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Current software tools for the automated building of models for macro-

molecular X-ray crystal structures are capable of assembling high-quality

models for ordered macromolecule and small-molecule scattering components

with minimal or no user supervision. Many of these tools also incorporate robust

functionality for modelling the ordered water molecules that are found in nearly

all macromolecular crystal structures. However, no current tools focus on

differentiating these ubiquitous water molecules from other frequently

occurring multi-atom solvent species, such as sulfate, or the automated building

of models for such species. PeakProbe has been developed specifically to

address the need for such a tool. PeakProbe predicts likely solvent models for a

given point (termed a ‘peak’) in a structure based on analysis (‘probing’) of its

local electron density and chemical environment. PeakProbe maps a total of

19 resolution-dependent features associated with electron density and two

associated with the local chemical environment to a two-dimensional score

space that is independent of resolution. Peaks are classified based on the relative

frequencies with which four different classes of solvent (including water) are

observed within a given region of this score space as determined by large-scale

sampling of solvent models in the Protein Data Bank. Designed to classify peaks

generated from difference density maxima, PeakProbe also incorporates

functionality for identifying peaks associated with model errors or clusters of

peaks likely to correspond to multi-atom solvent, and for the validation of

existing solvent models using solvent-omit electron-density maps. When tasked

with classifying peaks into one of four distinct solvent classes, PeakProbe

achieves greater than 99% accuracy for both peaks derived directly from the

atomic coordinates of existing solvent models and those based on difference

density maxima. While the program is still under development, a fully functional

version is publicly available. PeakProbe makes extensive use of cctbx libraries,

and requires a PHENIX licence and an up-to-date phenix.python environment

for execution.

1. Introduction

Current techniques in macromolecular X-ray crystallography

derive structural information by the construction of a

comprehensive model of X-ray scattering components within

a crystal system. Besides the integral nucleic and amino-acid

polymers found in macromolecular structures, other scattering

components include ligands and cofactors associated with

these polymers, and both ordered/explicit and bulk solvent.

Crystallographic model building relies on reconstructing

electron density from Fourier coefficients whose complex

components (phases) are ultimately derived in whole or in

large part by Fourier transformation of a model of all scat-

tering components. As a result, crystallographic models are

best built through an iterative process in which more complete
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and accurate models result in more accurate phases which

provide sharper and more interpretable electron density,

which in turn allows the assembly of a further improved

model, further improved phases and so on. Thus, arriving at an

optimal model for a crystal structure requires the inclusion of

all scattering components, including the often numerous

ordered small-molecule and solvent species within the crystal

lattice (Drenth & Mesters, 2007).

Water molecules are by far the most frequently modelled

non-macromolecular species in macromolecular structures,

followed by oxyanions, organic polymers and atomic ions.

Specifically, a survey of 111 976 X-ray structures from the

Protein Data Bank (PDB; as of 29 June 2017) revealed that

93% of deposited structures include explicit water molecules,

with an average of 320 water molecules per structure (over 32

million in total), with one water modelled for every 13 non-H

macromolecular atoms (Berman et al., 2000; Gnesi & Carugo,

2017). After water, the tetrahedral oxyanions SO4
2� and PO4

3�

are the next most frequent small-molecule species modelled,

with 76 500 such molecules distributed among 18% of all

structures. Individually less frequent but collectively relatively

common are polyatomic species such as acetate ions, glycerol

and various lengths of polyethylene glycol (PEG) polymer and

atomic ions such as Mg2+ and Zn2+, which occur in 22% and

25% of structures, respectively. For convenience, we refer to

these species collectively as ‘solvent’ species, along with any

similar molecules that are not either covalently associated

with a macromolecule or an integral macromolecular cofactor

(e.g. heme).

Solvent species arise in macromolecular structures from

various sources. Common sources include the chemical

environment used to grow the macromolecular crystals and

the solution components in which the macromolecules them-

selves are isolated. However, solvent species can appear in

structures as a result of carry-over from upstream purification

or contamination from common laboratory reagents (Nied-

zialkowska et al., 2016; Das et al., 2012). Thus, a list of chemical

species that are explicitly present during crystal growth does

not provide an exhaustive list of chemical species that should

be considered when model building. Ultimately, ideal atomic

models for any crystal structure should incorporate appro-

priate coordinates for all ordered species, regardless of their

origin.

Many software tools exist for automated model building of

both the macromolecular and solvent components of macro-

molecular structures. To one degree or another, all approaches

to automated modelling employ fundamental aspects of arti-

ficial intelligence (AI), a topic that has been associated with

crystallography for over 40 years (Feigenbaum et al., 1977). In

addition to the mainstay AI techniques of knowledge repre-

sentation and decision making, many programs for automated

model building implement supervised machine learning in

which knowledge about the features associated with a set of

characterized instances is leveraged to make predictions about

uncharacterized instances (Morshed et al., 2015). Successful

applications of this approach to the problem of modelling

peptide/protein structures include pattern matching of

templates of known protein structural motifs to electron

density [RESOLVE/PHENIX (Terwilliger, 2001; Adams et al.,

2010), Buccaneer (Cowtan, 2006)], extraction of local electron-

density features followed by analysis by a trained classifier

(TEXTAL; Holton et al., 2000) and a mixture of these

approaches that entails matching the patterns of likely atomic

positions to probability distributions of atomic arrangements

found in the PDB (ARP/wARP; Morris et al., 2003). Addi-

tional routines from these and other software packages

provide functionality for building nucleic acid structures,

peptide loop fitting/building and rotamer identification, and

rebuilding incorrect, incomplete or divergent models such as

those derived from molecular-replacement solutions. While

not yet ‘self-driving’, automated macromolecular modelling

can produce structures that often match and sometimes

surpass in quality those built ‘by hand’ in terms of stereo-

chemical outliers and agreement with electron density

(Joosten et al., 2009).

Similarly, numerous computational approaches have been

implemented to automate the building of solvent species. In

broad terms, current tools for modelling solvent species focus

on either building water models globally for an entire struc-

ture or identifying and modelling specific small-molecule

species within specific areas of electron density. In contrast,

the PeakProbe software that we describe has been designed

with the express purpose of identifying what solvent model, if

any, is likely to exist at a given coordinate within a macro-

molecular structure. Below, we detail common approaches to

automated solvent model building and the limitations of

current tools that motivated the development of PeakProbe.

1.1. Solvent-modelling capabilities of current automated
structure-building tools

The problem of modelling solvent species naturally bifur-

cates into modelling single-atom versus multi-atom solvent

species. Single-atom species include the ubiquitous water (H

atoms are ignored), common elemental anions such as

chloride, and both monovalent and divalent metal ions.

Because all of these species can be modelled as a single point,

building a correct model for a single atom only requires

determining which, if any, species should be placed at a given

point of density, followed by crystallographic refinement of

coordinates and B factors. In contrast, automated modelling of

multi-atom species requires significantly more effort owing to

both the diversity and the complexity of such species. Among

the 100 most encountered solvent species in the PDB, only 17

(including water) are single-atom species and roughly 1000

unique multi-atom species have ten or more instances in the

PDB. Furthermore, the majority of multi-atom species exhibit

multiple distinct conformers. Thus, the sheer spectrum of

possible multi-atom solvent species, compounded by the need

to explore multiple conformations when evaluating possible

solvent candidates, exponentiates the complexity of auto-

mating the model-building process. Many highly capable tools

exist for single-atom modelling and, despite the difficulty of
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the task, much progress has been made towards automating

the modelling of multi-atom species.

The current automated approaches to modelling single-

atom species all employ some variant of a two-step procedure

involving first identifying positions for potential solvent

molecules followed by the evaluation of each position with

respect to target parameters. For example, one of the earliest

and still most common approaches for water modelling entails

identifying potential water positions from peaks in a differ-

ence density (Fo� Fc) map followed by the evaluation of each

position with respect to hydrogen-bond donors/acceptors and

crystallographic B factors following model refinement [ASIR

(Tong et al., 1994), DDQ (van den Akker & Hol, 1999)].

Automated modelling of nonwater single-atom species, such

as elemental ions, extends this procedure by incorporating

the evaluation of properties such as coordination geometry,

anomalous scattering and valence-bond character that differ

between ions and water and between different ions [SHELXL

(Müller et al., 2003), PHENIX (Echols et al., 2014)]. Impor-

tantly, such tools only provide models for single-atom species

and do not provide for the modelling of common multi-atom

solvent species such as sulfate.

PeakProbe was designed to avoid model errors caused by

incorrectly modelling multi-atom solvent as a cluster of water

molecules. Indeed, a random assortment of ‘free atoms’ can

be arranged and refined to faithfully recapitulate all density

within a given unit cell, a procedure that is at the core of the

powerful phase-improvement and model-building algorithms

in ARP/wARP (Perrakis et al., 1999). Consequently, given

permissive and persistent refinement of positions and B

factors, a collection of waters can convincingly serve as a

model for a multi-atom solvent molecule. Ideally, tools for the

automated modelling of explicit solvent would avoid such

errors by discriminating between points where single-atom

models are appropriate and those where multi-atom solvent

should be considered. With this goal in mind, we have

developed PeakProbe with a particular focus on leveraging

features that distinguish water from nonwater solvent species.

The current tools for modelling multi-atom species are all

well equipped to model simple rigid (i.e. without rotatable

bonds) molecules such as sulfate as well as conformationally

complex ligands (e.g. adenosine triphosphate). One approach

for multi-atom solvent modelling includes the placement of

fragment models by a brute-force search, followed by the

conformational sampling of molecules homologous to this

fragment to maximize the fit to electron density (PHENIX;

Terwilliger et al., 2006). Another approach involves orienting

candidate molecules within a region of electron density by the

alignment of model and electron-density inertia tensors

(X-LIGAND; Oldfield, 2001) or the eigenvectors of centred

distance matrices (Coot; Emsley & Cowtan, 2004) followed by

sampling of conformational space by either statistical

sampling techniques (for example Monte Carlo) or brute

force. Yet another approach uses distance-based graph/

subgraph isomorphism to successively place atoms from a

candidate model at points within the electron density identi-

fied as likely atoms, accounting for torsional flexibility as

successive atoms are placed (X-LIGAND, ARP/wARP).

However, the multi-atom modelling capabilities of each of

these programs are geared towards evaluating one or more

candidate molecules at either user-defined locations or within

large volumes of unmodelled electron density. This approach

is not easily adapted to determining what single- or multi-atom

species, if any, best occupies a given point or to quickly eval-

uate all likely solvent positions within a structure. Thus, we

have designed PeakProbe to operate with no prior knowledge

or expectations about a given structure and to work suffi-

ciently quickly for practical evaluation of all positions within a

structure that are likely to be associated with a solvent model.

Because the crystallographic resolution inherently reflects

the amount of information contained within any region of

electron density available for predicting a correct model, the

performance of all automated modelling approaches suffers as

resolution worsens (Luzzati, 1952). Approaches that rely upon

the accurate placement of candidate atoms as starting points

for model building, such as ARP/wARP, become less accurate

at resolutions where errors in the placement of such candi-

dates obfuscate subsequent pattern-matching routines (typi-

cally >2.7 Å). Pattern-matching approaches such as those used

in RESOLVE and Buccaneer can, but do not always, fare

better at these resolutions. Likewise, solvent modelling

becomes more challenging as resolution worsens and electron

density becomes more amorphous. Analysis of PDB data

suggests that the number of water molecules observed per

amino acid drops by a factor of about five when comparing

structures refined at 2.0 Å resolution with those at 3.0 Å

resolution (Weichenberger et al., 2015). The marked but

unsurprising scarcity of structures at >3.0 Å resolution

obfuscates detailed analysis of other single- or multi-atom

species at these resolutions. Nonetheless, a comprehensive

solvent-modelling program should attempt to correctly build

solvent species at these resolutions where fully justified by

observed data, even if such species are rare. Accordingly, we

have employed various resolution-dependent data-processing

schemes in PeakProbe to provide robust means of predicting

correct solvent models over a wide range of crystallographic

resolutions.

