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The catalase from Scytalidium thermophilum is a homotetramer containing a

heme d in each active site. Although the enzyme has a classical monofunctional

catalase fold, it also possesses oxidase activity towards a number of small

organics, including catechol and phenol. In order to further investigate this, the

crystal structure of the complex of the catalase with the classical catalase

inhibitor 3-amino-1,2,4-triazole (3TR) was determined at 1.95 Å resolution.

Surprisingly, no binding to the heme site was observed; instead, 3TR occupies

a binding site corresponding to the NADPH-binding pocket in mammalian

catalases at the entrance to a lateral channel leading to the heme. Kinetic

analysis of site-directed mutants supports the assignment of this pocket as the

binding site for oxidase substrates.

1. Introduction

Catalases (hydrogen-peroxide:hydrogen-peroxide oxido-

reductases; EC 1.11.1.6) are redox enzymes that are respon-

sible for the dismutation of hydrogen peroxide into water and

molecular oxygen (Loewen, 1999). They are found in almost

all aerobic organisms and play a crucial role in prokaryotic

and eukaryotic cell detoxification (Maté et al., 2001). The

crystal structures of 15 heme catalases, including that from the

thermophilic fungus Scytalidium thermophilum (Yuzugullu et

al., 2013), have been solved at high resolution (Dı́az et al.,

2012). The structures reveal a homotetrameric enzyme in

which each of the four active sites consists of a pentacoordi-

nated iron protoporphyrin IX prosthetic group with a

tyrosinate axial ligand (Dı́az et al., 2012; Yuzugullu et al.,

2013). Some catalases also contain an NADPH cofactor tightly

bound at the periphery of each subunit (Dı́az et al., 2012).

In the resting state the heme is in a high-spin ferric state

(Fe3+), which is converted to compound I in a two-electron

oxidation by hydrogen peroxide. One electron is removed

from the Fe atom, forming an oxyferryl moiety (Fe4+ O) with

one O atom from the hydrogen peroxide molecule, and the

second electron is removed from the porphyrin, resulting in a

�–cation radical (1). Compound I is reduced back to the native

(ferric) state by a second molecule of hydrogen peroxide (2).

Alternatively, under low hydrogen peroxide conditions,

compound I can be reduced to compound II (3), which can

react with another H2O2 to give the inactive compound III (4).

For NADPH-binding catalases, it has been proposed that the

enzyme is protected against compound III formation by the

ISSN 2059-7983

http://crossmark.crossref.org/dialog/?doi=10.1107/S2059798318010628&domain=pdf&date_stamp=2018-10-02


NADPH preventing or rescuing compound II formation

(Sevinc et al., 1999; Putnam et al., 2000; Nicholls, 2012).

Enz ðPor�Fe3þ
Þ þH2O2 !
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The heme is deeply buried inside the protein, with a

complex network of channels providing access to the exterior

(Sevinc et al., 1999; Dı́az et al., 2012). The main channel

approaches the distal side of the heme, perpendicular to the

plane of the heme, and is the access route for hydrogen

peroxide (Dı́az et al., 2012). A second channel, approaching

the heme laterally, emerges on the enzyme surface at a loca-

tion corresponding to the NADP(H)-binding pocket in cata-

lases that bind a nicotinamide cofactor. For homologues that

do not bind NADPH, there is some evidence that the channel

is involved in either the exit of the reaction products (Dı́az et

al., 2012) or the entry of substrates/inhibitors (Sevinc et al.,

1999). A third channel leading from the distal side of the heme

to the central cavity of the tetramer is proposed to play a role

in the oxidation of heme b to heme d for catalases that possess

heme d in their active site (Murshudov et al., 1996; Sevinc et al.,

1999; Putnam et al., 2000), but no functional role has yet been

presented for heme b catalases (Chelikani et al., 2004).

