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The performance of automated model building in crystal structure determina-

tion usually decreases with the resolution of the experimental data, and may

result in fragmented models and incorrect side-chain assignment. Presented

here are new methods for machine-learning-based docking of main-chain

fragments to the sequence and for their sequence-independent connection using

a dedicated library of protein fragments. The combined use of these new

methods noticeably increases sequence coverage and reduces fragmentation of

the protein models automatically built with ARP/wARP.

1. Introduction

Model building is a key step in crystallographic structure

determination. When the resolution of the X-ray diffraction

data is better than 3.0 Å and the initial map is of reasonable

quality, model building can often be accomplished straight-

forwardly using automated approaches. Automation may

not just considerably accelerate the process of obtaining a

macromolecular model, but may also make it more robust and

reliable, thus helping to minimize human-dependent subjec-

tive interpretation (Weiss et al., 2016). In difficult cases auto-

mated approaches may not fully succeed, but may still help

to improve the electron-density maps to a level that enables

unambiguous manual interpretation. This is particularly

important owing to recent advancements in molecular-

replacement and experimental phasing pipelines [examples

include BALBES (Long et al., 2008), MrBUMP (Keegan &

Winn, 2007), MORDA (Vagin & Lebedev, 2015), ARCIM-

BOLDO (Sammito et al., 2014) and Auto-Rickshaw (Panjikar

et al., 2009)], where automated model building is often used

for the evaluation of plausible solutions (Ha & Boggon, 2018).

However, in the presence of significant phase error and/or

with limited resolution of the experimental data (worse than

2.5 Å) the model-building task remains challenging and, with

the need for manual intervention, becomes time-consuming

even for an experienced crystallographer.

The performance of automated model-building methods in

crystallography decreases at lower resolution owing to the

reduced information content that is present in the experi-

mental data. The built backbone models become fragmented,

which in turn complicates their docking to the target sequence

as well as the completion of poorly resolved loop regions. The

interpretation of lower resolution electron-density maps is

usually addressed by the use of larger search objects. These

may include secondary-structural elements for the initial

interpretation of the maps with FFT-based template matching

in reciprocal space (Terwilliger, 2003a; Sheldrick, 2010),
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real-space pattern recognition (Langer et al., 2008) or graph-

based approaches (Chojnowski et al., 2015). Jones & Thirup

(1986) demonstrated that given the approximate C� coordi-

nates of a protein, all full main-chain atoms can be recon-

structed using short fragments derived from a database of

other proteins. Fragment libraries have also been proposed for

the extension of protein chains (Terwilliger, 2003a) and model

completion (Cowtan, 2012).

The chain fragments modelled during main-chain tracing

are subsequently matched to the sequence. This step not only

helps to increase the completeness of the model but, more

importantly, can identify gaps between the chain fragments

for subsequent completion using sequence information. The

residue types are usually identified by the analysis of a sparse-

density representation and an exhaustive side-chain rotamer

search (Langer et al., 2008) and electron-density templates

(Terwilliger, 2003b; Cowtan, 2008). These approaches provide

excellent results at high and medium resolution when the

experimental X-ray data provide a sufficiently high observa-

tion-to-parameter ratio. However, their performance is

considerably reduced at lower resolution (usually worse than

2.5 Å; Porebski et al., 2016).

Automated model building using ARP/wARP proceeds in

an iterative manner when main-chain fragments are identified

and built in a density map, followed by their docking to the

known protein sequence (Langer et al., 2008). The sequence-

assignment and side-chain building method originally imple-

mented in ARP/wARP (snow) is based on the topology of the

sparse-density representation using free atoms and an

exhaustive side-chain conformational search around each C�

atom in a built main-chain fragment (Cohen et al., 2004). The

sparse-density analysis is based on the assumption that a freely

refined (xyzB) atom with no chemical identity approaches a

correct atomic position in the structure. Therefore, the method

provides excellent results at a crystallographic resolution of

1.5 Å or better where individual atoms can be distinguished in

the density maps. At lower resolution, when the free atoms do

not necessarily approach the correct atomic positions during

refinement, the method is complemented by an exhaustive

side-chain conformational search that improves the perfor-

mance owing to the larger size of the search objects. The

method naturally remains sensitive to the accuracy of the built

backbone that affects the side-chain conformations.

