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Good prior estimates of the effective root-mean-square deviation (r.m.s.d.)

between the atomic coordinates of the model and the target optimize the signal

in molecular replacement, thereby increasing the success rate in difficult cases.

Previous studies using protein structures solved by X-ray crystallography as

models showed that optimal error estimates (refined after structure solution)

were correlated with the sequence identity between the model and target, and

with the number of residues in the model. Here, this work has been extended to

find additional correlations between parameters of the model and the target and

hence improved prior estimates of the coordinate error. Using a graph database,

a curated set of 6030 molecular-replacement calculations using models that had

been solved by X-ray crystallography was analysed to consider about 120 model

and target parameters. Improved estimates were achieved by replacing the

sequence identity with the Gonnet score for sequence similarity, as well as by

considering the resolution of the target structure and the MolProbity score of

the model. This approach was extended by analysing 12 610 additional

molecular-replacement calculations where the model was determined by

NMR. The median r.m.s.d. between pairs of models in an ensemble was found

to be correlated with the estimated r.m.s.d. to the target. For models solved by

NMR, the overall coordinate error estimates were larger than for structures

determined by X-ray crystallography, and were more highly correlated with the

number of residues.

1. Introduction

Likelihood-based molecular replacement (MR) uses estimates

of the errors in the model and the data to improve the signal to

noise in the search. In Phaser (McCoy et al., 2007), the log-

likelihood gain on intensities (LLGI; Read & McCoy, 2016)

accounts for the effect of intensity measurement errors when

scoring MR searches. The LLGI discriminates correct from

incorrect solutions and is used to rank solutions across

complex search strategies (Oeffner et al., 2018), such as those

implemented in the ARCIMBOLDO suite of programs

(Millán et al., 2015), AMPLE (Rigden et al., 2008; Bibby et al.,

2013) and MrBUMP (Keegan & Winn, 2008).

The LLGI (for acentric reflections) is defined as
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In this equation, the parameters Ee (effective E) and Dobs

(Luzzati-style D factor) are derived from the measured

ISSN 2059-7983

http://crossmark.crossref.org/dialog/?doi=10.1107/S2059798319015730&domain=pdf&date_stamp=2020-01-01


intensity and its estimated standard deviation (Read &

McCoy, 2016), resulting in any reflections with large experi-

mental errors being downweighted. This gives an excellent

approximation to an intensity-based likelihood target that

would require expensive numerical integration. The �A term

accounts for the effect of predicted errors in the model. LLGI

calculations will be optimal when the initial estimates of �A

are accurate. Underestimation of �A will lead to under-

weighting of the high-resolution reflections in the LLGI

calculations, whereas overestimation of �A will lead to over-

weighting of these reflections. Both problems will lead to the

suboptimal usage of data and can influence success in a

borderline case.

Ignoring an optional bulk-solvent term for simplicity, �A

can be expressed as a function of resolution (s = 1/d), model

completeness (fp, the fraction of total scattering accounted for

by the model) and the effective r.m.s. coordinate error of the

model (�) as given in (1b). Once the model has been placed in

the MR calculation, the value of � can be refined during a

rigid-body refinement. This term � is different from the

r.m.s.d. that can be calculated between equivalent atomic

positions by superposing two structures, because it is an

effective r.m.s.d. that optimizes the variance term in the LLGI

target. For this reason, we refer to it as variance-r.m.s.d. or, for

short, VRMS.

The VRMS can only be refined once a model has been

placed and its value is only relevant if the model is placed

correctly, so it is necessary to provide a prior estimate of the

VRMS before carrying out the search. Prior to Phaser v.2.5.4,

Phaser used the Chothia and Lesk curve (which relates the

sequence identity to the r.m.s.d. between main-chain atoms;

Chothia & Lesk, 1986) as a first-order approximation.

Although these values worked reasonably well, it became

clear that estimates tailored to the MR problem were needed.

We developed an improved functional form to estimate

VRMS (2) as a function of the size of the model (Nres) and the

sequence identity (H, the fraction of mutated residues)

between the model and the target (Oeffner et al., 2013):

eVRMS ¼ AðBþ NresÞ
1=3 expðCHÞ: ð2Þ

However, experience using a wide variety of MR models

has shown that sequence identity is a poor measure to assess

the sequence similarity of very distant homologues. We

considered a number of alternative sequence-similarity

measures that have been developed over the past few decades

and that are summarized very well by Vogt et al. (1995).