Modelling of solvent species involves the analysis of specific

features of the electron density and atomic environment

associated with a given point within a structure and deciding

what model, if any, is most consistent with these features.

Whether performed manually or via automation, choosing an

appropriate model for a given location can make use of both

empirical and theoretical considerations. For example, a

putative water model would be expected to be associated with

electron density similar to empirical density for known water

molecules in structures obtained at a similar crystallographic

resolution. Likewise, a candidate water model might be

discarded if found to overlap with another atom to an extent

deemed impossible by theoretical constraints. For modelling

macromolecular components, ARP/wARP uses distributions

of geometry observed in the PDB for scoring putative main-

chain fragments, while many protein-validation programs

compare observed backbone dihedral angles with theoretical
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values derived from the physical and chemical properties of

l-peptides, such as those developed by Ramachandran et al.

(1963).

In machine learning, classifiers are models that assign a class

to a given input based on information about the input in the

form of numerical features. A successful classifier requires

features whose values take on distinct or distinguishable

distributions for each possible output class. Training a classi-

fier refers to developing and optimizing a mathematical model

that relates a subset or range of feature values to specific

classes. Such models can be generated from theoretical

considerations or developed from empirical studies of exam-

ples where both feature values and class membership are

known. Several software tools employ such trained classifiers

for evaluating and predicting water models. Examples include

the EDIA/ProteinPlus package, WaterScore, WaterRank and

WaterDock. Using varied approaches, these programs employ

classifiers trained using features extracted from a thoroughly

curated subset of water models considered to be of high

quality in the PDB (Nittinger et al., 2015; Ross et al., 2012;

Lippert & Rarey, 2009; Amadasi et al., 2008; Garcı́a-Sosa et al.,

2003; reviewed in Nittinger et al., 2018). The features used for

classification in these programs have found use in character-

izing solvent models other than water (Meyder et al., 2017).

For example, the models of metal-ion bond valency estab-

lished by SHELXL provide a theoretical basis for features

that CheckMyMetal and phenix.refine use to distinguish water

from metal ions or to distinguish between different metal ions

(Zheng et al., 2014). Inspired by the demonstrated utility of

the supervised learning approaches used by these programs,

we have based the scoring metrics of PeakProbe on prob-

abilistic models obtained from large-scale data mining of

common solvent species found in the PDB.

2. PeakProbe program description

The central design of PeakProbe focuses on the prediction of a

likely solvent model at a given coordinate in a crystal system.

Predictions are made by evaluating features extracted from

the electron density and local atomic environment of a given

point (termed a ‘peak’) and comparing the extracted values

with observed distributions. As we conceived PeakProbe to be

used during the building as well as the validation stages of

modelling, we designed the program specifically with the

evaluation (‘probing’) of difference map peaks in mind, thus

the name ‘PeakProbe’. Our initial goal was to develop a

classifier to distinguish between water and sulfate/phosphate,

the next most common solvent species in the PDB after water.

Crystallographic methods are not well suited to differentiating

between sulfate and phosphate, so we consider the two to be

indistinguishable and refer to them collectively as ‘sulfate’

hereafter. The core of the PeakProbe classifier uses two scores

that encapsulate the overall sulfate-like nature of the local

electron density and the chemical environment of a peak.

Taken together, these two scores are able to discriminate

between other types of solvent apart from water and sulfate.

Specifically, the PeakProbe classifier has been trained to

distinguish four classes of solvent: water, sulfate, heterogen

and metal. The heterogen class includes other common solvent

species with polar or anionic character such as PEG, glycerol,

and acetate and chloride ions. The metal class refers specifi-

cally to divalent metals such as Mg2+, Ca2+, Zn2+ and Mn2+.

Our approach to development focused on three specific

goals: (i) the program should predict solvent models that are

highly consistent with existing models in the PDB with respect

to both local electron density and chemical environments,

(ii) the program should make such consistent predictions

regardless of crystallographic resolution and (iii) the program

should be capable of making such predictions at peaks that are

not associated with any existing solvent model, such as those

situated at difference density maxima.

To address these goals, we developed PeakProbe by

assembling solvent models for four distinct classes of solvent,

extracting various candidate classifier features from these

models, evaluating these features based on their ability to

discriminate between solvent species, constructing a data-

processing pipeline to allow resolution-independent evalua-

tion of features and implementing a classifier based on

composite scores derived from feature data. We designed the

feature extraction in PeakProbe to maximize the equivalence

between features extracted from peaks whose coordinates

were taken from the coordinates of existing solvent model

atoms (solvent model peaks) and those extracted from peaks

located at difference density maxima (difference density/map

peaks). In addition, PeakProbe also makes use of extracted

features to identify common model errors such as missing

alternate conformations or incorrect rotamers (Lunin et al.,

2002). The cluster-analysis algorithms within PeakProbe

differentiate between tightly associated groups of water

molecules and peak clusters that are possibly associated with

multi-atom solvent species.

As shown in Fig. 1, PeakProbe input consists of a macro-

molecular structure model, the corresponding structure-factor

or map data and a peak list that specifies the coordinates to be

evaluated. For each peak, a total of 21 features are extracted,

19 of which are associated with the local electron density of

the peak (ED features). The two other features are derived

from the local chemical environment of the peak (CC

features). After extraction, these feature data are fed to the

PeakProbe classifier, which implements three stages of

analysis. In the first stage, ED and CC feature values are

mapped to an ED and a CC score, respectively. In the second

stage, the ED and CC scores are used to estimate the like-

lihood that the peak is a member of each class of solvent

model. In the third stage, class likelihoods, ED and CC scores,

and data on adjacent peaks and other models are used to

categorize and triage each peak. During triage, a peak may be

identified as (i) a possible solvent-model location, (ii) a result

of model error, (iii) a member of a cluster of peaks or (iv)

misclassified based on inconsistent feature values. Following

triage, a list of peaks that are likely to correspond to solvent

models is output or updated, peaks that are likely to be model

errors are flagged, peak clusters are analysed and features are

updated where appropriate. After these three steps, the
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frequency with which each class of solvent is observed in the

output solvent model is used to update the prior distributions

used by the classifier. The peaks are then reclassified using this

updated prior and the entire classification process is repeated

until no further changes are made to the accumulated list of

predicted solvent models. Lastly, PeakProbe outputs a report

on each peak that contains the results of the triage process, all

score values, class likelihoods and a solvent-model prediction.

If the initial structure model input contains existing solvent

models, PeakProbe can evaluate coordinates from these

models as peaks and can compare scores and predictions from

existing models associated with input peaks when determining

a final solvent model for each peak.

In its current configuration, PeakProbe will classify any type

of peak input regardless of whether the peaks are derived

from coordinates of existing solvent models, from difference

map maxima or from user input. In addition, PeakProbe can

perform pairwise comparison of difference map and solvent

model peaks to validate/update existing models, while simul-

taneously identifying and classifying difference map peaks

that are not associated with any existing model. By default,

when given a structure containing a solvent model, PeakProbe

removes all water, sulfate and other common solvent species

and then calculates density maps and places peaks for analysis

at local maxima of the resulting difference density map.

Concurrently, coordinates for all solvent model atoms in the

input structure are included as peaks provided that they were

omitted during map calculation and occur less than 2.0 Å from

a difference map peak. When determining likely solvent

models for a given peak, PeakProbe also evaluates the prop-

erties of all adjacent peaks, including those input as solvent

models, in order to determine the most likely model or models

for all associated peaks. For example, an input structure may

include two water models for a single difference map peak, or

a given difference map peak may not be associated with any

solvent model. Furthermore, multiple peaks may correspond

to a single multi-atom solvent species. Regardless of the

situation, PeakProbe evaluates the associations between all

available peaks when determining the most likely model or

models for a given peak.

In practice, PeakProbe selects the solvent class (water,

sulfate, heterogen or metal) with the highest estimated like-

lihood as the predicted solvent model for each input peak.

PeakProbe also outputs a PDB file containing the solvent

models that the program considers to be both plausible and

most likely for all input peaks. To generate coordinates for

these models, PeakProbe either fits a candidate member of the

predicted solvent class or carries over the solvent model from

the input structure, provided that such a model was input and

agrees with the predictions of the program. The PeakProbe

classifier cannot yet distinguish between members of the

heterogen or metal classes. Similarly, sulfate-like solvent

species of compounds that contain a sulfate-like atomic centre

such as cacodylate, citrate or 2-(N-morpholino)ethanesulfonic

acid (MES) are likely to be classified as members of the sulfate

class. Thus, the model-building capabilities of the program are

limited and any multi-atom solvent model suggested by

PeakProbe should be validated externally before inclusion in

the complete structure model.

PeakProbe consists of�8000 lines of Python code and relies

on numerous modules of the cctbx package for managing

structure-data input/output, electron-density map generation,

peak detection and coordinate refinement. All code is publicly

available via GitHub along with documentation on software

usage, software prerequisites and licence requirements

(https://github.com/paulsmith638/PeakProbe.git).

2.1. Feature engineering

To construct, train and evaluate our desired classifier, we

assembled three data sets: (i) training data consisting of

features extracted from peaks whose coordinates are taken

exactly from the atomic positions of existing models in the

PDB, (ii) validation data consisting of extracted features for

peaks identical to those in the training data but including

peaks derived from a broader range of existing solvent models

and (iii) a testing data set of difference map peaks with which

an existing solvent model could be clearly associated. We

intended to base our classifier on the frequency with which a

given set of feature values is observed for a given solvent class

within a large subset of the entire PDB rather than for a

particular subset of cherry-picked structures. To ensure

adequate sampling of solvent models while keeping the

computational overhead within reason, we elected to estimate

global feature-value distributions based on distributions of

values observed from a large set of structures varying widely
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in resolution, composition and quality. Comprehensive details

for the curation and composition of each data set are given in

Appendix A.

Our search for features that are likely to take on distinct

distributions for water and sulfate focused both on the

electron-density morphology and the disposition of atoms

adjacent to models of each of these solvent species. To

assemble candidate features related to electron density, we

built upon several intuitive notions: (i) no matter how well

refined, a sulfate model should yield a poor fit to density at a

true water position and vice versa, (ii) the volume of electron

density associated with a sulfate should be larger than that

for water, (iii) for a peak centred at a given local density

maximum corresponding to either water or the central sulfur

of sulfate, density values for sulfate should fall off with radial

distance less rapidly than for water and (iv) given sufficient

resolution, the electron density of sulfate should appear

tetrahedral. To quantify these notions for use as features,

reference coordinate models for both sulfate and water were

fitted to local electron density using real-space refinement.

Following the refinement of each model at a given peak, a

total of 19 numerical electron-density features were extracted

(ED features; Table 1).

Of these features, 14 are real-space correlation coefficients

(RSCC) for a given model and a given density map (Diamond,

1971). Using various combinations of input models and target

electron densities yielded the 14 RSCC values described in

Table 1 (CC1–CC14). In Table 1, the ‘Model’ and ‘Map’

columns refer to the coordinate model and density map used

for RSCC calculation. The ‘Ref’ column indicates whether or

not the coordinate model underwent real-space refinement

prior to RSCC calculation. For example, CC4 corresponds to

the RSCC for a sulfate model refined against the 2Fo � Fc

density map. Maps marked with a ‘+’ refer to a pseudoinverse

density as described in Appendix A. Two additional features

were statistically derived from these 14 RSCC values (ED1

and ED2). Features ED3 and ED4 correspond to peak size

quantified by the volume of electron density surrounding a

peak in both 2Fo � Fc and Fo � Fc density maps above a fixed

contour level. Finally, feature ED5 is the 2Fo � Fc density

value at the peak location itself.