Here, we present two new methods incorporated into the

ARP/wARP software that specifically address the protein

side-chain assignment in crystallographic structure determi-

nation at low resolution, especially when only incomplete,

fragmented and often main-chain-only models are available.

The methods use a priori available structural knowledge

exploited through statistics-based classification approaches.

2. Materials and methods

2.1. Selection of the training set

Protein structures were retrieved from the Protein Data

Bank (PDB; as of 30 September 2014) using the PDB50

clusters (Berman et al., 2000). The selection criteria included

structures obtained using X-ray crystallography, at a resolu-

tion better than 2.5 Å, with a crystallographic R factor below

0.25, an Rfree–Rwork difference of below 0.05, and clashscore

and Ramachandran outlier percentiles of higher than 40% in

the PDB validation reports (Read et al., 2011). From this, we

randomly selected 1000 structures and their crystallographic

models, denoted as ‘conservatively optimized’, and down-

loaded them from the PDB-REDO server together with the

corresponding experimental diffraction data (Joosten et al.,

2012). These 1000 structures constituted the training set and,

together with their (2mFo � DFc, �calc) maps, were used to

train the classifier.

2.2. Selection of the test set

Protein structures were taken from the PDB (as of 6 April

2018) using the PDB50 clusters (Berman et al., 2000). The

selection criteria were the same as for the training set (Section

2.1) except that the resolution limit for the X-ray data was

broadened to the 2.0–4.0 Å range. The structures present in

the training set were excluded and the remaining structures

were divided into two test sets: test set I containing 8296

structures within the 2.0–3.0 Å resolution range and test set II

containing 752 structures with data below 3.0 Å resolution. To

balance the number of structures in the two test sets, test set I

was reduced by a random sampling so that 80 structures were

selected from each of the ten equal-width resolution bins

(within the 2.0–3.0 Å resolution range), resulting in a total of

800 structures in test set I.

The protein structures in both test sets were automatically

built by ARP/wARP v. 8.0 starting from the deposited models.

To keep the test sets unbiased to side-chain docking, the

sequence information was not used during this model-building

step. Following the rationale for the use of the ‘top 50%’

statistics for a web service described in Langer et al. (2008), the

top 50% of the built models with the highest model comple-

teness were kept for the analysis presented in this work. There

were thus 400 structures in test set I and 375 structures in test

set II. The selection of structures from test set I (2.0–3.0 Å

range) was performed in equal-width resolution bins as above.

For the evaluation of the developed methods, we used

density maps computed from the experimental structure-

factor amplitudes and the model-calculated phases with a

significant, 40�, uniform random phase error added to all

reflections regardless of their structure-factor amplitudes and

resolution. For the phases of acentric reflections a random

phase error uniformly distributed within the range from �80�

to 80� was added. For centric reflections a phase error of 180�

was introduced with a probability of 40/180 = 0.22.

2.3. Model-quality assessment

The models built with ARP/wARP for the test sets were

compared with the deposited structures. We define a residue as

being built correctly if its C� atom is within a distance of 1.0 Å

from the corresponding C� atom in the reference model and if

the chain direction of the fragment containing this C� atom is
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correct. A residue is defined to be ‘correctly docked’ or just

‘docked’ to the sequence if it also has the same side chain built

as the corresponding residue in the reference model.