To assess which property might improve predictive power,

we also investigated the correlations of a variety of properties

of the model and the target with the refined VRMS term.

Because work up to this point had concentrated on models

derived by X-ray crystallography, we also developed a new

functional form to estimate VRMS specifically for members of

NMR ensembles used as phasing models.

2. Methodology

The study follows the methods described by Oeffner et al.

(2013). Here, we summarize the steps from Oeffner and

coworkers that were used to carry out large-scale molecular-

replacement trials for X-ray models. The extension of the

earlier work to include NMR models is elaborated below.

2.1. Generation of molecular-replacement data using X-ray
models

In the earlier study, a total of 2862 structures (and the

associated diffraction data) with a single chain in the asym-

metric unit, across a range of SCOP classes (Murzin et al.,

1995) and with a size varying between 50 and 1500 residues,

were selected as targets from the wwPDB (Berman et al.,

2000). Care was taken not to include targets that were known

to be twinned or for which the published R factors could not

be reproduced by the Uppsala Electron Density server

(Kleywegt et al., 2004). Only one example was kept for each

unique sequence, except that all entries for proteins with more

than 600 residues were retained to improve the sampling of

large targets. For each target, homologous structures were

identified by performing a BLAST search (Altschul, 1991)

against the wwPDB with the BlastP tool. ClustalW (Thompson

et al., 1994) was used to perform pairwise alignments of the

homologue and target sequences; unlike BLAST, which finds

local subsequence alignments, ClustalW maximizes the global

sequence alignment. The models were pruned and edited with

Sculptor (Bunkóczi & Read, 2011a). A total of 21 822

molecular-replacement calculations were performed and used

for analysis in the earlier study.

For this study, we curated the database from the earlier

study to remove redundant targets (inadvertently included

more than once) and models that failed to lead to successful

molecular-replacement solutions. To measure the reliability of

the molecular-replacement solution, we calculated model-to-

map correlations (globalCC) using phenix.get_cc_mtz_pdb to

assess the agreement between 2mFo�DFc maps (Read, 1986)

computed from the molecular-replacement solution and the

deposited model. A subset of 6030 molecular-replacement

trials with globalCC > 0.2 was chosen, in the end, from the

curated database. These trials arise from a combination of

1307 distinct targets (which include 119 targets with deposited

intensity data) and 3420 distinct models. The database was

extended to include a variety of parameters associated with

target, model and sequence-similarity measures.

2.1.1. Target properties. Several measures to assess crystal

parameters, data parameters and protein parameters were

downloaded from the wwPDB. See Table 1 for a complete list

of target properties considered in the study.

2.1.2. Model properties. Parameters such as the number of

residues, date of deposition, resolution, r.m.s. deviations of

bond lengths and angles from ideal values and R factors were

downloaded from the wwPDB. Validation parameters such as

Ramachandran properties, clashscore, rotamer outliers,

MolProbity score (Chen et al., 2010) and C� deviations were

recalculated for the processed models using Phenix
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(Liebschner et al., 2019) command-line tools. Nonsphericity of

the model was estimated by calculating principal axes using

Gromacs (Abraham et al., 2015) command-line tools.

When available, SCOP definitions were downloaded from

the SCOPe database (Fox et al., 2014) and assigned to both

target and model entries (Table 1).

2.1.3. Sequence-similarity properties. Several amino-acid

substitution matrices were used to assess the sequence simi-

larity of a target–model pair. In this study, we considered

matrices that were judged to assess sequence similarity accu-

rately for pairwise sequence identities below 50% (Vogt et al.,

1995; Table 1). The matrices were used from within Biopython

(v.1.72) to score every target–model pairwise sequence align-

ment. The scores were normalized for the length of aligned

residues.

2.2. Generation of molecular-replacement data using NMR
models

A protocol similar to that used to generate molecular-

replacement data with X-ray models was used for the NMR

models. The targets identified above were retained and no new

targets were considered for this study.

2.2.1. Selection of NMR models. The sequence-profile

database constructed using entries from the PDB at 70%

sequence nonredundancy, PDB_mmCIF70, was downloaded

from the HHpred (Zimmermann et al., 2018) website. For a

given target (as selected previously in Section 2.1) HMMER

(Finn et al., 2011) was used to identify homologous structures

from PDB_mmCIF70. 1364 homologous structures which

were determined by NMR alone were retained. Properties

specific to NMR models such as the number of models

deposited in an ensemble and chemical shift data validation

were downloaded from the wwPDB (if reported).