We have previously shown that in addition to catalase

activity, the catalase from S. thermophilum (CATPO)

possesses a promiscuous phenolic oxidase activity in the

absence of hydrogen peroxide (Ögel et al., 2006; Sutay

Kocabas et al., 2008; Yuzugullu et al., 2013). This peroxide-

independent secondary activity of catalases has also been

identified in other catalases (Vetrano et al., 2005; Koclar Avci

et al., 2013; Lončar & Fraaije, 2015; Teng et al., 2016) and has

been presumed to also occur at the heme active site. Here,

we report a combined structural, spectroscopic and kinetic

analysis of CATPO that allows us to propose an alternative

model.

2. Experimental procedures

2.1. Materials

Standard chemicals and biochemicals were obtained from

Sigma and Merck. Molecular-size markers and DNA ladders

were obtained from Bio-Rad and Biolab, respectively. Site-

directed mutagenesis was performed using the QuikChange

approach (Agilent).

2.2. Strains, plasmids and growth conditions

Escherichia coli XL1-Blue (Stratagene) and BL21 Star

(DE3) (Invitrogen) strains were used for cloning and

expression, respectively. During cloning steps, E. coli cells

were grown aerobically at 37�C in LB medium supplemented

with 50 mg ml�1 kanamycin. The plasmid pET28a-CATPO

(Yuzugullu et al., 2013), which carries an N-terminal 6�His-

tag sequence and TEV protease cleavage site, was used as the

source of the catpo gene.

2.3. Site-directed mutagenesis

Single-point mutations were introduced into the catpo

coding region by QuikChange mutagenesis using Hot Start

KOD DNA polymerase (Sigma). The PCR primers containing

the desired mutations were purchased from Sentegen, Turkey

and are listed in Table 1. Subsequent expression and purifi-

cation were carried out as described previously (Yuzugullu et

al., 2013).

2.4. Enzyme assays

Catalase and phenol oxidase activities were determined as

described previously (Yuzugullu et al., 2013). One unit of

catalase was defined as the amount of enzyme that catalyses

the decomposition of 1 mmol H2O2 per minute in a 10 mM

H2O2 solution. The initial rates of H2O2 decomposition were

used to determine the turnover number (kcat) and the

apparent Km values. Kinetic constants were derived by fitting

v versus [S] traces to the Michaelis–Menten equation using

SigmaPlot 14.0 (Systat Software Inc.). The term ‘Km_app’ in the
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Table 1
Oligonucleotides used in site-directed mutagenesis of catpo.

Mutant Sequence change Oligonucleotide†

E316F GAA!TTC 50-CCGACCAAAATCATCCCGTTCGAATACGCTCCGCTGACC-30

E316H GAA!CAC 50-CCGACCAAAATCATCCCGCACGAATACGCTCCGCTGACC-30

H246W CAC!TGG 50-CTGATCAAATGGTGGTTCAAATCT-CGTCAGGGTAAAGCTAGTCTGG-30

I313F ATC!TTC 50-GGACCCGACCAAATTCATCCCGGAAGAATACGC-30

I314F ATC!TTC 50-GGACCCGACCAAAATCTTCCCGGAAGAATACGC-30

L321A CTG!GCG 50-CCGGAAGAATACGCTCCGGCGACCAAACTGGGTCTG-30

P158W CCG!TGG 50-CGTTGGTAACAACATCTGGGTTTTCTTCATCCAGGACGC-30

Q293W CAG!TGG 50-GGGACGTATGCGTATGGATCGTTGACGAATCTCAGGC-30

V536A GTT!GCG 50-CAAAACCGCTGGTGCGTCTATCGTTGGTTCTGG-30

V536W GTT!TGG 50-CAAAACCGCTGGTTGGTCTATCGTTGGTTCTGGTCCG-30

† The underlined sequence is the codon that has been modified.



context of catalases is the peroxide concentration at Vmax/2

and is used because the catalase reaction does not saturate

with substrate and therefore does not precisely follow

Michaelis–Menten kinetics (Switala & Loewen, 2002). One

unit of phenol oxidase was defined as the amount of enzyme

that catalyses the formation of one nanomole of product per

minute. The effects of 3-amino-1,2,4-triazole (3TR) and cate-

chol on oxidase activity were also investigated. Experiments

with these compounds were conducted in the same manner

but in the presence of the inhibitor at stated concentrations in

the reaction buffer. Protein concentration was estimated using

the Bradford assay (Bradford, 1976). All assays were

performed in triplicate in 100 mM sodium phosphate buffer

pH 7.0 at 60�C using a temperature-

controlled spectrophotometer (Agilent

Cary 50 or 60).