2.4. Selecting polypeptide fragments from the training set

C� atoms from continuous protein chain fragments with a

length of between five and nine residues were extracted from

the training set and grouped by their mutual structural simi-

larity. For each length the fragments were processed sequen-

tially as follows. The first fragment was assigned as the

representative of the first group. The next fragment was added

to one of the existing groups if it was structurally similar to its

representative. Otherwise, it was assigned as the representa-

tive of a new group. Structural similarity between two frag-

ments was evaluated by superimposing them on pairs of four

C� atoms (two C� atoms at each fragment termini). Fragments

were regarded as structurally similar if, after superposition,

the distances between all pairs of corresponding C� atoms

were lower than 1.0 Å. For over 700 000 fragments of each

length in the training set this grouping procedure yielded 481,

5359, 28 186, 73 904 and 121 107 representative fragments with

lengths of five, six, seven, eight and nine C� atoms, respec-

tively. For each group a representative fragment and the size

of the group were stored in the database.

2.5. Sequence-independent loop building

For sequence-independent loop building, we developed an

algorithm that identifies plausible connections between the

built main-chain fragments before they are docked into the

sequence. For each main-chain fragment, two terminal C�

atoms are selected. For each terminal C� atom the terminal C�

atoms from all other main-chain fragments (including their

crystallographic symmetry mates) within a 10 Å radius are

considered. Chain directions are ignored at this stage. For each

pair of termini a vector of pairwise distances between two

terminal C� atoms at each end of the gap (denoted C�n�1, C�n,

C�k and C�k+1 in Fig. 1) is computed. These distance vectors are

then compared with those in the database of representative

fragments. The representative fragments of different geome-

tries and lengths are selected as a set of loop candidates

{l1, l2, . . . , lN} provided that the length of the difference

between the two distance vectors is below 2.0 Å.

The C� atoms in each loop candidate from the set

{l1, l2, . . . , lN} are supplemented with additional points: two

evenly distributed points are placed between each pair of

successive C� atoms. These additional points represent the

approximate positions of C and N main-chain atoms. As a

result, each loop candidate of n residues is represented by a set

of 3n � 2 points li = {xi . . . x3n�2}.

Each loop candidate with |li| points is assigned a statistical

score that describes the probability of obtaining its observed

match to the density �,

pðlij�Þ ¼
pð�jliÞ pðliÞ

pð�Þ
/ pð�jliÞ pðliÞ: ð1Þ

We assume that the probability of the data p(�) for all

candidate loops is the same and therefore can be ignored. To

estimate the probability of selecting a given loop candidate by

chance, p(li), we use the size of the group to which this frag-

ment belongs normalized by the total number of fragments in

the training set. The probability of observing a map density �
given a loop candidate p(�|li) is approximated by the prob-

ability of a sum of map densities at its |li| points being higher

than the sum of the same number of map points taken at

random locations within a 10 Å radius from the geometric

loop centre. As the number of points in the loop is relatively

large (at least 13) we approximate the distribution of the sum

of the densities at random map points with a Gaussian func-

tion, which then simplifies the expression of the combined

probability,

pðlij�Þ / pð�jliÞ pðliÞ ¼
1

2
1þ erf

P
x2li

�ðxÞ � ��

21=2��

2
4

3
5

8<
:

9=
;pðliÞ;

ð2Þ

where erf denotes the error function (Glaisher, 1871) and ��
and �� are the mean and standard deviation of a distribution

of the sum of |li| random values of the density map. Eight top-

scored candidate loops are built together with the flanking

main-chain fragments using the standard ARP/wARP main-

chain tracing algorithm (Morris et al., 2002). The loop with the

highest score above a default ARP/wARP threshold is kept.

2.6. Side-chain density descriptors

A side-chain descriptor is required by the developed

method to recognize a residue type in the electron density.

As a first step, we took all side-chain conformations for all

residue types from the top500 rotamers library (Lovell et al.,

2000) and aligned them by superimposition on their N, C� and

C main-chain atoms. We then created a Cartesian grid with a

1.0 Å spacing centred on the C� atom and covering the

superimposed side chains. The grid points within 1.0 Å

distance from any side-chain atom were selected to form the

side-chain grid set. This grid set was superimposed on the N,
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Figure 1
Schematic representation of the sequence-independent loop-building
algorithm. Loop candidates {l1, l2, l3, . . . , lN} are shown with open circles
and dashed lines. The most likely loop candidates are built and the loop
with the highest ARP/wARP tracing score above a standard threshold is
kept (l2; marked in red in the figure).
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C� and C main-chain atoms for each residue in the structure

being built where the side chain should be. To account for the

1.0 Å grid spacing and to conform to the Shannon sampling

theorem, the highest resolution X-ray data for the structure of

interest were truncated to 2.0 Å.