To identify features of the local atomic environment that

are distinct for water and sulfate, we investigated interatomic

relationships between each peak within the training data and

adjacent macromolecular and solvent atoms. When comparing

relationships between sulfate and water, the two most

systematically distinct features were the observed distance

between a given peak and its closest neighbour atom and the

preference of sulfate for electropositive over electronegative

neighbour atoms. Both of these trends were expected because

of the chemical properties of sulfate. Specifically, the central

atom of sulfate (used as the peak for training) is buried within
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Table 1
Results of the analyses.

CCr and S/N refer to correlation versus resolution and signal to noise, respectively. Acc. and F1 refer to accuracy and the F1 score, which assess classifier
performance. Feature impact on classifier performance is measured by the �F1 metric and features are ranked (#) by this metric. Full descriptions of all terms are
given in the accompanying text.

Description LR model Feature impact

Feature/score Model Map Ref CCr S/N Acc. F1 # �F1

ED features (real-space correlation coefficients)
CC1 HOH Fo � Fc Y 0.44 0.61 0.69 0.08 20 �0.04
CC2 HOH 2Fo � Fc Y 0.07 1.37 0.80 0.13 21 �0.03
CC3 SO4 Fo � Fc Y 0.51 4.70 0.92 0.30 16 �0.06
CC4 SO4 2Fo � Fc Y 0.10 9.09 0.97 0.52 12 �0.07
CC5 SO4 from CC3 [Fo � Fc]

+ N 0.36 0.31 0.66 0.06 10 �0.11
CC6 SO4 from CC4 [2Fo � Fc]

+ N 0.30 0.58 0.69 0.08 17 �0.05
CC7 SO4 from CC3 [Fo � Fc]

+ Y 0.38 0.36 0.69 0.07 8 �0.12
CC8 SO4 from CC4 [2Fo � Fc]

+ Y 0.31 0.64 0.71 0.09 14 �0.06
CC9 SO4 from CC7 Fo � Fc N 0.47 3.75 0.90 0.25 13 �0.07
CC10 SO4 from CC8 2Fo � Fc N 0.13 8.07 0.97 0.50 7 �0.15
CC11 HOH from CC1 [Fo � Fc]

+ N �0.20 1.37 0.85 0.16 5 �0.16
CC12 HOH from CC2 [2Fo � Fc]

+ N 0.01 2.34 0.89 0.22 9 �0.11
CC13 Av. rotated CC3 Fo � Fc N 0.52 4.42 0.91 0.28 15 �0.05
CC14 Av. rotated CC4 2Fo � Fc N 0.15 9.27 0.97 0.54 11 �0.09

ED features (map values or derived)
ED1 Standard deviation of CC13 values �0.14 0.22 0.59 0.06 19 �0.04
ED2 Standard eviation of CC14 values �0.08 0.19 0.48 0.05 18 �0.05
ED3 Peak Fo � Fc map volume 0.49 7.01 0.96 0.58 3 �0.74
ED4 Peak 2Fo � Fc map volume �0.01 3.17 0.98 0.62 1 �0.83
ED5 Peak 2Fo � Fc map value (�) �0.15 0.88 0.84 0.14 4 �0.38

CC features
CF1 Distance to closest model atom 0.14 5.24 0.97 0.56 2 �0.81
CF2 SO4-likeness of local environment 0.03 0.9 0.76 0.10 6 �0.15

Composite scores
ED score Mapping of 19 ED features 0.15 8.08 0.99 0.92
CC score Mapping of 2 CC features �0.11 10.2 0.99 0.86
C2 score Pseudo-�2 for ED/CC scores 0.14 3.50 0.96 0.46

Total classifier Maximum ED/CC likelihood (2 classes) Acc. = 1.00, F1 = 0.98



the molecule and does not form direct interactions with its

neighbours. Thus, the distribution of distances between peaks

at such positions and neighbouring model atoms should be

systematically higher than that for water, which interacts

directly with atomic neighbours. Accordingly, we employ the

distance from a given peak to its nearest neighbour as a close

contact feature (CF1). Similarly, as an anion, sulfate forms

favourable electrostatic interactions with positively charged

moieties such as arginine and lysine side chains and so would

be expected to be observed more frequently in proximity to

these functional groups and less frequently next to negatively

charged groups such as aspartate and glutamate side chains.

We quantify this propensity with a likelihood metric based on

the relative observed frequencies of occurrence for certain

macromolecular atoms near sulfate versus water (CF2;

detailed in Appendix A). In conjunction with the aforemen-

tioned 19 electron-density features, these two close-contact

features (CC features) constitute the 21 total features used for

classification. The observed distributions for each of the 21

feature extracted from training peaks were unimodal and

resembled normal distributions with perceptible but not

excessive skew or kurtosis.

2.2. Classifier design and construction

The PeakProbe classifier entails three components: (i) a

data-processing pipeline that maps 19 ED and two CC

features to an ED/CC score pair, (ii) a solvent model predic-

tion method that compares the relative likelihood with which

this ED/CC score pair is associated with each of the four

classes of solvent found in the training data and (iii) additional

triage functionalities that address solvent–solvent interactions,

variance in class frequency, model errors and peak clusters.

Together, the ED and CC scores output by the data-processing

pipeline form the basis of the two-dimensional score space

shown in Fig. 2. Class distributions over this score space are

modelled as two-dimensional histograms where each histo-

gram bin encodes the likelihoods with which the ED and CC

score values within the bin were observed for each of the four

solvent classes considered. In Fig. 2, each histogram bin is

coloured according to which solvent class is most likely given

the ED and CC scores associated with that bin. Much like a

Ramachandran plot, this histogram allows both visual and

numerical evaluation of models given two independent inputs.

To predict the most likely solvent model for a given peak, the

PeakProbe classifier maps the ED and CC scores of the peak

to a bin in this score space and then compares the likelihoods

of each solvent class associated with this bin. The class with the

greatest likelihood is selected as the predicted class of the

peak. Class likelihoods are estimated from the joint ED/CC

score distributions observed for each class in the training data.

These distributions are weighted by various prior distribu-

tions, details of which are discussed below.

2.2.1. Mapping feature data to ED and CC scores. The data-

processing pipeline of the PeakProbe classifier shown in Figs. 1

and 3(a) was designed to address the feature-versus-feature

and feature-versus-resolution correlations observed in the

training data described in Section 3. To construct a classifier

that makes use of the discriminating ability of all 21 features

described, we developed a data-processing pipeline that both

standardizes and decorrelates all feature data in such a way as

to yield feature values that are both independent of resolution

and linearly independent of each other [Fig. 3(a)]. In this

pipeline, ED feature values (CC1–CC14 and ED1–ED5) are

standardized using resolution-dependent parameters. Stan-

dardized values are decorrelated by resolution-dependent

principal component analysis (PCA) and scaled using addi-

tional resolution-dependent parameters. CC features (CF1

and CF2) exhibit minimal resolution-dependence or correla-

tion and thus only undergo standardization using fixed,

resolution-independent parameters.

Decorrelated ED feature data are converted to an ED score

as follows: (i) the conditional likelihood that a peak corre-

sponds to sulfate given a specific feature value is estimated

from the probability density function (PDF) of the feature

under consideration observed for all sulfate models in the

training data, (ii) the parallel conditional likelihood estimate

that a peak corresponds to water is calculated similarly, (iii) a

joint conditional log-likelihood estimate that a peak corre-

sponds to sulfate given all observed ED features is taken as

the sum of log values of the conditional likelihood estimates

obtained for each ED feature, (iv) the parallel joint log-like-

lihood estimate that a peak corresponds to water is calculated

similarly and the resulting value is subtracted from that for

sulfate to give a raw ED score, and (v) this raw ED score
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Figure 2
Solvent-class histograms over the score space spanned by ED and CC
scores coloured according to which class of solvent is most likely given the
corresponding CC and ED scores. Water, sulfate, heterogen and metal
classes are shown in blue, red, green and yellow, respectively. The dark
blue and red regions correspond to contours containing 50% of observed
water and sulfate in training data. Grey regions correspond to regions
that are highly unlikely to correspond to a true solvent model.



undergoes resolution-dependent scaling using resolution-

dependent mean and standard deviation values to give the

final ED score. CC feature data are converted to a CC score by

an analogous procedure. For both the ED and CC scores, input

feature values are scaled such that more positive score values

represent more sulfate-like character.

To illustrate this scoring procedure, Fig. 3(b) shows the

distribution of values for a single ED feature following
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Figure 3
Data processing and feature scoring. (a) Procedures for mapping features to scores. For each group of features, the number of resolution-dependent
parameters (red) or resolution-independent parameters (blue) required is shown. (b) Histograms of training data for a single feature in a single bin of
resolution along with fitted probability density functions (PDFs) for water and sulfate data. Distributions like those shown are used to calculate ED and
CC scores using the equations and definitions shown. (c) Example RPMS. Bin values for the observed mean (black dots) and standard deviation (cyan
dots) for feature CC1 are plotted versus resolution. The spline fit to each series is shown as a solid line coloured similarly.



decorrelation and scaling as observed for both water and

sulfate populations in the resolution range indicated. These

distributions are modelled as normalized histograms in blue

and red, respectively. During classifier training, these distri-

butions are modelled using a Johnson’s SU (JSU) distribution,

the resulting PDFs of which are shown as a solid lines (details

are given below). The likelihood that a given feature value

corresponds to sulfate or water is estimated from these PDFs.

As an example, a value of 0.3 for this feature (dashed line)

corresponds to likelihood estimates of 0.2 for sulfate and 0.05

for water and an estimated likelihood ratio of 4 for sulfate

versus water. To calculate an ED score for a given peak,

analogous likelihood values are estimated for each decorre-

lated and scaled ED feature. The corresponding likelihoods

estimated from all decorrelated and scaled ED feature values

are combined to give the raw ED score. Because the features

used for likelihood estimation are transformed to a linearly

independent basis by the preceding decorrelation procedure,

individual likelihood estimates can be combined by assuming

that their joint likelihood is given by the product of their

individual likelihoods or, equivalently, the sum of their log

values. Thus, the calculation of ED and CC score values as

described finds many parallels in the construction of naı̈ve

Bayes classifiers and Fisher’s linear discriminant analysis.

2.2.2. Class likelihood estimation. Within the class like-

lihood estimation stage of the PeakProbe classifier, ED and

CC scores are used to estimate the likelihood of each solvent

class for a given ED/CC pair. This estimation takes advantage

of the marked distinction between the joint ED/CC score

distributions observed for each solvent class. As seen in Fig. 2,

the ED/CC score distributions for each solvent class take on

their maximum values over a distinct and continuous region of

score space. During classification, models of the joint prob-

ability distributions for each solvent class are generated from

the ED and CC distributions observed in the training data. ED

and CC score distributions for each solvent class are modelled

by discrete probability distributions and, because ED and CC

scores are treated as linearly independent, their joint distri-

bution is given by the outer product of the two distributions.

The joint probability distribution of each class is weighted by

a prior probability taken from one of three possible prior

distributions (see below) and the likelihood that a given ED/

CC score pair corresponds to a given solvent class is estimated.