2.5. Crystallization, data collection and
refinement

Crystals were obtained by hanging-

drop vapor diffusion using a reservoir

consisting of 6–16%(v/v) PEG 400,

0.2 M potassium chloride, 0.01 M

calcium chloride, 0.05 M sodium caco-

dylate in the pH interval 5.0–5.6. The

complex of 3TR with CATPO was

prepared by soaking crystals for 20 min

in mother liquor containing 40 mM

3TR. Crystals were flash-cooled in

liquid nitrogen (Teng, 1990) after

soaking for several minutes in a

synthetic mother liquor containing

20%(v/v) PEG 400 as a cryoprotectant.

Diffraction data were collected on

beamlines ID29 and ID30B at the

European Synchrotron Radiation

Facility (ESRF; de Sanctis et al., 2012;

McCarthy et al., 2018) and on beamline

I03 at Diamond Light Source (DLS;

Allan et al., 2015) at 100 K (Table 2) and

were processed using XDS (Kabsch,

2010). Subsequent scaling (Evans,

1997), structure-solution, model-

building and refinement steps were

carried out using the CCP4 suite (Winn

et al., 2011). Although the E316F

mutant data extended to higher

resolution, refinement was unstable.

Examination of the data using

AUSPEX (Thorn et al., 2017) showed a

severe ice ring at �2.2 Å resolution.

Truncation of the data set to 2.3 Å

resolution resulted in stable refinement.

The wild-type structure of CATPO

(PDB entry 4aum; Yuzugullu et al.,

2013) was used to obtain initial phases

by molecular replacement using MOLREP (Vagin &

Teplyakov, 2010). Iterative model building and refinement

were performed using Coot (Emsley et al., 2010) and

REFMAC5 (Murshudov et al., 2011), with each chain treated

as a single TLS domain (Winn et al., 2001) and local NCS

restraints (Usón et al., 1999; Murshudov et al., 2011).

The final structures of the E316F, H246W and V536W

variants and the CATPO–3TR complex were determined at

2.3, 1.9, 1.8 and 1.91 Å resolution, respectively. The asym-

metric units of the four CATPO variants analysed in this study

each contained a CATPO homotetramer. The N-terminal 20

residues of all subunits in each of the four variants were

disordered, as in the wild-type enzyme (Yuzugullu et al., 2013),
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Table 2
Crystallographic data-collection and refinement statistics.

Values in parentheses are for the outermost shell.

E316F variant H246W variant V536W variant 3TR complex

PDB code 5y17 5xvz 5xy4 5zz1
Beamline ID30B, ESRF ID30B, ESRF ID30B, ESRF I03, DLS
Detector PILATUS3 6M PILATUS3 6M PILATUS3 6M ADSC Q315
Oscillation angle (�) 0.1 0.05 0.05 0.5
Exposure time (s) 0.02 0.02 0.02 0.4
Transmission (%) 22 11 13 50
No. of images 1140 2500 1860 720
Wavelength (Å) 0.98 0.98 0.98 1.0
Space group I2 I2 I2 I2
Unit-cell parameters

a (Å) 125.7 125.3 125.4 125.5
b (Å) 120.9 120.8 120.7 121.7
c (Å) 183.8 185.2 184.7 185.5
� (�) 102.0 102.0 102.0 102.2

Resolution (Å) 100.3–2.3
(2.34–2.30)

100.5–1.9
(1.93–1.90)

90.3–1.8
(1.83–1.80)

29.4–1.91
(1.95–1.91)