An undirected nearest-neighbour graph was constructed

from the points within the grid set that fall in electron-density

regions above a given density threshold. A breadth-first search

of the graph was performed to define connected components

of the graph. The number of nodes in the connected compo-

nent which include the C� atom is taken as an estimate of the

side-chain volume at a given density threshold [Fig. 2(a)]. The

algorithm starts with the lowest density threshold, which was

arbitrarily chosen to be 0.4 r.m.s.d. of the density map. The

threshold is then increased with increments of 0.1 r.m.s.d. until

this connected component no longer includes the C� atom.

This results in a set of side-chain density volumes at different

map thresholds.

A number of factors, including the solvent content, the

resolution of the X-ray data, the Wilson plot B factor and the

quality of the phases, may affect the shape of the density

distribution (Zwart & Lamzin, 2003). As a result, the side-

chain density volumes estimated at a given threshold may

differ from each other for maps calculated from different

X-ray data and even for maps at different model-building

steps. Therefore, for each residue the set of density volumes,

regardless of the number of thresholds that it is built on, is

interpolated to yield a vector containing 25 elements that

describes the evolution of the side-chain density volume. The

vector of 25 elements is referred to as a side-chain descriptor.

The descriptors are reasonably distinct for different residue

types [Fig. 2(b)] and are used for further classification of the

residue type.

The step of interpolating and obtaining a side-chain

descriptor is the key part of the method. We have attempted

different strategies of selecting the lowest r.m.s.d. density

threshold value, including dynamic adjustment based on the

estimated solvent content. All of these, after interpolation,

resulted in classifiers with a very similar performance. We

observed no deterioration of the classifier performance for

cases with extreme solvent content.

2.7. Residue-type probabilities

To estimate the probability of a residue type given a side-

chain descriptor (a vector with 25 elements described in

Section 2.6) we trained a set of support vector machine (SVM)

one-versus-all classifiers. A separate classifier was trained to

estimate the probability for each of the 20 standard residue

Figure 2
The side-chain descriptor. (a) Connected component of a graph (shown in red) built on points sampled in a 2.8 Å resolution 2mFo�DFo density map at
a 1.8� density level calculated for a refined model of SAM synthetase 2 (PDB entry 2ydx). The side chain of the Trp2016 residue from chain C
(Trp2016C) is shown in black. (b) A comparison between the change in median side-chain density volumes (with 80% confidence intervals) at different
map thresholds for tryptophan and valine residues in the training set. (c) A comparison of the median side-chain density volumes for all residue types.



types. For a residue in the input main-chain fragment, all 20

classifiers are then used to estimate the probabilities of

different residue types, regardless of the protein sequence

information. The soft-margin classifiers with a radial basis

function kernel were trained using tools from the scikit-learn

(Pedregosa et al., 2011) and LIBSVM (Chang & Lin, 2012)

libraries with a decision function of the form

f ðxÞ ¼
Pn
i¼1

�i expð��jjx� xijjÞ þ �; ð3Þ

where xi denotes n support vectors defining the separation

hyperplane obtained during the training, �i are the corre-

sponding weights and � is an intercept. To yield the residue-

type probability estimates the classifiers were calibrated using

a sigmoidal function, which is a common choice for SVM

classifiers (Zadrozny & Elkan, 2002).

Side-chain descriptors were computed for all residues in the

training set using the reference models and the corresponding

maps calculated with refined-model phases and X-ray data

truncated to 2.0 Å resolution. To train the classifier for a given

residue type, a random subset of 5000 descriptors for that

residue type and a random subset of 5000 descriptors, evenly

corresponding to all other residue types, were selected.