This estimate is given as the log of the ratio of the joint

distribution value for a given class to the sum of the joint

distribution values of the other three classes. For these esti-

mates, a value of zero indicates that the likelihood of a

particular score pair for a given solvent class is equal to that of

all other classes combined. The more positive the estimate, the

greater the likelihood that an observed score pair originates

from a given class. When classifying a peak, PeakProbe selects

the class with the greatest likelihood as the predicted class.

The overall magnitude of the greatest class likelihood score is

later incorporated into a quality indicator that reflects the

confidence with which a given prediction is made.

2.2.3. Peak triage and iterative peak classification. In order

for the classifier described above to provide accurate predic-

tions of solvent models, several additional factors must be

considered. Firstly, the PeakProbe classifier relies heavily on

having a reliable estimate of the distance of a peak to the

closest atom modelled in the structure (feature CF1), which

cannot always be assumed to be the distance to the closest

macromolecular atom. Thus, the classifier incorporates a

mechanism for employing a peak–solvent distance rather than

a peak–macromolecule distance when appropriate. Secondly,

the predictions made by PeakProbe using the two-dimensional

score space described vary according to the prior distribution

of solvent classes used for likelihood estimation. However, not

all structures exhibit the same relative frequency of solvent

classes. Most notably, structures at coarser resolution typically

contain fewer modelled waters than those at finer resolution.

Thus, PeakProbe employs both fixed and adaptive prior

weighting schemes during peak classification to allow for

varied class frequency among structures and to provide a

confidence indicator for each prediction made. Thirdly,

because PeakProbe is designed to allow the prediction of

solvent models at difference map peaks, the program employs

a mechanism for distinguishing peaks that correspond to

possible solvent positions from those arising from errors in the

underlying structural model. Lastly, because difference map

peaks often arise in clusters within large or extended ‘blobs’ of

density, PeakProbe implements several graph-based clustering

techniques to identify and characterize groups of peaks. These

techniques are able to differentiate collections of peaks that

are likely to be associated with a multi-atom solvent species

from those likely to be constellations of water models or

spurious peaks. These considerations are addressed in the

triage stage of the PeakProbe classifier, details of which follow.

During feature extraction, CF1 is set to the distance from

the peak to the closest macromolecular atom in the associated

structure. However, many solvent species (water in particular)

are anchored to the underlying macromolecular structure by

hydrogen bonds to interstitial water or other solvent and not

to the macromolecular components themselves. This

phenomenon gives rises to the hydration shells observed in

many structures and the periodic nature of the contact-

distance distributions seen for water in protein structures

(Biedermannová & Schneider, 2015). In such cases, where the

distance from a peak to the nearest ordered solvent is shorter

than the peak–macromolecular distance, using the longer

distance results in an overestimated CF1 value. To overcome

this problem, we incorporated a mechanism into PeakProbe

for identifying peaks that are likely to be anchored by solvent

contacts and update CF1 accordingly.

In order to extract reliable estimates of feature CF1,

PeakProbe first identifies peaks with likely overestimated CF1

estimates and then searches the area surrounding the peak for

plausible alternative contacts in closer proximity. Peaks with

possibly overestimated CF1 values are identified by two

criteria. Firstly, as seen in Fig. 2, water models typically have

negative ED and CC scores, while heterogen models typically

have low ED but positive CC scores. Because the CC score is

highly correlated with feature CF1, peaks corresponding to

water but with overestimated CF1 values will be misidentified
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as likely heterogen peaks. Thus, peaks with low ED and

positive CC scores that are abnormally largely separated are

flagged as having suspicious CF1 values. In addition, Peak-

Probe calculates a probability that a given peak is water or not

water based on the relative goodness of fit of the feature

values of a peak to those observed in the training data. This

score (C2; described in Appendix A) allows further identifi-

cation of suspicious CF1 values by identifying peaks with a

high probability of being water but that are not predicted to be

water by the classifier. To remedy possibly incorrect CF1

values, PeakProbe employs an iterative approach in which

solvent molecules that are added or validated by PeakProbe

are allowed to serve as anchors for peaks with suspicious CF1

values. If a peak–solvent distance is shorter than the

previously set CF1 distance and the contacted solvent has

been validated, the corresponding CF1 distance is updated.

Peaks undergo the entire classification process following any

CF1 updates, and newly assigned solvent molecules are eval-

uated as possible anchors for likely misclassified peaks. This

process is iterated until no CF1 values are updated.

To account for the variability of solvent class frequency

among structures, PeakProbe employs several prior weighting

schemes for assigning likely models from ED and CC scores.

As a whole, the PDB exhibits relative solvent class frequencies

similar to those of the training data, which contain 96.2%

water, 1.7% sulfate, 1.6% heterogen and 0.5% metal peaks.

However, structures at coarser resolution contain a signifi-

cantly smaller fraction of water, 76.1% of all structures contain

no metal and only 3.2% of all structures contain all four

classes. Thus, the use of a fixed prior distribution based on the

relative class frequencies observed in the PDB may lead to

distorted class likelihood estimates for structures with irre-

gular solvent class distributions. As such, PeakProbe predicts

likely solvent models using three different prior distributions.

The first is a flat, uninformative, prior that weights each class

equally (probability of 0.25). The second is the maximum-

likelihood estimate for the distribution of occurrences of each

class observed for structures in the training data (Dirichlet

distribution; see Appendix A). The third prior weights like-

lihood estimates by the class distribution observed for only

the structure in which a peak resides. This distribution is

constructed iteratively using high-scoring predictions from

the PeakProbe classifier. Given a sufficient number of peaks,

model predictions are made using the flat prior and a tally of

high-likelihood predictions from each class is converted to a

prior distribution. This updated prior is used to rescore peaks

and the resulting distribution of predictions becomes the prior

for additional rounds of scoring and prior updating. Ulti-

mately, PeakProbe assigns a prediction to a given peak based

on both the magnitude of and the degree of consensus among

the likelihood estimates made by these prior weighting

methods.

Attempting to use the classifier described above to evaluate

peaks generated from local maxima in difference density maps

encountered two critical problems that were not considered

for peaks based on the coordinates of built and refined solvent

models. Firstly, many observed difference map peaks corre-

sponded to errors in the underlying macromolecular structure

model, such as misplaced protein side chains or missing

alternate conformations. For PeakProbe to predict solvent

models for difference density peaks effectively, we reasoned

that peaks arising from model errors or spurious map noise

should be excluded from classification. Secondly, clusters of

peaks in close association may correspond to a single under-

lying multi-atom solvent species and thus should evaluated as

a group when predicting likely solvent models.

To avoid the inclusion of peaks arising from model errors as

potential solvent models, PeakProbe implements a peak filter

that takes advantage of several observations that were made

following the trial classification of difference map peaks less

than 2.0 Å from a macromolecular atom. The results from

these trials showed frequent ED and CC score mismatches at

peaks associated with macromolecular model errors. Specifi-

cally, ED scores tended to be high (more sulfate-like), while

CC scores tended to be low (water-like). In addition, the

number of short contact distances between the macro-

molecular structure and a putative water model fitted by real-

space refinement tended to be anomalously high, even

compared with metal ions, which show similar CC/ED score

trends. Closer examination of test cases revealed that for many

peaks associated with incorrect side-chain rotamers or back-

bone peptide geometry, a water model placed at the local

difference density maximum moves towards the macro-

molecular model when refined against 2Fo � Fc density.

Consequently, many clashes arise between this refined model

and the underlying macromolecule, which is not included

during feature extraction. PeakProbe employs both the

mismatch in scores and the elevated count of clashing contacts

to identify and filter out model error difference map peaks

from those arising from unmodelled solvent.

To account for peak clustering, PeakProbe implements

several graph-based techniques to identify groups of asso-

ciated peaks, quantify the degree of association between

grouped members and decide which peaks are diagnostic of

any underlying solvent model and which should be considered

satellites. These techniques make use of an adjacency matrix

that both contains all difference map peaks for a given

structure and accounts for adjacency arising from crystallo-

graphic symmetry. Once constructed, this adjacency matrix is

weighted by peak similarity and a combined divisive/agglom-

erative approach is used to identify and evaluate peak clusters.

If a cluster of peaks is identified, peaks associated with the

cluster are examined to determine whether any are predicted

to be possible multi-atom solvent (sulfate or heterogen) based

on the class likelihoods output by the classifier. If no peaks

within a cluster are predicted to be multi-atom solvent, all

cluster members are examined as possible water models. If one

or more cluster member peaks is predicted to be multi-atom

solvent, the most strongly predicted of such peaks is assigned

as the cluster representative. The remaining cluster members

are marked as either being (i) part of the same solvent model

as the cluster representative, (ii) more strongly associated with

the representative of a different cluster, (iii) a likely water

model or (iv) an instance where a single-atom solvent model is
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associated with multiple peaks (a split peak). The fate of each

peak within a cluster is determined by a combination of score

values and the degree of graph similarity between the peak

and the other cluster members. Ultimately, PeakProbe

suggests multi-atom or water solvent models where appro-

priate for any input peaks found in close association (details

are given in Appendix A).

The PeakProbe classifier works most effectively when it is

allowed to consider all possible locations for solvent models

within a structure and when it is given as complete a macro-

molecular model as possible. In cases where a peak corre-

sponds to a bona fide solvent model but the macromolecular

structure associated with this model is missing, PeakProbe will

not be able to calculate an accurate CF1 value. Furthermore,

the extraction of ED features requires both 2Fo � Fc and

Fo � Fc density maps, ideally with the Fo � Fc map calculated

following the removal of all solvent models from the structure.

Thus, PeakProbe can only be applied to structures with

macromolecular models whose Fc coefficients provide a

reasonable approximation of the total structure. In addition,

both the peak-cluster analysis and adaptive prior weighting

scheme described are most effective when given as much data

as possible. If all solvent models are not removed from the

structure prior to map calculation or the positions of likely

solvent models are excluded from the input peak list, the

cluster-analysis procedure may be missing data that are

essential for correctly associating peaks with possible multi-

atom solvent species. Likewise, the greater the number of

solvent models predicted with high confidence by the classi-

fier, the better the likelihood that the prior distribution

generated from the tally of these predictions reflects the true

distribution of solvent classes in the underlying structure. In

any case, the PeakProbe classifier will output a prediction

when given only 21 feature values and no other information,

but such predictions will be less reliable than that those

generated when PeakProbe analyses all likely solvent peaks

within a structure in parallel.

2.3. Classifier training

Classifier training entails determining the parameters that

are needed to carry out each stage of the classification process

shown in Fig. 1. During training, the parameters needed for

each stage of classification are estimated from training data,

and the training data are then subjected to this classification

stage using these parameters in order to generate the data for

the next stage. In total, classifier training estimates the over

4000 parameters that are needed to convert feature data to

ED and CC scores, estimate class likelihoods, filter and flag

peaks, and make model predictions. To train the classifier, the

21 features described were extracted from a total of 2 312 745

peaks taken from solvent models found in 17 274 structures

ranging in resolution from 0.6 to 5.0 Å (training data;

described in Section A1). Notably, owing to the extensive use

of the vectorized array calculation capabilities of NumPy by

PeakProbe, a complete training run using all training data

requires less than 30 min using a single core of a single sixth-

generation Intel Xeon CPU.