2.2.2. Processing of NMR models. Clustal Omega (Sievers

et al., 2011), an improved implementation of the Clustal

algorithm, was used to perform pairwise alignment of target

and NMR model sequences. The scores discussed for X-ray

models were also used to evaluate sequence similarity for

NMR models. Models were pruned and edited with Sculptor

(Bunkóczi & Read, 2011a). Other studies have shown that

using NMR models for MR phasing is a challenge and have

suggested trimming protocols to improve success in molecular-

replacement phasing (Chen et al., 2000; Mao et al., 2011).

Accordingly, ensembles were generated with Ensembler

(Bunkóczi & Read, 2011b), selecting the default option to trim

residues deviating by more than 3 Å. Gesamt (Krissinel, 2012)

was used to perform a pairwise combination superposition of

all versus all trimmed models in an NMR ensemble. A median

r.m.s.d. between equivalent C� positions was calculated for

each trimmed ensemble to assess the conformational differ-

ences among the models. See Table 1 for the list of NMR-

specific metrics considered in this study.

2.2.3. Molecular-replacement rigid-body refinement. NMR

models with over 50% sequence coverage were superposed

onto the target using Gesamt. A total of 20 973 molecular-

replacement rigid-body refinements was performed using the

MR_RNP mode of Phaser (McCoy et al., 2007) using each

model from the trimmed NMR ensemble independently. In

practice, it is best to use NMR models as ensembles, but

success in statistical weighting of the ensembles depends on

having the best estimate of the effective error of each indivi-

dual member of the ensemble (Read, 2001).

2.3. Generation of graph database

For a given pair of target and model, there were about

120 properties to be evaluated. To address this large-scale

comparison, we built an in-house database representing the

data as a graph, using the open-source graph database plat-

form Neo4j (v.3.4.0; https://neo4j.com). The target and model

were defined as nodes and an edge connecting the two defined

a relationship (Fig. 1a). All of the properties associated with a

target or a model were associated with their respective nodes.

Properties such as sequence-similarity scores and the results of

molecular-replacement calculations were associated with the

edge connecting the two nodes. In this way, a complex graph

network was generated, which included all of the data defining
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Table 1
List of properties considered in the study.

The sequence-similarity measures have been discussed in a previous review (Vogt et al., 1995) and citations therein. Ensemble consistency is measured as median
r.m.s.d. between the models in an NMR ensemble.

Target properties Model properties Sequence-similarity measures

Crystal parameters: asymmetric unit volume,
unit-cell dimensions, space group, Matthews
coefficient, crystal system, polar space group

Validation parameters: Ramachandran properties,
clashscore, rotamer outliers, MolProbity score,
r.m.s.d. on angles, r.m.s.d. on bonds, C� deviations,
R factors†

Sequence identity, PAM250, PAM300, BLOSUM30,
BLOSUM35, BLOSUM40, BLOSUM45,
BLOSUM65, Benner6, Benner22, Benner74,
Feng, Genetic, Gonnet, Johnson, Levin, McLach,
Miyata, Rao, Risler, structure-based

Data parameters: resolution, Wilson B factor,
merging statistics

Data properties: resolution†, completeness of
resonance assignments‡, ensemble consistency‡,
number of conformers deposited‡, number of
conformers calculated‡, field strength‡

Protein properties: number of residues, SCOP
class

Protein properties: number of residues, molecular
weight, nonsphericity, helix and sheet content

Deposition date

† Properties specific to X-ray models. ‡ Properties specific to NMR models.



the targets, models (both X-ray and NMR) and the relation-

ships between them (Fig. 1b). An intermediary layer of nodes

(not shown in Fig. 1 for the sake of clarity) was used to

represent model number in the case of NMR ensembles.

Cypher, a declarative graph-querying language, was used to

query the data.

All statistical analysis was performed within the R statistical

programming environment (R v.3.5.0; R Core Team, 2018).

Nonlinear least-squares fitting was performed using the nls

package (Baty et al., 2015) starting with the most highly

correlated parameter and subsequently adding more para-

meters until a low residual correlation with unused parameters

was obtained. Figures were generated using the ggplot2

package (Wickham, 2016). Both the nls and ggplot2 packages

are available within R.