2.8. Alignment of fragments to the sequence

For a continuous main-chain fragment in the input model a

set of SVM classifiers is used to estimate residue-type prob-

abilities. This yields a statistical scoring matrix, which is used

to find alignment probabilities of each fragment to the target

sequences. We approximate the probability for the alignment

of a fragment as the product of the probability estimates for

each residue in the fragment, assuming their independence.

Although this assumption is not fully valid, it produces good

results at almost no computational cost. We then compare the

probability estimate with the distribution of probabilities for

an alignment of the same fragment to a random sequence,

which we have observed to follow a normal distribution (data

not shown). Alignments with a Z-score of above 3.7 (corre-

sponding to the 99.99% confidence level) are regarded as

reliable and are accepted.

Throughout the model-building process, an evolving main-

chain trace may contain mistakes (insertions, deletions or

incorrect connections) that may confuse the side-chain

assignment step. Therefore, both the complete main-chain

fragments from the input model and their continuous

subfragments of longer than ten residues are aligned with the

target sequence using the residue-type probabilities. For a

given fragment, non-overlapping subfragments with the

highest probabilities are accepted if their corresponding

Z-score exceeds a value of 3.7.

2.9. Assignment of fragments to subunits

The assignment of all of the accepted alignments of frag-

ments and their subfragments to the input sequences is carried

out using a directed graph analysis. The graph nodes represent

aligned fragments and each node may be connected with a

directed edge to other nodes if they are assigned to the same

chain. The edges correspond to plausible Cartesian distances

between the flanking C� atoms of the fragments, given the

sequence gap. For example, the graph nodes representing two

fragments docked one amino acid apart will be connected with

an edge if the Cartesian distance between their termini is

within 3.95 Å. This distance limit corresponds to a 99.5%

confidence interval of distances between terminal C� atoms in

chain fragments from the training set of structures. When

graph edges are constructed, plausible paths are enumerated

using a depth-first search algorithm. The probability of each

path is computed as a product of individual alignment prob-

abilities, and the non-overlapping paths with the highest

probabilities are then selected. For model-building cases in

which the edges of the graph are short, the method can

automatically assign all fragments to their corresponding

subunits.

3. Results

3.1. Residue-type classifier performance

We studied the performance of the developed method for

the estimation of residue-type probabilities using the test-set

maps and structures. The results obtained for electron-density

maps with a resolution of between 2.0 and 3.0 Å show that the

method predicts side-chain probabilities with high accuracy

[Fig. 3(a)]. At a lower resolution, and in the presence of

additional phase error, the accuracy of the classifier reduces.

However, the method is still able to correctly discriminate

side-chain types at a resolution as low as 4.0 Å.

We note that the accuracy of the classifier strongly corre-

lates with the side-chain mobility, which we define as the

average ratio of the square roots of the side-chain to main-

chain atomic displacement parameters [Fig. 3(b)]. We also

observe a high accuracy of correct classification for small,

buried amino acids that are typically well ordered (e.g. 96%,

93% and 72% for glycine, alanine and proline, respectively) as

well as for bulky, aromatic residues that are often involved in

hydrogen-bond interactions (67% and 60% for tyrosine and

tryptophan, respectively). In contrast, the accuracy is lower for

solvent-exposed, often disordered residues (e.g. 5%, 9% and

18% for lysine, asparagine and histidine, respectively).

Methionine may be regarded as an outlier, as despite being

poorly ordered compared with other hydrophobic residues

[Fig. 3(b)] it is recognized with a high degree of accuracy. This

can be attributed to the presence of the S atom in its side

chain, which results in a prominent peak in the electron-

density map. In contrast, the accuracy of predicting a cysteine

(which also contains a S atom) is relatively low and this

residue is often misclassified as a valine or a threonine. These

three residue types indeed have a similar evolution of their

density volume, which is used as the main discriminatory

parameter in the method [Fig. 2(b)].