Within the PeakProbe classifier, the data-processing stage

maps input features to ED and CC scores using a sequence of

data transformations, each of which requires feature-specific

and often resolution-specific parameters. Specifically, mapping

the 19 resolution-dependent and highly intercorrelated ED

features to an ED score involves five successive steps: (i)

standardization of feature values, (ii) decorrelation of stan-

dardized values, (iii) scaling transformed values, (iv) scoring

these rescaled values and (v) rescaling these scored values. In

contrast, translation of the two resolution-independent and

linearly independent CC values involves only the standardi-

zation, scoring and rescaling steps [Fig. 3(a)]. In this workflow,

standardization refers to the conversion of raw feature values

to z-scores using two estimated parameters for each feature

(mean and standard deviation). Both scaling and rescaling are

analogous to standardization, but instead of centring the

resulting distribution of the training data at zero, the data are

centred such that the midpoint between the means of sulfate

and water populations is set to zero. As for standardization,

scaling and rescaling require two estimated parameters per

feature. Decorrelation involves the multiplication of an input

vector of 19 standardized ED feature values by a 19 � 19

modal matrix whose coefficients are derived from the principal

components of a data covariance matrix. Thus, decorrelation

requires a total of 361 estimated parameters (19 per feature).

Including a given feature in ED or CC score calculation

requires the values of the observed sulfate and water PDFs of

the feature to be obtained. During classifier training, these

PDFs are modelled using Johnson’s SU (JSU) distribution. This

four-parameter distribution resembles a normal distribution,

but allows arbitrary skew and kurtosis (Johnson, 1949).

Modelling the PDFs for water and sulfate populations

requires eight estimated parameters for each feature. In total,

the conversion of 19 raw ED features to an ED score requires

a total of 591 parameters.

Critically, each of the 591 parameters needed for ED score

calculation varies strongly as a function of resolution. Thus, to

classify a peak, PeakProbe requires a set of these parameters

specific to the resolution of the peak. Rather than employ sets

of parameters specific to given bins or ranges of resolution, we

model each resolution-dependent parameter with a smoothly

varying spline function [Fig. 3(c)]. When provided with a

resolution value, these splines return a data-transformation

parameter value for that resolution. We refer to such a func-

tion as a resolution-to-parameter mapping spline (RPMS).

RPMS coefficients are determined by fitting six-parameter

natural cubic spline functions to the training data using a

moving-window approach. In this approach, feature values are

binned by resolution and parameters are estimated from the

data in each bin. The resulting set of parameter estimates is

used along with the average resolution of each data bin to fit

spline coefficients that parameterize the resolution-dependence

observed for a given feature. The two example RPMSs in Fig.

3(c) show binned values for the mean and standard deviation

of feature CC1 (circles) along with the spline functions used to
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model these data. Details of RPMS fitting, data decorrelation

and distribution fitting can be found in Appendix A.

In contrast to the resolution-dependent parameters needed

for ED feature mapping, the majority of parameters used for

CC feature mapping are resolution-independent. Such para-

meters are simply global constants that are calculated during

classifier training using all training data. We term these

fixed parameters resolution-independent model parameters

(RIMPs) to distinguish them from RPMSs. CC feature

mapping requires two RIMPs for standardization and eight for

modelling the water and sulfate PDFs for each feature. In

total, CC feature mapping requires 20 RIMPs and two RPMSs,

estimates for which are calculated during training using the

same approaches as used for ED feature mapping parameter

estimation.

Training the class likelihood-estimation stage of the

PeakProbe classifier entails modelling the joint distributions

of ED and CC scores observed for each solvent class in the

training data. For each solvent class, ED and CC scores are

binned and scaled to give discrete probability distributions.

The values of these discrete ED and CC score distributions

along with the data ranges used for score binning are the

parameters generated during this training stage. Following this

training stage, several additional parameters are derived from

the training data, including the parameters that are necessary

to convert C2 scores into probability estimates that a peak

belongs to a class other than water. These probability esti-

mates are used during the triage stage of classification and are

incorporated into the quality indicator calculated for each

prediction during classification.

The training process described provides the parameters that

are needed to translate raw feature data into CC and ED

scores. Many machine-learning techniques aim to produce

similar linear projections of complex data, such as support-

vector machines accompanied by ‘kernel tricks’ and isometric

feature mapping-based manifold learning (Hofmann et al.,

2008; Singh et al., 2007). Thus, it is reasonable to consider the

system of data transformations parametrized by RPMSs/

RIMPs used by PeakProbe as a means of obtaining a linear

projection of feature data tailored to crystallographic data.

3. Results and observations

3.1. Statistical properties and classifying power of individual
features

The utility of the 21 features described for distinguishing

between water and sulfate was assessed by both a signal-to-

noise metric and error analysis following classification using a

logistic regression (LR) classifier constructed for each feature.

The results of these analyses are given in Table 1, and details

of the assessment metrics employed are detailed in Appendix

A. In Table 1, CCr refers to the correlation coefficient of each

feature versus resolution and S/N refers to a signal-to-noise

metric that reflects the relative separation of feature-value

distributions for water and sulfate models. Accuracy (Acc.)

and F1 scores reflect the performance of a single-feature LR

classifier in differentiating between sulfate and water. Accu-

racy is given by the fraction of class predictions that agree with

the input labels. The F1 score is the harmonic mean of preci-

sion and recall, with precision defined as the fraction of sulfate

predictions that are correct and recall defined as the fraction

of input labelled sulfate that is correctly predicted. For highly

unbalanced classes, the F1 score better accounts for false-

positive predictions than does accuracy. To wit, for unbalanced

populations in which waters (negative condition) outnumber

sulfates (positive condition) by 50:1, similar to the training

data described, predicting that all inputs are water results in an

accuracy score of 98% but an F1 score of zero. Similarly,

assigning classes at random from a 50:1 distribution results in a

50% expected accuracy but an expected F1 score of 3.8%. The

stark differences between the accuracy and F1 scores for each

LR classifier reflect the high false-positive rate (water models

predicted to be sulfate) seen for all single-feature classifiers

(Powers, 2011). Despite the high rates of false positives, all

features were able to provide both F1 scores and accuracy

rates in excess of random classification.

Further analyses revealed that the ability of each feature to

distinguish between water and sulfate often varied strongly

with resolution. Specifically, LR classifiers constructed and

tested using training data from structures within a narrow

resolution range often yielded markedly different F1 scores for

different resolution ranges. For example, when trained on data

with a resolution range of 1.0–1.3 Å, a logistic classifier using

only CC13 yielded an F1 score of 0.4. When trained and tested

on 3.3–3.7 Å resolution data, the resulting score was 0.8. F1

scores for the CC9 classifier exhibited a similar resolution-

dependent performance, while CC5 exhibited the opposite

trend, performing better at finer resolution. The resolution-

dependence seen for the LR classifier performance of many

features suggested that data for a given feature as a whole may

not be linearly separable, but may be so piecewise when

binned by resolution.

To investigate the implementation of a multi-feature linear

classifier, the inter-feature correlations for each feature were

analysed as a whole and for data binned by resolution. These

analyses revealed that the majority of ED features show non-

negligible inter-feature correlation and that the degree of

correlation between feature pairs often varies with resolution.

Fig. 4(a) shows the observed correlation coefficients for three

feature pairs, two of which show marked changes in correla-

tion across resolution ranges. Many inter-feature correlations

were expected, such as the correlation of similar features

extracted using both 2Fo � Fc and Fo � Fc density (for

example CC3 and CC4). Fig. 4(b) illustrates the distributions

of inter-feature correlation coefficients observed for training

data. In this figure, feature data are binned by resolution and

the distribution of correlation-coefficient magnitudes for all

feature pairs is shown for each bin, where the median is shown

as a horizontal bar, boxes correspond to values within the

interquartile range and values outside this range are shown as

dots. To construct a classifier that makes use of all extracted

features simultaneously, we implemented a procedure for

decorrelation by resolution-dependent PCA. When applied to
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training data, this decorrelation procedure disentangles

the convoluted inter-feature relationships and resolution-

dependence for all 19 ED features. Fig. 4(c) summarizes inter-

feature and versus-resolution correlation for all features at

each stage of data processing. Importantly, the average inter-

feature correlation for ED features following decorrelation is

essentially zero. Thus, even though complex and requiring

thousands of parameters, this resolution-dependent data-

processing pipeline successfully transforms raw feature values

into linearly independent data suitable for use with linear

classification methods, such as that used to calculate ED and

CC scores.

3.2. Statistical properties and classifying power of ED and CC
scores

In addition to removing collinearity from feature data, the

data-processing pipeline of the PeakProbe classifier produces

ED and CC scores with minimal resolution-dependence.

Fig. 4(d) shows ED scores by resolution bin for water and

sulfate solvent classes as observed for the training data. For

each class in each resolution bin, the coloured bar represents

the range of ED scores � one standard deviation from the

mean (horizontal bar). For comparison, in Fig. 3(c) the mean

of feature CC1 is plotted as a function of resolution along with

a corresponding fitted RPMS. For this feature, the range of

fitted values is 0.61, or 3.8 times the total standard deviation of

all CC1 values. Calculation of this scaled range metric for all

19 ED features reveals a mean value of 3.2, indicating that on

average the mean values for these features vary by more than

Figure 4
Results of data-processing methods on training data. In (a), (b) and (c), the values refer to Pearson’s product–moment correlation coefficient and r.m.s.
refers to root-mean-square. (a) Inter-feature correlation for three example feature pairs. (b) Distributions of all 210 inter-feature correlation coefficients
versus resolution. Coefficients are converted to r.m.s. values, plotted boxes correspond to values within the interquartile range, the median is shown as a
horizontal bar and values outside this range are shown as dots. (c) Summary of inter-feature and versus-resolution correlation for ED and CC features at
each stage of data processing. Inter-feature (inter-feat.) values refer to correlations between grouped features and versus-resolution (vs reso.) values to
correlations between features and crystallographic resolution. Values are given for each stage in the data-processing workflow described in Fig. 2(a). (d)
ED scores binned by resolution. Blue and red boxes represent the range of training-data ED scores for water and sulfate, respectively, that fall within one
standard deviation of the mean (horizontal bar) of each resolution bin.



three standard deviations when binned by resolution. In

contrast, mean ED score values vary by only 0.52 standard

deviations when binned by resolution. Thus, the resolution-

dependent data processing described produces an ED score

with a drastically reduced resolution-dependent variation

when compared with the features from which this score is

derived. CC scores show a similar behaviour, with minimal

variation between resolution bins.

To investigate the ability of ED and CC scores to discri-

minate between different solvent classes, we repeated the

analyses performed on each individual feature for each of

these composite scores (Table 1). LR classifiers trained on ED

and CC scores yielded F1 scores of 0.92 and 0.86, respectively,

for distinguishing sulfate from water. Notably, these classifiers

outperformed those trained on any single feature, indicating

that each score successfully combines the classifying power of

its constituent features.

Following up on this observation, we constructed the class

likelihood estimator component of the PeakProbe classifier to

assess the combined classifying ability of ED and CC scores.

When training data for all sulfates and waters were input, this

classifier achieved an accuracy of 99.98% and an F1 score of

98.05%. The F1 scores varied little with resolution, ranging

from 95.9% at 2.70–3.10 Å resolution to 99.5% at 3.52–5.00 Å

resolution. In order to investigate the impact of each indivi-

dual feature on the combined classifier, we repeated these

analyses using modified input data in which values for a given

feature were swapped between the sulfate and water popu-

lations. In this approach, swapping data for any feature having

a meaningful effect on ED or CC score values would result in a

lower F1 score than observed for unmodified data. We define

�F1 for a feature as the value by which the F1 score is lowered

when values for the feature are swapped, and use this value as

an overall indicator of feature impact (Table 1). The results of

these analyses reveal that CF1, the distance from a peak to the

closest model atom, and ED4, the volume of 2Fo � Fc density

above 1.0�, have the greatest effect on classifier performance,

with both having �F1 magnitudes of greater than 0.8.