Mosaicity (�) 0.24 0.08 0.11 0.17
Rmerge† (%) 6.8 (27.4) 6.9 (45.6) 5.4 (52.0) 5.7 (42.6)
Rp.i.m.‡ (%) 5.2 (20.9) 4.7 (35.7) 4.7 (45.5) 3.7 (23.5)
CC1/2 0.996 (0.941) 0.998 (0.740) 0.998 (0.643) 0.998 (0.843)
Observed reflections 236441 (12331) 493165 (21545) 419138 (20025) 690894 (30098)
Unique reflections 105712 (5468) 200277 (9502) 223187 (11150) 206818 (9578)
Completeness (%) 88.8 (92.7) 94.5 (90.9) 89.9 (91.1) 98.8 (92.5)
Multiplicity 2.2 (2.3) 2.5 (2.3) 1.9 (1.8) 3.3 (3.1)
hI/�(I)i 8.4 (3.1) 6.6 (1.8) 8.8 (1.6) 10.2 (2.7)
Refinement

Rwork (%) 17.8 (24.5) 16.2 (31.2) 15.8 (30.0) 14.0 (20.4)
Rfree§ (%) 22.0 (28.6) 19.1 (31.2) 19.3 (33.6) 16.5 (22.0)
No. of protein atoms 21079 21452 21421 21337
No. of solvent molecules 925 1837 2031 1618
No. of ligand atoms 176 236 183 224
No. of ion atoms 10 12 10 5
Average B factor (Å2)

Protein 33.99 24.45 19.85 20.91
Ligands 24.44 27.68 19.08 16.02
Solvent 27.39 28.29 31.93 23.63
Ions 43.07 43.08 31.29 26.63

R.m.s.d., bond lengths} (Å) 0.0121 0.0147 0.0140 0.0150
R.m.s.d., bond angles} (�) 1.651 1.818 1.727 1.888
Ramachandran plot††

Most favoured regions (%) 96.65 98.03 96.82 97.48
Outliers (%) 0.71 0 0.63 0.55

Alignment with wild-type structure‡‡ (PDB entry 4aum; Yuzugullu et al., 2013) over all residues
R.m.s.d. (Å) 0.232 0.226 0.242 0.242
Q-score 0.984 0.985 0.980 0.980

† Rmerge =
P

hkl

P
i jIiðhklÞ � hIðhklÞij=

P
hkl

P
i IiðhklÞ. ‡ Rp.i.m. is the precision-indicating (multiplicity-weighted)

Rmerge relative to I+ or I�. § Rfree was calculated with 5% of the reflections that were set aside randomly. } Based on
the ideal geometry values of Engh & Huber (1991). †† Ramachandran analysis using MolProbity (Chen et al.,
2010). ‡‡ R.m.s.d and Q-scores were calculated using GESAMT (Krissinel, 2012)



and were not included in the refined structures. The structure

factors and coordinates for each structure have been depos-

ited in the Protein Data Bank with accession codes 5y17 for

the E316F mutant, 5xvz for the H246W mutant, 5xy4 for the

V536W mutant and 5zz1 for the CATPO–3TR complex. All

figures were prepared using PyMOL (http://www.pymol.org/).

3. Results and discussion

Despite extensive efforts, we have been unable to obtain a

crystal of CATPO in complex with catechol owing to its rapid

auto-oxidation at concentrations high enough for binding,

given the low Km. However, we were able to obtain the

structure of its complex with the widely used catalase inhibitor

3-amino-1,2,4-triazole (3TR; Margoliash et al., 1960; Nicholls,

1962) to 1.91 Å resolution (Table 2). Surprisingly, and in

contrast to other structural reports of complexes of 3TR with

catalase [Putnam et al., 2000; Borovik et al., 2011; PDB entry

1th4 (R. Sugadev, M. N. Ponnuswamy, D. Kumaran, S.

Swaminathan & K. Sekar, unpublished work)], we did not

observe 3TR bound at the heme (Fig. 1a). Instead, 3TR

occupies a surface pocket at the end of the lateral channel

leading from the heme, where its interactions with the protein

are almost exclusively mediated by a series of well ordered

water molecules (Fig. 1b), as well as a second binding site at

the interdimer interfaces of the homotetramer (Fig. 1a).