Several side chains look very similar in the electron density

owing to the similarity of their chemical structures. Examples

include glutamate and glutamine, aspartate and asparagine,
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and threonine and valine. However, these residues have

different mobility properties. For example, glutamate is much

more frequently disordered compared with glutamine.

Accordingly, glutamine is better recognized in the electron

density. Similarly, asparagine is better recognized than aspar-

tate [Fig. 3(b)].

3.2. Model-building performance with the new algorithms

To evaluate whether the new methods could provide an

improvement in the completeness and quality of automatically

built protein models, we incorporated them into the latest

version of ARP/wARP (v. 8.0, released in October 2018) and

compared the model-building performances using the default

ARP/wARP parameters. For this, we compared the new

(seqqy) and the former (snow) sequence-assignment methods,

and also carried out a comparison using seqqy in combination

with the new loop-building algorithm (freeloops). All model-

building tasks were benchmarked on the two test sets with an

additional random uniform 40� phase error and the resolution
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Figure 3
(a) Comparison of the estimated residue-type probabilities and the
corresponding fraction of correct predictions for different resolution
ranges and maps with and without phase bias. (b) The accuracy of
residue-type classification as a ratio of the side-chain to the main-chain
atomic mobility expressed as the ratio of the square roots of their atomic
displacement parameters. Residue-type colour codes are as follows:
hydrophobic, yellow; charged, red; polar, green; amphiphilic, black.

Figure 4
A 2.5 Å resolution density map for the structure of monoxide
dehydrogenase (PDB entry 6b6v). (a) The map computed from structure
factors with a uniform 40� phase error. (b) The map with the model
phases from the last cycle of model building using ARP/wARP. The maps
are contoured at the 1.5� density level above the mean. The
corresponding model fragments from the deposited structure are shown
in red.



ranges 2.0–3.0 Å and 3.0–4.0 Å (Fig. 4, see Section 2.2 for

details).

Overall, the use of the new sequence-docking method

(seqqy) reduces the number of models with a low (below 20%)

fraction of side chains built and increases the number of those

with high (above 80%) sequence coverage. This is particularly

noticeable at a resolutions worse than 3.0 Å, where models

may be incomplete and highly fragmented [Fig. 5(b)]. More-

over, the fraction of models with a higher amount of correctly

built residues [Figs. 5(a) and 6(a)] is distinctively increased.

3.3. Performance of sequence-docking methods

To evaluate the performance of the different sequence-

assignment methods, we compared the fraction of residues

that were correctly docked after each model-building cycle
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Figure 5
Performance of ARP/wARP v. 8.0 using the former sequence-docking
method (snow), the new sequence-docking method (seqqy) and a
combination of seqqy with a sequence-independent loop-building method
(freeloops) at a resolution lower than 3.0 Å. (a) The fraction of residues
built. (b) The fraction of residues docked into the sequence.

Figure 6
Performance of ARP/wARP v. 8.0 using the former sequence-docking
method (snow), the new sequence-docking method (seqqy) and a
combination of seqqy with a sequence-independent loop-building method
(freeloops) at a resolution between 2.0 and 3.0 Å. (a) The fraction of
residues built. (b) The fraction of residues docked into the sequence.



[Fig. 7(a)]. The new sequence-docking algorithm (seqqy)

outperforms the former one (snow) throughout the whole

model-building process. This improved performance is

pronounced for test set I with X-ray data extending over the

range 2.0–3.0 Å. We note that the additional use of the new

loop-building algorithm (freeloops) further increases the

fraction of docked residues. The average chain-fragment

length in the 2.0–3.0 Å resolution test set increases from 15

after the first main-chain tracing cycle to 63, 79 and 95 at the

end of ARP/wARP model building when snow, seqqy and

seqqy with freeloops are used, respectively.