Conversely, eight out of 21 features showed minimal feature

impact, with �F1 magnitudes of 0.06 or less. However, all 21

features proved to have a measurable impact on classifier

performance. We note that the probabilistic nature in which

ED and CC scores are calculated results in self-weighting

behaviour among input features. Specifically, by calculating

ED and CC scores based on the relative likelihood of sulfate

versus water for a given feature, for those features with

minimal separation between these two populations (or at

resolutions where such separation diminishes), the relative

likelihoods of each population are nearly equal and their log

ratio approaches zero. When feature likelihood log ratios are

summed, features with near-zero values have no effect on the

resulting score. Thus, each feature contributes to ED and CC

scores only to the degree that it differentiates between

populations in the training data.

Further analyses revealed that the combined use of ED and

CC scores allows the PeakProbe classifier to distinguish

between solvent classes other than water and sulfate. For these

analyses, class-versus-other F1 scores are tabulated for each

class, with the smallest population assigned to the positive

condition. The resulting F1 scores for each class are then

averaged to give the reported score. Classification results data

are given in Table 2. For training data, discrimination between

only sulfate and water inputs resulted in an F1 score of 0.98, as

noted above. Including all solvent classes and grouping all

nonwater predictions into a single class resulted in an F1 score

of 0.92. Classification with all four solvent classes yielded an F1

score of 0.82. Moreover, the F1 score of 0.82 belies a total

accuracy of 99.1% and class-versus-other accuracy values

above 98% for all solvent classes. Notably, omitting the CF1

updating and adaptive prior procedures during the triage stage

of classification results in an F1 score of 0.48. For reference,

when labels in the training set are randomly shuffled, the

resulting predictions yield an F1 score of 0.02. Importantly,

input labels in the training data were not subjected to any form

of supervised validation and were taken as is. Thus, the

training data certainly include label noise from incorrectly

built models. The 98% classification accuracy observed for

training data corresponds to a 2% total training error. Visual

inspection of several hundred misclassified examples suggests

that many such peaks are truly mislabelled and are not unique

class instances mishandled by PeakProbe. Examples of likely

mislabelled peaks are shown in Fig. 5. For the time being, we

have elected to retain these data in the training set rather than

risk introducing model bias through unsupervised data

cleaning.

Because PeakProbe assigns scores based on unimodal

distributions of feature values observed from large-scale

sampling of the PDB, it seems unlikely that the probabilistic

model derived from training data would be biased to include

or exclude any particular subpopulation from any solvent

class. Nonetheless, we assembled a validation data set of

features from peaks that were explicitly not included in any

training procedure to investigate possible model overfitting

(detailed in Section A1). Overall, the classifier performance
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Table 2
Classification results.

For each trial shown, the models indicated by * were classified into the classes
specified by *, where W, S, H and M refer to water, sulfate, heterogen and
metal, respectively. The S, H and M classes were taken as equivalent for ‘not
water’. Accuracy and F1 scores are as in Table 2 (smallest population as the
positive condition). The details of each data set can be found in Section A1.

Input models Scored classes

Data set W S H M W S H M Accuracy F1 score

Training 2312745 solvent models from 17274 structures (0.6–5.0 Å)
1 * * * * 1.00 0.98
2 * * * * * Not water 0.99 0.92
3 * * * * * * * * 0.99 0.82
4 Randomized * * * * 0.92 0.02

Validation 89824 solvent models from 2573 structures (0.7–4.3 Å)
1 * * * * 1.00 0.96
2 * * * * * Not water 0.99 0.90
3 * * * * * * * * 0.99 0.81

Testing 69817 Fo � Fc > 3.0� peaks from 2493 structures (0.7–4.5 Å)
1 * * * * 0.99 0.98
2 * * * * * Not water 0.99 0.90
3 * * * * * * * * 1.00 0.80



on the validation set mirrored that of the training data, with F1

scores of 0.96, 0.90 and 0.81 for sulfate/water only, water

versus not water and all class classifications, respectively. The

class distribution of misclassified validation data also resem-

bles that of the training data.

3.3. Classifier performance on difference map peaks

To test the effectiveness of the PeakProbe classifier on

peaks derived from difference map maxima, a testing data set

of features extracted from 69 817 difference density peaks

associated with 2493 structures was assembled as described

in Section A1. The performance of the trained classifier was

evaluated using the same procedures as above, with overall

results mirroring those obtained for training and validation

data. Specifically, classification restricted to sulfate and water

yielded an F1 score of 0.96, water versus not water gave a score

of 0.90 and four-way classification scored 0.82, with class-

versus-other accuracy scores above 99% for all classes. Table 3

details classifier performance using all four input and output

classes for testing data. In the confusion matrix shown, each

row corresponds to a single input class and each column to a

single output class. Thus, diagonal elements correspond to

correct predictions, while off-diagonal elements are errors.

The F1 scores shown are calculated from the same classifier

output after binning by resolution. For each class, the F1 score

shown corresponds to a class-versus-other tabulation as used

previously. These results show that PeakProbe is most

successful at identifying water models, attaining class F1 scores

for water classification above 0.92 across all resolution bins. F1

scores for other classes are lower than those seen for correctly

predicting the water class, but are highly similar to the values

seen for training data. As the binned F1 scores show, the ability

of PeakProbe to differentiate between nonwater classes
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Figure 5
Peak-classification examples from six different structures. Peaks are shown as black spheres, macromolecular components are coloured by element
(carbon in brown, oxygen in red, nitrogen in blue, hydrogen omitted) and posited models are shown in green. Electron density is shown as a mesh (Fo� Fc

in red and 2Fo� Fc in grey contoured at 3.0� and 1.0�, respectively, unless noted otherwise). Top row: peaks from training data with nominally incorrect
PeakProbe classifier predictions likely to be mislabelled in the PDB. Bottom row: peaks not associated with any existing solvent models but strongly
predicted to belong to the class indicated by PeakProbe. Details are as follows. (a) PDB entry 4aqp (2.45 Å); the peak is water A2001 predicted to be a
sulfate (modelled in green). Crystals were grown in the presence of the sulfate pseudo-analog 2-(N-morpholino)ethanesulfonic acid (MES). (b) PDB
entry 2xrz (2.20 Å); the central peak is water B2012. Of the six peaks shown, four were strongly predicted to be heterogen. Crystals were grown in the
presence of polyethylene glycol, a two-conformer model for which is shown as a point of reference in green. (c) PDB entry 2p3i (1.75 Å); the peak is the
central S atom of sulfate A3000 (shown in cyan) and was strongly predicted to be water. (d) PDB entry 1mh3 (2.10 Å); the peak is adjacent to the
terminal N atom of lysine A500 and was strongly predicted to be a sulfate (modelled in green). (e) PDB entry 2wjj (2.41 Å); four peaks are shown
bracketed between the side chains of glutamate A95 and lysine A132, all strongly predicted to be heterogen. Crystallization conditions give no
indications of likely models. ( f ) PDB entry 3zm4 (2.37 Å), Fo � Fc density contoured at 5.0�, 2Fo � Fc density at 1.8�; the peak is at a special position
adjacent to aspartate A65 and is strongly predicted to be a metal. Crystals were grown in the presence of 0.2 M Ca2+ and the crystal lattice appears to be
held together by electrostatic attraction between the acidic side chains shown and an unmodelled cation.



diminishes as the resolution worsens. However, the program

is able to differentiate between these classes and water

remarkably well even at unfavourable resolutions. These

promising results suggest that PeakProbe performs equally

well in classifying peaks derived from difference maps as it

does for peaks taken directly from the coordinates of existing

solvent models. Consequently, and as per our original objec-

tives, the utility of PeakProbe extends beyond evaluating

existing solvent models to providing model predictions for

automated model building ab initio.

The ability of PeakProbe to predict highly likely solvent

models for difference density peaks was further supported

by an examination of the predictions made for unmodelled

difference density peaks. When assembling and classifying the

testing data, PeakProbe identified a total of 13 651 difference

map peaks as strongly predicted to be solvent but not asso-

ciated with any existing solvent model. Manual examination of

several hundred such peaks revealed the vast majority of the

PeakProbe predictions to be highly plausible. Examples of

predictions for putatively unmodelled solvent are shown in

Fig. 5. Table 3 shows the disposition of predictions for these

peaks as ‘New solvent’.

As a preliminary test of the ability of PeakProbe to auto-

matically build or rebuild solvent models, 277 structures used

in the testing data set were selected at random and pipelined

through PeakProbe. For each structure, the existing solvent

models were removed, features were extracted from peaks

generated from all difference density maxima above 3.0�
along with all modelled solvent atoms associated with these

peaks, and all peaks were evaluated using the PeakProbe

classifier. The solvent model output by PeakProbe was

combined with the original solvent-stripped structure and the

ensemble was refined with phenix.refine using three macro-

cycles of reciprocal-space coordinate and B-factor refinement.

PeakProbe analysis was carried out both with difference map

peaks and peaks from existing solvent together and with

difference map peaks alone, ignoring input solvent models. In

62% of cases, the inclusion of the existing solvent model peaks

for comparative evaluation resulted in lower post-refinement

R factors than structures refined using solvent models built

without comparison to existing models. In 82% of cases,

refinement of the original structure with the solvent model

generated by PeakProbe yielded lower R factors than those

produced by the ordered_solvent procedure of phenix.refine,

which provides automated water model-building functionality.

In addition, refinement of the original structure with the

solvent model output by PeakProbe improved the R factors

compared with identical refinement of the original structure as

deposited in 53% of cases. We stress that these last results are

very preliminary and that the solvent models generated by

PeakProbe have not been examined in detail. However, the

observation that the inclusion of existing solvent models for

comparison resulted in nominally higher quality PeakProbe

models for a slight majority of structures indicates that further

evaluation and development are needed for PeakProbe to

predict and output quality solvent models in the absence of

any existing solvent models for comparison.

4. Discussion and future development

PeakProbe performs many of the functions associated with

manually building a comprehensive solvent model for a

macromolecular structure. Specifically, the program will (i)

identify peak locations associated with possible solvent, (ii)

extract features from these peaks, (iii) analyse these features

by comparing them with features extracted from known

solvent models and (iv) predict a likely solvent model for and

evaluate any existing model already associated with the peak.

Thus, PeakProbe serves as a prototype for fully automated

solvent modelling. The approach taken by PeakProbe speci-

fically addresses the gap in current software between tools for

automated water modelling and those used for automated

ligand identification and building.

At its core, PeakProbe predicts a likely solvent model for a

given point in a macromolecular structure using both electron-

density and local environment features. Predictions are made

based on how features extracted from a given peak agree with

the distributions for sulfate or water observed in a large-scale

sample of the PDB. Although only water and sulfate are used

as test models, the distinct trends in CC and ED features

observed for other solvent classes allow the extension of the

classes handled by PeakProbe to include the heterogen and

metal classes. Constructing the PeakProbe classifier required

the development of extensive data-manipulation routines for

feature scaling and decorrelation to allow all extracted

features to be incorporated into a linear classifier regardless

of resolution. Obtaining a reasonable classifier performance
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Table 3
Performance of the PeakProbe classifier broken down by class and
resolution.

The confusion matrix and binned F1 scores correspond to testing trial 3 as
described in Table 2.

(a) Confusion matrix.

Predictions

Labels W S H M

W 67965 3 32 32
S 85 389 22 1
H 233 45 443 6
M 101 31 15 414

New solvent 13334 84 155 78

(b) Fl scores by class and resolution.