2.4. Derivation of equations to predict the refined VRMS

In fitting the two data sets, the data were examined to

determine which properties were most highly correlated with

the refined VRMS. In general, one property was included at a

time. Different functional forms were tested for equations

adding that property when fitting to the data, and the func-

tional form that minimized the deviation between the refined

and estimated VRMS was chosen. To choose the next property

to include in the fit to the data, residual correlations (corre-

lation to the normalized difference between the refined and

estimated VRMS) were computed. The process was termi-

nated when adding a new property had little effect on the

quality of the fit.

3. Results

3.1. Improved estimates for X-ray models

The Gonnet matrix score (Gonnet et al., 1992) has the

highest correlation to the refined VRMS term (Table 2)

among all of the metrics used to estimate sequence similarity,

so this was chosen to play the role taken by sequence identity

in equation (2) from Oeffner et al. (2013). Among the prop-

erties of the model, the size of the model has the highest

correlation to VRMS, followed by the

MolProbity score. As judged by the

residual correlation (also shown in

Table 2), the MolProbity score was the

most significant model feature that had

not been considered in the work by

Oeffner et al. (2013). Although we had

only expected properties involving the

model to play a significant role, we

found target resolution to also correlate

with VRMS, with a higher correlation

than the MolProbity score (Table 2).

Further molecular-replacement calcula-

tions were performed to ascertain that

the correlation is not an artefact of the

resolution of the data used during the

VRMS refinement. Molecular-replace-

ment calculations were repeated as a

function of the target resolution by

truncating the data to lower resolution

limits (2.2, 2.7, 3.0, 3.5, 4, 6 and 7 Å),

only to find that the correlation between

VRMS and the original resolution of

the target persisted.

Different functional forms for a

nonlinear least-squares fit to the data

from the 6030 molecular-replacement

trials in the curated database were

tested in preliminary work, including
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Table 2
Correlation of properties to the X-ray VRMS term.

Residual correlation is the correlation between the property and the
difference between the estimated VRMS and the refined VRMS estimated
either with the Oeffner equation (2) or the new equation (3).

Property
Correlation to
VRMS

Residual correlation to VRMS

Oeffner estimate New estimate

No. of residues of model 0.43 0.10 0.00
Sequence identity �0.67 (�0.33†) 0.00 0.00
Gonnet score �0.71 (�0.41†) �0.16 �0.03
Target resolution 0.26 0.24 0.00
MolProbity score of model 0.16 0.18 �0.02
Percent �-helix 0.20 0.19 0.10
Percent �-sheet �0.14 �0.16 �0.13

† Correlation for a subset of cases with <30% sequence identity

Figure 1
Schematic representation of the graph database. Targets and models are represented as square and
circular nodes, while an edge connecting two nodes represents a relationship between a target and a
model node. (a) Two types of edge can connect a target–model pair. (i) A unidirectional edge
defines a single instance of a molecular-replacement trial in which a model was used to determine
the target structure. The four different unidirectional edges represent four different trials of
molecular replacement, for instance using data to different resolution limits. (ii) A bidirectional
edge defines properties associated with sequence-similarity measures. More than one unidirectional
edge exists between a target–model pair if more than one molecular-replacement trial was carried
out. (b) presents an overview of a small graph database to show interconnections between the
nodes. A single PDB entry could be used to determine two different targets; in which case the
properties associated with processing the model, such as the MolProbity score of the processed
model, are stored as part of the edge property. There are also examples where a single target could
be determined using multiple independent models.



sums and products involving different properties and different

choices of exponent for terms related to particular properties.

The best results were obtained using equations expressing the

total variance as a sum of independent variance terms.

Fig. 2 shows the effect of including successive variance

terms. Diminishing returns were achieved as new properties

with lower explanatory power were added. After the

MolProbity score had been included, the most significant

remaining property was the percentage of �-sheet in the

model, with a residual correlation of �0.13. However,

including this property in the nonlinear fit had very little effect

on the quality of fit, so it was not included in the final equation

(3). Note that much of the correlation with �-helix content had

apparently been accounted for by this point by correlations

with other properties.

eVRMS ¼ ½AðNresÞ þ B expðCG2:5Þ þDðMolProbityÞ

þ EðresolutionÞ3�1=2: ð3Þ

The nonlinear least-squares fit of (3) yielded the coefficients

A = 0.001455, B = 1.710, C = �0.2444, D = 0.1040, E = 0.01586.