Interestingly, the pocket at the end of the lateral channel

corresponds to the site of NADPH binding in mammalian

catalases (Fig. 1c). However, CATPO contains a C-terminal

extension, residues 533–537, that does not exist in the

NADPH-binding catalases and that lies across the upper

region of this pocket, preventing the binding of NADPH. The

mediation of the 3TR–CATPO interaction by water molecules

in the plane of the inhibitor suggests a flexible binding site

with the possibility of accommodating a variety of planar

ligands of different sizes, suggesting that this could also be the

site of phenolic substrate binding.

To further investigate this possibility, oxidase assays were

performed at increasing concentrations of the CATPO oxidase

substrate catechol (0–300 mM) with and without 3TR (0–

10 mM). The Km_app and Vmax values for catechol were

calculated as 92.5 mM and 12 500 nmol ml�1 min�1, respec-

tively. 3TR showed competitive inhibition with respect to

catechol, with a Ki of 2.1 � 10�2 M (Fig. 2). This indicates that

3TR and catechol bind at the same site, but does not allow us

to conclude that this site is the 3TR binding site observed

crystallographically. We therefore generated a series of site-

directed mutants around the putative 3TR/catechol binding

pocket to further test this hypothesis.

The residues Pro158, His246, Gln293, Ile313, Ile314,

Glu316, Leu321 and Val536 surround the 3TR binding pocket

and are structurally homologous to the residues that bind
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Table 3
Kinetic constants.

Variant
Km_app†
(mM)

kcat

(s�1)
kcat/Km_app

(s�1 M�1) RZ‡
Heme
type

Specific oxidase
activity
(nmol mg�1 min�1)

CATPO 10 203410 20.3 � 106 0.8 d 213 � 5
E316F 20 196000 9.8 � 106 0.8 d 173 � 2
E316H 33 261000 7.9 � 106 0.8 d 163 � 2
H246W 40 152000 3.8 � 106 0.8 d 33 � 2
I313F 10 205000 20.5 � 106 0.9 d 232 � 16
I314F 50 194000 3.9 � 106 0.8 d 92 � 7
L321A 11 274000 24.3 � 106 0.9 d 107 � 1
V536A 67 860500 12.9 � 106 0.8 d 236 � 6
V536W 600 2402000 4.0 � 106 0.6 d 85 � 7

† Km_app is the H2O2 concentration at Vmax/2 and is used because the catalase reaction
does not saturate with substrate and therefore does not precisely follow Michaelis–
Menten kinetics (Switala & Loewen, 2002). ‡ RZ = A406/A280.

Figure 1
(a) The CATPO tetramer shown as a ribbon diagram, highlighting the heme and 3TR binding sites. The heme is colored red, 3TR in the oxidase pocket is
colored pink and 3TR at the dimer interface is colored orange. (b) The 3TR binding site in the lateral channel of CATPO. Composite OMIT electron
density, calculated using the CCP4 COMIT program (Winn et al., 2011), for 3TR and bound waters is drawn at 1 r.m.s.d. and shown as a blue wire mesh.
Analysis of the hydrogen bonding suggests that 3TR is bound as 2H-1,2,4-triazole-3-amine and at the pH of the crystals should be in its neutral form. (c)
View of chain A of the CATPO complex with 3TR (PDB entry 5zz1; grey) superposed onto human catalase (PDB entry 1dgh; blue). CATPO loop 533–
537 lies across the top of the NADPH-binding pocket, clashing with the position of the NADPH in the human enzyme.



NADPH in the mammalian catalases. They were individually

mutated to residues of the opposite size (i.e. small to large and

vice versa) and the resulting variants were characterized.

Specifically, the variants P158W, H246W, Q293W, I313F, I314F,

E316F, E316H, L321A, V536A and V536W were constructed.