Target class

Resolution (Å) No. of peaks W S H M

All 69817 0.99 0.89 0.75 0.76
0.70–1.31 4073 1.00 0.92 0.81 0.89
1.31–1.50 4919 0.99 0.80 0.74 0.65
1.50–1.72 14750 1.00 0.96 0.84 0.70
1.72–1.97 19018 1.00 0.94 0.77 0.79
1.97–2.25 15592 1.00 0.80 0.74 0.88
2.25–2.58 7793 1.00 0.89 0.71 0.82
2.58–2.95 2221 1.00 0.80 0.73 0.94
2.95–3.37 1226 0.96 0.86 0.65 0.61
3.37–4.50 185 0.92 0.56 0.67 0.51



using all four solvent classes required the inclusion of adaptive

prior weighting to account for structure-to-structure variation

in class frequencies and iterative updating of CF1 to allow

solvent atoms to be anchored to other solvent atoms rather

than directly to macromolecular atoms. The use of PeakProbe

to evaluate difference map peaks required functionality for

identifying both clustered peaks and peaks that were not

associated with solvent models, such as those arising from

errors in the underlying macromolecular models. PeakProbe

incorporates routines to address all of these requirements and

is able to classify difference map peaks and peaks based on

existing models equally well.

The applicability of training data derived from existing

models for classifying difference map peaks comes about as

a direct result of the feature-extraction approach taken by

PeakProbe. Specifically, all RSCC values are calculated after

fitting fixed models into local density. For sulfate, starting from

an idealized model and enforcing quality stereochemistry

during refinement mitigates the effects of model errors such as

distorted geometry or poorly refined B factors. Secondly, the

refinement of both water and sulfate into density avoids the

inclusion of RSCC scores from poorly fitted models in the

PDB. Lastly, because difference map peaks do not directly

correspond to optimal positions for likely solvent, models

placed at these peaks require coordinate refinement, and thus

the application of refinement during the acquisition of training

data parallels the use of refinement needed for models placed

at difference map peaks.

PeakProbe successfully maps feature data with resolution-

dependent multi-collinearity to a resolution-independent

vector space using a system of continuous regression models

for resolution-dependent data-transformation parameters in

the form of RPMSs. This approach can be viewed as the

simultaneous application of spline regression and dynamic

principal component analysis to produce a desirable data

projection. These techniques find frequent use in a wide

variety of data-analysis settings, but their combined use for

facilitating the analysis of crystallographic data appears to

be unique to PeakProbe. Moreover, the data-processing

approach used by PeakProbe may find use in myriad situations

in which data exhibit variant collinearity and dependence

upon a continuous underlying variable similar to those

observed for ED features.

While the performance of the PeakProbe classifier is highly

accurate and the solvent models output by PeakProbe show

promising results when used blindly in refinement, PeakProbe

should not yet be considered a fully automated solvent-

modelling tool. PeakProbe will carry over validated models

for members of the heterogen and metal classes, but it cannot

generate models for these classes de novo. Because PeakProbe

considers sulfate and phosphate to be indistinguishable,

models predicted to be sulfate should be converted to phos-

phate when appropriate. Furthermore, comprehensive testing

of PeakProbe will require a thorough inspection of misclas-

sified peaks leading to training error, classification error for

existing solvent peaks outside the training data and validation

of predictions for peaks that are not associated with any

existing model. Until such testing is complete and a fuller

extent of the capabilities and limitations of PeakProbe is

known, predictions and models output by PeakProbe should

be subjected to conscientious user validation. Given the sheer

size of the training data, full remediation of putative mis-

labelled inputs would require the examination of over 20 000

examples. Interestingly, similar large-scale crystallographic

remediation efforts appear to be amenable to crowdsourcing

approaches (Horowitz et al., 2016; Jorda et al., 2016), which is a

possibility for PeakProbe that is currently under considera-

tion.

APPENDIX A
Method and implementation details

A1. Curation of data sets

For all data sets, a given data element consists of a PDB

structure identifier, the coordinate at which feature extraction

was carried out (a ‘peak’), the extracted features themselves

and information about the local atomic environment

surrounding the peak. Training data consist of all data used to

derive the PeakProbe model parameters for classification and

scoring. Two additional data sets were employed for testing

the trained classifier. The first also uses PDB coordinates

directly as peaks, while the second uses coordinates derived

from local maxima within difference density maps calculated

following the removal of solvent. These data sets are referred

to as training, validation and testing data, respectively.

All training and validation data were assembled from

features extracted from model atoms for each of four solvent

classes: water, sulfate, heterogen and metal. Candidate models

were collected from structures as follows: (i) selection of all

PDB entries as of October 2016 accompanied by structure-

factor data, not marked as obsolete and with a reported

resolution between 0.6 and 5.0 Å, (ii) calculation of electron-

density maps for each selected structure following the removal

of water, sulfate and the 72 next most common single-atom

and multi-atom solvent species in the PDB and (iii) discarding

any structures with a working R factor of greater than 40%

following the removal of solvent. Of the remaining structures,

18 256 contained sulfate or phosphate. From these structures,

the central atoms of sulfate or phosphate with difference

density above a nominal 3.0� threshold were selected as

candidate sulfate models, netting a total of 40 101 models from

12 333 structures. From these structures, all water atoms with

difference density above 3.0� were selected as candidate

models (2 309 678 in total). Initial candidate heterogen and

metal class models were selected from these same structures

with the 3.0� difference density requirement. Heterogen

models were taken from the following molecules (PDB ligand

codes given): glycerol (GOL), ethylene glycol (EDO), poly-

ethylene glycol variants (PEG, PGE, PG4 and P6G), hexylene

glycol (MPD), acetate ion (ACT) and chloride ion (CL).

Candidate metal class models were taken from magnesium,

calcium, zinc, cadmium, cobalt and manganese ions. To ensure

sufficient populations within each class, heterogen and metal
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models from an additional 7422 structures not containing

sulfate were included using the same R-factor and difference

density selection criteria as noted above. This search yielded a

total of 2 402 569 models from 18 815 structures including

6.7% and 50%, respectively, of all waters and sulfate/phos-

phates in the PDB. The authors note that all PDB entries were

treated as independent structures when assembling data sets,

including those sharing identical or highly similar macro-

molecular components, isomorphic crystal lattices and

comparable limiting resolutions. Consequently, the data sets

contain a small fraction of peaks that could be considered

duplicate or redundant to the degree that identical solvent

models in such overlapping structures would be associated

with indistinguishable local electron density and atomic

contacts.

From these data, all models from 1541 randomly selected

structures were set aside as validation data, with the models

from the remaining structures used as training data. For

training purposes, heterogen class models were restricted to

glycerol (GOL), polyethylene glycol (PEG) and acetate

(ACT) and chloride ions only, and metal class models were

restricted to magnesium, calcium, zinc and manganese. Metal

and heterogen class models not included for training were

placed with the validation data. All models are associated with

a single atomic coordinate, either the atomic coordinate itself

for single-atom species or that of a central atom for multi-

atom solvent as follows (PDB atom names are given): SO4 (S),

PO4 (P), GOL (C2), PEG (O2), ACT (C2). The final training

data contained 2 312 745 models derived from 17 274 struc-

tures.

Validation data were assembled as follows: (i) from the 1541

structures previously set aside, all members of the aforemen-

tioned solvent classes were included as candidate models, (ii)

multi-atom and metal species not included in the training data

were included, (iii) candidate models were taken from coor-

dinates for all atoms in multi-atom species provided that they

were not the central atoms used in the training data and (iv) all

models with difference density below 3.0� were discarded.

The testing data consisted of 89 824 models from 2573 struc-

tures, 1032 of which also contained separate models for

training data.

Testing data were assembled from peaks identified in the

difference maps calculated following the removal of common

solvent. Difference density maps from the 2573 structures

associated with testing data were subjected to a peak-search

procedure that identified local maxima above 3.0� positioned

no closer than 0.3 Å but less than 8.0 Å from a macro-

molecular atom. This search netted 787 819 peaks, 374 563 of

which could clearly be associated with existing solvent in the

original structure. Class labels for these associated peaks were

assigned based on the identity of the closest solvent atom,

provided that it was less than 1.65 Å away and was among the

species used previously for testing or training. Peaks asso-

ciated with water models in the training data were discarded.

The remaining peaks were filtered to remove those arising

from model errors, map noise, satellite peaks of locally clus-

tered peaks and those identified by PeakProbe as highly

unlikely to correspond to solvent. Filtering procedures are

described below. The resulting data set consisted of 69 817

difference map peaks associated with 2493 structures.

For all data, alternate conformations were treated as

separate models for all classes. Electron-density maps were

calculated using standard parameters for structure-factor

weighting and bulk-solvent scaling in PHENIX (Adams et al.,

2010).

A2. Feature extraction

All electron-density features were collected by centring

peaks in a reference coordinate system consisting of a 10 Å

triclinic cubic cell, resampling the accompanying electron

density in this cell using tricubic interpolation with 0.5 Å

lattice spacing and fitting models for both water and sulfate by

real-space refinement. For sulfate models, the central sulfur

was centred within the reference cell, with each bonded O

atom placed 1.51 Å away with idealized tetrahedral geometry

(Miehlich et al., 1989). Standard geometric restraints from the

cctbx libraries were used along with an automatically weighted

harmonic restraint on the S atom. Water models were refined

as point atoms (no explicit H atoms) with a similar harmonic

restraint. The use of this reference setting greatly facilitates

program speed because a single set of input models and

geometry restraints can be used for refinement against any

target density.

For features CC1–CC14, real-space correlation coefficient

(RSCC) values were calculated for a given model against a

given map as described in Table 1. The volume of density

associated with each peak (ED3 and ED4) is given by the

number of grid points in the reference setting with density

above 1.0� within 2.0 Å of the initial position of each peak.

Density values were corrected for the effects of variance

underestimation owing to solvent flattening. To capture the

radial dependency of the local electron density, we employed a

‘pseudo-inverse’ electron-density map (denoted with a ‘+’ in

Table 1) where each scaled electron-density value is mapped

to an approximate multiplicative inverse value. This pseudo-

inverse is constructed so as to asymptotically convert large or

negative output values to a fixed maximum as input values

decrease. Use of this map effectively upweights density farther

from the peak centre, thus upweighting the region of density

occupied by sulfate O atoms but relatively unoccupied by

water. To quantify the tetrahedral character of sulfate, two sets

of RSCC values were calculated following two coordinate

transformations. Firstly, a sulfate model was refined against

the pseudo-inverse map and the resulting coordinates were

used for RSCC calculation against the original, non-inverted

map (CC9 and CC10) with the expectation that fitting a sulfate

model to pseudo-inverse density (restraining the central S

atom) would place the O atoms maximally out of place with

respect to the non-inverted density. Secondly, a sulfate model

was first fitted to a given map and the model was then rotated

by 60� around a bond axis so as to explicitly move three of the

four bonded O atoms out of phase with any tetrahedral

morphology within the observed density. In both cases, the
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coordinate transformation would result in a commensurately

poor RSCC for true sulfate density, but a relatively unaffected

RSCC for true water density. For refinement transformations,

RSCC values from non-inverted maps were used directly as

features. For the explicit transformations, the rotation opera-

tion was repeated for all four sulfate bond axes with average

values (CC14 and CC14) and standard deviations (ED1 and

ED2) used as features.

Close-contact features were obtained from the analysis of

modelled atoms within 6.0 Å, including those arising from

crystal symmetry. Atomic identities and interatomic distances

for all peak-atom pairs were found using cctbx.fast_pair_

generator. Feature CF1 is the distance from a peak to the

closest modelled atom. This atom can be considered as the

‘anchor’ that associates a putative solvent molecule at the

peak position with the structure model as a whole. Feature

CF2 quantifies the relative likelihood of sulfate versus water

given the other atoms in the vicinity.

To obtain CF2, we tabulated the frequency with which

sulfate and water occur within 5.0 Å of every chemically

unique atom observed for either population. The list of

chemically unique atoms is the set of concatenated atom and

residue name PDB records, and only instances within the

training data for water or sulfate central atoms with difference

map density values of greater than 5.0� were tabulated.