The new sequence-docking method also performs distinc-

tively better for test set II with data in the 3.0–4.0 Å resolution

range. A prominent difference in the fraction of correctly

docked residues remains throughout all cycles of the model-

building process [Fig. 7(b)]. The length of the average chain

fragment increases from eight residues after the first main-

chain tracing cycle to 12, 17 and 20 in the resulting ARP/

wARP model when snow, seqqy and seqqy with freeloops are

used, respectively.

3.4. Model-building examples from the ARP/wARP web
service

We tested several examples from a number of cases

submitted to the ARP/wARP web service with a non-restric-

tive dissemination level. The two that showed the largest

improvements are discussed in detail below.

3.4.1. Example 1: NAD-dependent dehydrogenase. The

structure was solved using the molecular-replacement pipeline

MrBUMP (Keegan & Winn, 2007) and was automatically

forwarded to the ARP/wARP web service for model building.

The X-ray data extended to 2.6 Å resolution and contained six

molecules of an NAD-dependent dehydrogenase comprising a

total of 2046 residues in the asymmetric unit (Fig. 8). Using the

former sequence-docking algorithm (snow), ARP/wARP built

1539 residues distributed in 90 fragments, with 907 residues

docked to the sequence. With the new sequence-docking

algorithm (seqqy) 1958 residues were built in 28 fragments and

1758 residues were docked to the sequence. The use of seqqy

together with freeloops resulted in a more complete model

with 2014 residues in nine fragments, with almost all of these,

2009 residues, docked to the sequence. The crystallographic

R/Rfree factors for the built models (without the free atoms)

were 37/45%, 25/31% and 24/29% for the snow, seqqy and

seqqy with freeloops cases, respectively.

3.4.2. Example 2: AA10 lytic polysaccharide mono-
oxygenase. This structure contained one molecule of AA10

lytic polysaccharide monooxygenase (183 residues) in the

asymmetric unit (Fig. 9), and the X-ray data extended to 2.2 Å

resolution. The structure was solved by MR using Phaser

(McCoy et al., 2007) and the model was deposited as PDB

entry 6if7 (Yadav et al., 2019). The authors also attempted

structure solution using the MR pipeline BALBES (Long et

al., 2008), which solved the structure using MOLREP (Vagin

& Teplyakov, 2010) and forwarded it to the ARP/wARP web

service for model building. Using the former sequence-

docking algorithm (snow), ARP/wARP built 161 residues in

three chain fragments, with 147 residues docked to the

sequence. Using the new sequence-docking algorithm (seqqy)

176 residues were built, also in three fragments, and 164

residues were docked to the sequence. The use of seqqy

together with freeloops resulted in an even more complete

model with 178 residues in two fragments, and almost all
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Figure 7
The mean fraction (with the standard deviation of the mean) for residues
docked into the sequence as a function of ARP/wARP building cycle for
the test-set cases (a) test set I (resolution 2.0–3.0 Å) and (b) test set II
(resolution worse than 3.0 Å).



of them, 174 residues, were docked to the sequence. The

crystallographic R/Rfree factors for the built models (without

the free atoms) were 31/36%, 27/30% and 25/29% for the

snow, seqqy and seqqy with freeloops cases, respectively.

4. Discussion and conclusions

In this work, we have presented two novel methods imple-

mented within the automated protein model-building module

of ARP/wARP which provide an increase in the completeness

of the automatically built protein models within a wide reso-

lution range.

The new sequence-docking method reported here, seqqy, is

less sensitive to the accuracy of the model backbone compared

with the initial method, snow. seqqy does not explicitly use the

positions of free atoms and thus yields reliable residue-type

predictions for maps at lower resolution and in the presence

of phase error. The method provides reliable residue-type

predictions for individual amino acids. The predictions are

particularly accurate for small uncharged residues and side

chains containing large rings, which are typically well defined

in the density. However, and similar to snow and other side-

chain docking methods (Cowtan, 2008), the performance of

seqqy is reduced for side chains with higher mobility, as these

have less defined density support. Examples include the long,

often disordered side chains of arginine and lysine residues.