All except P158W and Q293W were expressed normally. The

catalase turnover numbers (kcat) are essentially unaffected for

the E316F, E316H, H246W, I313F, I314F and L321A variants,

but a marked increase in the catalase kcat value was observed

for V536W, accompanied by a large increase in Km_app for

H2O2 (Table 3). The catechol oxidase activities of the H246W,

I314F, L321A and V536W variants were noticeably reduced

(50–92%) with respect to the wild-type enzyme, whereas the

E316F, E316H, I313F and V536A variants of CATPO had little

effect on the oxidase activity.

To further probe the effect of the mutations, the crystal

structures of three variants were determined: H246W (lowest

oxidase activity), E316F (little effect on oxidase activity) and

V536W (40% reduced oxidase activity, but a major effect on

catalase kinetic parameters) (Table 3). The resulting structures

were almost identical to the native enzyme (Table 2), aside

from changes in the ordered solvent molecules found in the

putative oxidase substrate-binding pocket, the lateral channel

and the main channel through which peroxide is thought to

reach the heme active site. Surprisingly, the most extreme

example of this is in the E316F mutant, in which the upper

main channel and the outer part of the lateral channel contain

almost no ordered solvent molecules; however, this is likely to

be at least partially attributable to the lower resolution of this

data set (Figs. 3a and 4b). The bulky phenylalanine side chain

of the E316F variant is oriented away from the entrance to the

lateral channel and putative oxidase substrate-binding pocket

and thus it is not surprising that mutations at this position

show minimal effect on the oxidase activity. In contrast, the

bulky tryptophan residue of the V536W variant protrudes into

the top of the putative oxidase substrate site, partially

occluding it, consistent with the partial reduction in oxidase

activity (Figs. 3b and 4d).

A similar picture is seen for His246, which lies directly

below and perpendicular to the 3TR ring in the CATPO–3TR

complex. In the H246W variant both of the alternate confor-

mations of the tryptophan side chain that were observed

protrude further into the 3TR binding site and are likely to

considerably hinder the binding of any small organic substrate

(Figs. 3c and 4c). This is consistent with the marked reduction

in oxidase activity for this mutant. Interestingly, in the V536W

variant, although not in the wild-type enzyme, His246 also

adopts an alternate conformation, although this does not

protrude into the 3TR binding site (Figs. 3b and 4d). Both the

V536W and H246W variants therefore support our assignment

of this pocket as the oxidase substrate-binding site.

Val536 is part of the C-terminal extension of CATPO that

blocks the upper part of the NADPH-binding pocket in

mammalian catalases and thus it was surprising that changes in

this residue had such marked effects on the catalase activity.

As for the E316F variant, in the V536W variant the chain of

ordered solvent molecules in the main channel is disrupted

(Fig. 4d), suggesting that there may be some crosstalk between
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Figure 3
Comparison of 3TR binding sites in the lateral channel of the E316F (a), V536W (b) and H246W (c) variants superposed onto the complex of CATPO
with 3TR. The corresponding 2Fo � Fc electron density, contoured at 0.7 r.m.s.d., is shown for the three cases as a blue mesh. Changes in solvent
organization are evident among the structures. Trp246 has two alternate conformations (Fig. 4).

Figure 2
An illustrative double-reciprocal plot (Lineweaver & Burk, 1934) is
presented showing classical competitive inhibition kinetics for 3TR with
respect to the CATPO oxidase activity. Error bars show the standard
deviation of the SigmaPlot fit of the raw data for each point. Full details
of the analysis are provided in Supplementary Fig. S1.



the main and lateral channels. However, in contrast to the

V536W mutation, the E316F mutation has almost no effect on

the catalase activity (Table 3). In addition, there is no obvious

structural change or alteration in relative B-factor distribution

in either mutant compared with the apo wild-type structure

(PDB entry 4aum; Yuzugullu et al., 2013) that could explain

this observation, and further investigation will be required.

