4 Cloud presentations. CCP4 Cloud setup could not be

performed without significant help from the STFC Scientific

Computing Department, and is part of the joint CCP4/SCD

DAaS (Data Analysis as a Service) project.

Funding information

The project is supported by BBSRC UK Grant BB/L007037/1

(WP0) ‘CCP4 Grant Renewal 2014–2019: Question-driven

crystallographic data collection and advanced structure solu-

tion’. MW is partially supported by West-Life, a project

funded by the European Commission, under contract H2020-

EINFRA-2015-1-675858.

References

Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N.,
Weissig, H., Shindyalov, I. N. & Bourne, P. E. (2000). Nucleic Acids
Res. 28, 235–242.

Bibby, J., Keegan, R. M., Mayans, O., Winn, M. D. & Rigden, D. J.
(2012). Acta Cryst. D68, 1622–1631.

Boutell, T. (1996). CGI Programming in C and Perl. Reading:
Addison-Wesley.

Cantelon, M., Harter, M., Holowaychuk, T. J. & Rajlich, N. (2013).
Node.js in Action, 1st ed. Shelter Island: Manning Publications

Cowtan, K. (2006). Acta Cryst. D62, 1002–1011.
Cowtan, K. (2010). Acta Cryst. D66, 470–478.
Duckett, J. (2014). JavaScript and jQuery: Interactive Front-end Web

Development. New York: John Wiley & Sons.
Emsley, P. & Cowtan, K. (2004). Acta Cryst. D60, 2126–2132.
Flannery, D., Matthews, B., Griffin, T., Bicarregui, J., Gleaves, M.,

Lerusse, L., Downing, R., Ashton, A., Sufi, S., Drinkwater, G. &
Kleese, K. (2009). Fifth IEEE International Conference on
e-Science, 2009, pp. 201–207. https://doi.org/10.1109/e-Science.2009.36.

Hassan, Q. (2011). J. Def. Softw. Eng. 1, 16–21.
Joosten, R. P., Long, F., Murshudov, G. N. & Perrakis, A. (2014).

IUCrJ, 1, 213–220.
Keegan, R. M. & Winn, M. D. (2008). Acta Cryst. D64, 119–124.
Kranzlmüller, D., de Lucas, J. M. & Öster, P. (2010). Remote

Instrumentation and Virtual Laboratories, edited by F. Davoli, N.
Meyer, R. Pugliese & S. Zappatore, pp. 61–66. Boston: Springer.

Krause, A. (2007). Foundations of GTK+ Development. Berkeley:
Apress.

Krissinel, E. (2012). J. Mol. Biochem. 1, 76–85.
Krissinel, E. (2015). Nucleic Acids Res. 43, W314–W319.
Krissinel, E. & Henrick, K. (2007). J. Mol. Biol. 372, 774–797.
Langer, G., Cohen, S., Lamzin, V. S. & Perrakis, A. (2008). Nature.

Protoc. 3, 1171–1179.
Lazar, G. & Penea, R. (2016). Mastering Qt 5. Birmingham: Packt

Publishing.
Lebedev, A. A. & Isupov, M. N. (2014). Acta Cryst. D70, 2430–2443.
Long, F., Vagin, A. A., Young, P. & Murshudov, G. N. (2008). Acta

Cryst. D64, 125–132.
McCoy, A. J., Grosse-Kunstleve, R. W., Adams, P. D., Winn, M. D.,

Storoni, L. C. & Read, R. J. (2007). J. Appl. Cryst. 40, 658–674.
McNicholas, S., Potterton, E., Wilson, K. S. & Noble, M. E. M. (2011).

Acta Cryst. D67, 386–394.
Mouat, A. (2015). Using Docker. Developing and Deploying Software

with Containers. Sebastopol: O’Reilly Media.
Murshudov, G. N., Skubák, P., Lebedev, A. A., Pannu, N. S., Steiner,

R. A., Nicholls, R. A., Winn, M. D., Long, F. & Vagin, A. A. (2011).
Acta Cryst. D67, 355–367.

Panjikar, S., Parthasarathy, V., Lamzin, V. S., Weiss, M. S. & Tucker,
P. A. (2005). Acta Cryst. D61, 449–457.