Observed frequencies were normalized to give the frequency

with which water or sulfate is found in proximity to a given

atom. The ratio of these frequencies for sulfate versus water

for observations with at least 100 total occurrences for both

populations were calculated. A table of log values of these

ratios was then used to score the overall ‘sulfate-likeness’ of

the surrounding environment. This score was determined by

finding all atoms with table entries within 5.0 Å of a given

peak (alternates merged) and summing their respective log-

ratio values to give CF2. We note that no distance weighting

was applied during tabulation: the observed frequency log

ratio for a given atom was included in the score if the atom was

within 5.0 Å of the peak regardless of distance. Applying

either 1/distance or 1/distance2 weighting did not substantially

alter the ability of CF2 to discriminate between solvent classes.

The C2 score represents the probability that a given peak is

water or not water based on the relative goodness of fit of the

feature values of a peak to those observed in the training data.

This score was calculated by first taking the squared differ-

ences between observed feature values and the mean values of

the JSU distributions fitted for each feature and class. Each

squared difference was divided by the variance of each

distribution and the resulting values were summed for both

sulfate and water distributions. Because JSU distributions are

similar but not identical to normal distributions, these values

are similar but not identical to a �2 statistic, although their

observed distributions from training data are well fitted by �2

distributions and thus are termed pseudo-�2 values. The

pseudo-�2 value for features versus observed water distribu-

tions was subtracted from that of the sulfate distributions and

the resulting value was converted to a C2 score by a two-

parameter logistic function. Parameters for this function were

obtained from all training data using a two-class model (water

versus not water).

A3. Peak-cluster analysis

During feature collection, PeakProbe assembles a list of all

peaks within 6.0 Å of a given peak along with the corre-

sponding peak–peak distance and symmetry operation. To

fully encapsulate the relationships between all peaks,

including those arising from crystal symmetry, a rank-4 (n, n,

s, s) multi-layer adjacency tensor (MLAT; De Domenico et al.,

2013) is constructed where n is the number of peaks within a

structure and s is the number of symmetry operations

encountered during the peak–peak distance search (not

necessarily the number of symmetry operations associated

with the space group of the underlying structure). This MLAT

can be thought of as a system of s2 adjacency matrices, each

n � n, where the two s indices represent enumerated asym-

metric units in which the peak–peak contact (edge) originates

and terminates. For peak clustering, the MLAT is undirected

and layers with identical s indices are identical recapitulations

of contacts within a single asymmetric unit. Contacts gener-

ated by symmetry are represented in layers where the s indices

are not equal. When considering only a single asymmetric unit,

only s = 1, i where i = {1, 2, . . . , s} layers need to be considered.

Following the construction of a complete MLAT, a shortest-

path search was carried out for all i across an above-adjacency

matrix constructed from the 1, i layers of the MLAT. For every

peak–peak pair, this search provides a list of graph-traversal

distances between the two peaks making use of, at most, a

single symmetry-related asymmetric unit. These distances

were folded back into a single asymmetric unit by constructing

a distance-weighted peak–peak adjacency matrix in which

each matrix element is the shortest peak–peak distance

observed for each pair.

Following the construction of this modified adjacency

matrix, a divisive approach was used to identify closely asso-

ciated peaks. From the adjacency matrix, a similarity matrix

was constructed using a density-weighted metric incorporating

the similarity in the CC, ED and C2 scores and the local

density between connected nodes. This similarity matrix was

converted to a minimum-cut tree by successive spectral

partitioning using Fiedler vectors of each subgraph. All peak–

peak connections were ranked by density-weighted similarity.

Starting from the most strongly connected peak pair, peak

clusters were built up by single-linkage agglomeration of

candidate cluster members drawn from the smallest cluster in

which both peaks reside in the minimum-cut tree. For each

resulting cluster, the cluster score is the average pairwise

similarity (edge weight) for all cluster members. Peaks

occurring in multiple clusters were removed from all but the

cluster with the highest cluster score and peaks within a cluster

were ranked by degree centrality. Using features collected

from water and all atoms of multi-atom solvent from 1000 test

structures, the cluster score described is able to differentiate

water clusters from multi-atom solvent with 92% precision.
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A4. Feature and classifier evaluation

For the features and scores described in Table 1, the

correlation of each feature or score with crystallographic

resolution (CCr) is the Pearson product–moment correlation

coefficient for the two variables. Logistic regression (LR)

classifiers were constructed by fitting a regularized,

unweighted two-parameter logistic target function to stan-

dardized feature values from a balanced sampling of water and

sulfate from the training data. Sampling and parameter esti-

mation were repeated until the average value for each para-

meter varied by less than 0.1%. The performance of each

feature or classifier was assessed by tabulation of accuracy and

F1 scores with sulfate as the positive condition. Accuracy is the

fraction of all predictions that match input labels. The F1 score

is the harmonic mean of precision and recall, with precision

defined as the fraction of sulfate predictions that were correct

and recall defined as the fraction of input labelled sulfate that

was correctly predicted. For evaluation of multi-class classifi-

cation, class-versus-other F1 scores were tabulated for each

class, with the smallest population assigned to the positive

condition. The resulting F1 scores for each class were then

averaged to give the reported score.

The overall effect of each feature on the PeakProbe clas-

sifier (feature impact) was assessed by swapping feature data

for peaks labelled as sulfate for data from peaks labelled as

water and vice versa, followed by recalculation of the F1

scores. To accommodate the unbalanced sizes of each class,

this swapping was performed by assigning values for one class

from a random sampling (with replacement) of data from the

other class. Starting with all sulfate and water training data

correctly predicted by the PeakProbe classifier (F1 = 98.0%),

data for a given feature were swapped as described and the

altered data were mapped to ED and CC scores. Predictions

from these scores were used to calculate new F1 score values,

and the resulting change in the F1 score (�F1) reflects the

impact of swapping class data for a given feature, and thus

indicates the net effect that a given feature has on classifier

performance.

A5. Model training

A5.1. Modelling of resolution-dependent parameters by
RPMSs. All resolution-dependent parameters were modelled

using six-parameter natural cubic spline functions. Given a

resolution value, these fitted spline functions evaluate a best-

fit estimate for a given parameter and thus are termed reso-

lution-to-parameter mapping splines (RPMS). The use of such

spline functions ensures that parameters vary smoothly with

resolution and reduces the number of training parameters that

are needed to encapsulate feature distributions over the entire

range of observed data. To obtain RPMS coefficients, data

were binned by resolution and the estimated parameter and

the mean resolution of each bin were fitted using the BFGS

minimizer of SciPy using an L1-norm regularized squared-

error target function. For certain parameters, fitted splines

tended to take on extreme values at resolutions outside the

observed data. To counteract this behaviour, data points at the

highest and lowest (numerically) resolution were duplicated at

5.0 and 0.3 Å, respectively, prior to fitting. The natural spline

bases used impose linear behaviour outside the terminal spline

nodes (fixed at 1.0 and 4.0 Å) and this data augmentation,

albeit artificial, allows reasonable parameter extrapolation to

extreme resolutions (D. Madigan; http://www.stat.columbia.edu/

~madigan/DM08/regularization.ppt.pdf).

For all RPMSs, splines were fitted following sorting of all

data by resolution and grouping data into bins of sufficient

resolution-spanning width to ensure that each bin contains a

sufficient sample size. For resolution-dependent mean para-

meters, averages for the resolution and parameter value for

each bin were fitted directly. Standard deviation values were

converted to log values prior to fitting, ensuring that the anti-

log of the fitted value was positive. For modal matrix elements

and distribution coefficients, a moving-window approach was

used in which a number of contiguous bins were grouped and

this grouping was shifted through the data bin by bin as

average parameter and resolution values were accumulated.

A5.2. Decorrelation of ED features. Resolution-dependent

decorrelation was accomplished by transforming data via

principal component analysis (PCA). The required transfor-

mation matrix was constructed from a unitary matrix obtained

from singular-value decomposition of the Pearson product–

moment correlation matrix. The left-singular vectors (eigen-

vectors) of the resulting decomposition were sorted according

their singular values and were arranged as columns to form a

modal matrix. To obtain resolution-dependent modal matrix

elements (i) the correlation matrix for all data was decom-

posed and the resulting unitary matrix was arranged to give a

reference modal matrix, (ii) similar unitary matrices were

calculated for data over a narrow resolution range using the

moving-window approach described, (iii) the left-singular

vectors of each of these matrices were permuted so as to

maximize agreement with a reference matrix and (iv) values

for each matrix element and the average resolution of the data

window were modelled by RPMS. The vector permutations

used consist of column rearrangements and additive inversion.

The orientation of the vector corresponding to the smallest

singular value was oriented so as to ensure that the determi-

nant of the resulting modal matrix is 1.0. During the vector-

permutation process, vectors from the unitary matrix derived

from the window of data with the lowest numerical resolution

were compared with the reference modal matrix. Vectors from

subsequent data windows were compared with the modal

matrix from the previous window of data. Training data were

divided into 71 resolution bins and were analysed using a five-

bin moving window.

A5.3. Modelling of observed distributions of feature values.
To model the conditional likelihood distribution of a given

feature for a given class (sulfate or water), a normalized

histogram of observed data for each sulfate and water

population was fitted to a JSU probability distribution. For

resolution-independent CC features, training data for both all

waters and all sulfates were fitted directly. For resolution-

independent ED features, data were binned and windowed as

described for decorrelation, and histograms of data from each
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window were used for fitting. The sparsity of data at high

resolution resulted in a few irregular histograms that were

refractory to distribution fitting. In addition, JSU parameters

exhibit highly correlated behaviour in certain regions of

parameter space. To generate fits under these circumstances,

initial fit values were taken from the immediately preceding

resolution bin and the fitted values were restrained to these

initial values by including harmonic terms in the fit target

function. Further fit conditioning was accomplished by

including an L2-norm for two of four parameters and a penalty

on the variance of the resulting distribution. Example fits are

shown in Fig. 4(c). The slight systematic errors in the fit are

attributable to the specific parameter constraints that were

applied during fitting. Lastly, for a given solvent class, the

continuum of JSU distributions for resolution-dependent

feature is itself modelled by fitting an RMPS for each distri-

bution parameter.

A5.4. Modelling of joint ED/CC and class frequency
distributions. Observed joint probability distributions for

each solvent class given ED and CC scores were constructed

using normalized histograms of each score. The score data

were divided into 50 equal-width bins and the frequency of

scores occurring within each bin along with the bin centroid

were stored as model parameters. Each structure in the

training data contains a distribution of the four included

solvent classes. The distribution of these distributions across

all structures in the training data constitutes a Dirichlet

distribution conjugate to the categorical posterior distribution

of classes. Thus, the most likely class distribution based on this

Dirichlet distribution constitutes an appropriate prior for class

weighting. The maximum-likelihood estimate for the para-

meters of this distribution was calculated using the set of

observed class probability mass functions (with additive

smoothing) for all structures in the training data (J. Huang,

http://jonathan-huang.org/research/dirichlet/dirichlet.pdf). The

expected values of these parameters were used to construct

the final prior distribution used for class weighting.

A6. Software notes

All Python modules used and required for classification

are incorporated into the cctbx.python environment. Model

training makes use of SciPy modules, several of which are

incompatible with cctbx.python; thus, model training must be

run outside this environment. All algorithms described are

implemented using NumPy. Statistical analyses were carried

out using NumPy, R and gnuplot (Williams & Kelley, 2013;

R Development Core Team, 2008). Structure figures were

prepared using PyMOL (v.1.504; Schrödinger).
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