The currently accepted model for 3TR inhibition of cata-

lases is via either a reversible binding mode at high 3TR

concentration (Appleman et al., 1956; Margoliash et al., 1960)

or a slow peroxide-dependent irreversible inactivation that

results in the formation of a covalent adduct at the heme

active site (Borovik et al., 2011). The covalent adduct is likely

to be the state that was observed in the previously reported

complexes of 3TR with other catalases (Putnam et al., 2000;

Borovik et al., 2011; PDB entry 1th4). However, the 3TR

binding site for reversible inhibition has not been identified to

date, although its noncompetitive nature would be consistent

with a non-heme-centred mode of action (Nicholls, 1962;

Putnam et al., 2000). We therefore wondered whether this

reversible inhibition could in fact be mediated via the oxidase

substrate-binding site that we have identified. In this case, we

would predict that catechol binding would protect the CATPO

catalase activity against 3TR inhibition. We therefore carried

out a competition assay at a constant concentration of 3TR
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Figure 5
The effect of increasing catechol concentrations (up to 5 mM) on the
inhibition of CATPO by 3TR at a constant concentration of 40 mM.

Figure 4
Main and lateral channel solvent in CATPO–3TR (a) and the E316F (b), H246W (c) and V536W (d) variants. The corresponding electron densities are
shown for the four cases. Possible hydrogen-bond interactions are shown as dashed lines. Lys312, Ile313 and Ile314 in the lateral channel were removed
for clarity. Mutated residues are shown in red and the ligand 3TR in purple. The inset in (c) shows the two alternate conformations of Trp246 face on with
density. 2Fo� Fc electron density is shown as a blue mesh contoured at 0.7 r.m.s.d.. The channels are shown as transparent surfaces in Supplementary Fig.
S2.



(40 mM) that is sufficient to nearly totally inhibit the catalase

activity and increasing amounts of catechol, and observed that

the presence of catechol reduces 3TR inhibition in a dose-

dependent manner (Fig. 5). Interestingly, catechol itself inhi-

bits the catalase activity, but in a much less potent fashion than

3TR. This suggests that, as proposed by others (Nicholls, 1962;

Putnam et al., 2000), the reversible inhibition by 3TR is

mediated via an allosteric effect and that other molecules

binding to this pocket will also have an inhibitory action. In

this context it is interesting to note that the 3TR complex also

shows a reduction in the number of ordered water molecules

in the main channel when compared with the apo wild-type

structure (Supplementary Fig. S3).

4. Conclusions

In summary, based on our structural, mutation and kinetic

data we propose that the pocket at the entrance to the lateral

channel, occupied by the nicotinamide moiety of NADPH in

mammalian catalases, is the site of both oxidase substrate and

3TR binding. The promiscuous nature of the CATPO oxidase

is explained by the presence of a number of ordered water

molecules that both mediate substrate binding by forming

bridging hydrogen bonds and can be displaced to accom-

modate different sized and shaped substrates. Peroxide-

independent phenolic substrate oxidation is then likely to

occur in a similar manner to NADPH oxidation, via electron

transfer from the substrate to a high-valent iron–oxo inter-

mediate, presumably formed via reaction with oxygen.
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Maté, M. J., Murshudov, G., Bravo, J., Melik-Adamyan, W., Loewen,

P. C. & Fita, I. (2001). Encyclopedia of Inorganic and Bioinorganic
Chemistry, edited by R. A. Scott, pp. 486–502. New York: John
Wiley & Sons.

McCarthy, A. A. et al. (2018). J. Synchrotron Rad. 25, 1249–1260.
Murshudov, G. N., Grebenko, A. I., Barynin, V., Dauter, Z., Wilson,

K. S., Vainshtein, B. K., Melik-Adamyan, W., Bravo, J., Ferrán,
J. M., Ferrer, J. C., Switala, J., Loewen, P. C. & Fita, I. (1996). J. Biol.
Chem. 271, 8863–8868.

Murshudov, G. N., Skubák, P., Lebedev, A. A., Pannu, N. S., Steiner,
R. A., Nicholls, R. A., Winn, M. D., Long, F. & Vagin, A. A. (2011).
Acta Cryst. D67, 355–367.

Nicholls, P. (1962). Biochim. Biophys. Acta, 59, 414–420.
Nicholls, P. (2012). Arch. Biochem. Biophys. 525, 95–101.
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