Potterton, L. et al. (2018). Acta Cryst. D74, 68–84.
Rohl, C. A., Strauss, C. E. M., Misura, K. M. S. & Baker, D. (2004).

Methods Enzymol. 383, 66–93.
Russell, M. A. (2008). Dojo: The Definitive Guide. Sebastopol:

O’Reilly Media.
Seshadri, S. & Green, B. (2014). AngularJS: Up and Running:

Enhanced Productivity with Structured Web Apps. Sebastopol:
O’Reilly Media.

Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
Shklar, L. (2009). Web Application Architecture: Principles, Protocols

and Practices. Chichester: Wiley.
Skubák, P. & Pannu, N. S. (2013). Nature Commun. 4, 2777.
Smart, J., Hock, K. & Csomor, S. (2005). Cross-Platform GUI

Programming with WxWidgets. Upper Saddle River: Prentice Hall.
Smith, J. & Nair, R. (2005). Computer, 38, 32–38.
Tacy, A., Hanson, R., Essington, J. & Tokke, A. (2013). GWT in

Action, 2nd ed. Shelter Island: Manning Publications.
Vagin, A. & Lebedev, A. (2015). Acta Cryst. A71, s19.
Vagin, A. & Teplyakov, A. (2010). Acta Cryst. D66, 22–25.
Xu, D. & Zhang, Y. (2012). Proteins, 80, 1715–1735.

research papers

Acta Cryst. (2018). D74, 143–151 Krissinel et al. � Distributed computing for macromolecular crystallography 151

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=rr5148&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=rr5148&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=rr5148&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=rr5148&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=rr5148&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=rr5148&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=rr5148&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=rr5148&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=rr5148&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=rr5148&bbid=BB5
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=rr5148&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=rr5148&bbid=BB7
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=rr5148&bbid=BB7
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=rr5148&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=rr5148&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=rr5148&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=rr5148&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=rr5148&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=rr5148&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=rr5148&bbid=BB11
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=rr5148&bbid=BB11
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=rr5148&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=rr5148&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=rr5148&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=rr5148&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=rr5148&bbid=BB14
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=rr5148&bbid=BB14
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=rr5148&bbid=BB15
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=rr5148&bbid=BB16
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=rr5148&bbid=BB17
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=rr5148&bbid=BB18
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=rr5148&bbid=BB18
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=rr5148&bbid=BB19
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=rr5148&bbid=BB19
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=rr5148&bbid=BB20
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=rr5148&bbid=BB21
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=rr5148&bbid=BB21
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=rr5148&bbid=BB22
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=rr5148&bbid=BB22
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=rr5148&bbid=BB23
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=rr5148&bbid=BB23
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=rr5148&bbid=BB24
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=rr5148&bbid=BB24
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=rr5148&bbid=BB25
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=rr5148&bbid=BB25
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=rr5148&bbid=BB25
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=rr5148&bbid=BB26
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=rr5148&bbid=BB26
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=rr5148&bbid=BB27
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=rr5148&bbid=BB28
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=rr5148&bbid=BB28
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=rr5148&bbid=BB29
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=rr5148&bbid=BB29
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=rr5148&bbid=BB30
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=rr5148&bbid=BB30
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=rr5148&bbid=BB30
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=rr5148&bbid=BB31
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=rr5148&bbid=BB32
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=rr5148&bbid=BB32
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=rr5148&bbid=BB33
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=rr5148&bbid=BB34
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=rr5148&bbid=BB34
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=rr5148&bbid=BB35
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=rr5148&bbid=BB36
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=rr5148&bbid=BB36
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=rr5148&bbid=BB37
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=rr5148&bbid=BB38
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=rr5148&bbid=BB39