We note that we trained a residue-type classifier on

medium-resolution maps (2.5 Å and better) and used it for

maps at all resolution ranges as discussed in this paper. This is

due to our observation that the density maps at a resolution of

2.5 Å and worse are more noisy in the sense of producing less

accurate estimates of side-chain density volumes and thus

requiring more support vectors than at higher resolution. An

excessive number of support vectors may lead to overfitting

and worse classification properties of the SVM classifier

(Cortes & Vapnik, 1995). We also note that although at lower

resolution [see, for example, Fig. 3(a)] the residue-type

probabilities are overestimated on average, their relative

mutual correspondence still allows the side-chain types to be

correctly discriminated (data not shown). The development of
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Figure 9
Models of a monooxygenase at 2.2 Å resolution built with ARP/wARP v. 8.0 using different sequence-docking methods: (a) snow, (b) seqqy and (c)
seqqy in combination with the sequence-independent loop-building method freeloops. The parts of the model that were not docked into the sequence are
shown in black, while docked fragments are shown in green.

Figure 8
Models of a dehydrogenase at 2.6 Å resolution built with ARP/wARP v. 8.0 using different sequence-docking methods: (a) snow, (b) seqqy and (c) seqqy
in combination with the sequence-independent loop-building method freeloops. The parts of the model that it was not possible to dock into the sequence
are represented in black, while docked chains are shown in other colours.



a more robust classifier trained on lower resolution density

maps could be a possible direction of future research.

The performances of ARP/wARP v. 8.0 using the original

sequence-docking method (snow), the new method (seqqy)

and seqqy with the new loop-building method freeloops were

compared using a large set of deposited structures. The

starting maps for model building used model-calculated

phases that were significantly distorted with intentional

random bias. These tests provide a convenient method for a

detailed, large-scale analysis of model-building performance

at different resolutions of the X-ray data and qualities of the

available phases. The demonstrated examples of crystal

structures submitted for model building to the ARP/wARP

web service supported the conclusions derived from the

benchmarking using the test sets.

The new sequence-assignment and side-chain building

method clearly outperforms the original method in inter-

preting noisy and lower resolution maps. The loop-building

method, freeloops, further improves the quality of the built

models when the overall model completeness is relatively

high. We attribute this to the fact that in its current application

freeloops can only build relatively short loops, which do not

really occur in a fragmented structure of low completeness. A

fragment library with longer loops could potentially improve

the performance at a higher computational cost. Therefore, a

natural extension of the method would be to use fragments

from a set of structural homologues pre-selected using the

target sequence. In principle, this would not only increase the

performance of the method (a smaller database) but would

also enable the building of longer loops (more accurate frag-

ments). In fact, the number of macromolecular models avail-

able in the PDB should make this feasible and applicable for

many new crystal structures.

The current implementation of the residue-type classifier

provides very encouraging results. It may, however, occa-

sionally misclassify residues with a similar side-chain volume

but different topologies (for example cysteine and valine). If

the protein sequence is known, a local misassignment should

be corrected by docking of the fragment to the sequence.

Nevertheless, a potential extension of the presented method-

ology would include analysis of the density clusters not only

when they include the C� atoms but also when they become

disconnected from the main chain. This could help to classify

side chains containing sulfur atoms (cysteine and methionine)

provided that their density does not overlap with other high-

density peaks.

The presented methods for side-chain and loop building in

electron-density maps, seqqy and freeloops, improve the

performance of automated model building with ARP/wARP

at medium and low crystallographic resolutions. Therefore,

their default use for protein model building with ARP/wARP

may be recommended at resolutions worse than 1.5 Å.

5. Implementation and availability

The methods have been implemented in ARP/wARP v. 8.0

(http://www.arp-warp.org) with the use of the CCP4 (Winn et

al., 2011) and cctbx (Grosse-Kunstleve et al., 2002) utilities and

libraries. The benchmarks were performed using the GNU

parallel software (Tange, 2015).
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