Residual correlations computed using the new expression for

eVRMS show that this functional form accounts for most of

the initial systematic variation in the data (Table 2). In addi-

tion, a frequency distribution computed from the ratios of

estimated and refined VRMS values became more symme-

trical and unimodal than using the previous Oeffner coordi-

nate error estimate (Fig. 3).

Fig. 3 also shows that the VRMS distributions are slightly

different for different SCOP fold classes, with errors being

slightly underestimated on average for all-� proteins and

slightly overestimated for all-� proteins. However, in keeping

with the very minor effect on the fit of including percentage

�-sheet content, the differences in the distributions for fold

classes are small compared with the width of the overall

distribution.

3.2. Estimates for NMR models

Previously published work (Chen et al., 2000) and anecdotal

evidence suggested that models obtained using NMR data

generally work more poorly in MR than models obtained

using X-ray data. In addition, we anticipated that a different

functional form might be needed to predict model quality.

For instance, considering that NMR structures are defined

primarily by short-range distance data, one might expect an

increased dependence of coordinate error on model size. In

addition, NMR structures are usually reported as an ensemble

of alternative models (typically 20) that all have a comparable

fit to the data, and one might expect the deviation among

these models to provide an indication of model precision, if

not accuracy. Indeed, the analysis of correlations revealed that

for NMR models there was a stronger correlation between

refined VRMS and model size than for X-ray data, and there

was a significant correlation with the deviation among the

models in the ensemble (Table 3).

We wanted to check whether the estimates for NMR models

could be improved by including criteria recommended by the

NMR validation task force (Montelione et al., 2013). For

example, completeness refers to the percentage of chemical

shifts that have been assigned. Surprisingly, no correlation was

found between this completeness measure and VRMS. Other

measures were reported only for a fraction of the NMR

models included in this study and hence could not be studied

further. It may be worth revisiting this analysis when larger

numbers of NMR structures report these validation metrics.

A new functional form, given in (4), was defined, again

estimating the overall variance as a sum of independent

variance contributions and testing different exponents for the

underlying variables. The quality of fit was only weakly

affected by the exponent for the Nres term, probably because

the range of model sizes is limited for NMR models. Unex-

pectedly, an exponent of 1/3 was slightly better than the

exponent of 1 found for the X-ray fit; even though VRMS is

more sensitive to model size for NMR compared with X-ray

models, this sensitivity comes from the multiplicative factor A

rather than the exponent.

eVRMS ¼ ½AðNresÞ
1=3
þ B expðCGÞ þDðMolProbityÞ

þ EðresolutionÞ þ Fðmedian r:m:s:d:Þ�1=2: ð4Þ
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Figure 2
R.m.s. error in estimated VRMS as new properties are added to the
prediction. Before any properties had been included (‘None’), the r.m.s.
error was the r.m.s. deviation of the refined VRMS values from their
mean for all calculations.

Table 3
Correlation of properties with VRMS for the case of NMR models.

Residual correlation is the correlation between the property and the
difference between the estimated and refined VRMS terms.

Property
Correlation to
VRMS

Residual correlation to VRMS

Oeffner X-ray
estimate New estimate

No. of residues of model 0.56 0.28 0.06
Gonnet score �0.38 0.40 0.00
Target resolution 0.28 �0.05 �0.01
Median r.m.s.d. 0.22 0.14 0.02
MolProbity score of model 0.11 0.05 0.00
Percent �-helix 0.23 0.22 0.00
Percent �-sheet 0.07 0.24 �0.01



The six parameters in this equation were fitted using a

subset of 12 610 molecular-replacement cases (with globalCC

> 0.2) where NMR structures were used as models, limiting

the data to structures that were between 30 and 300 residues

in length. The MolProbity score for (4) corresponds to the

individual MolProbity score of each model in a given NMR

ensemble. The median r.m.s.d. is the median of the r.m.s.d.s of

all pairwise superpositions of members of a given NMR

ensemble. The nonlinear least-squares fit yielded the coeffi-

cients A = 0.4240, B = �1.259, C = 0.07804, D = 0.1442, E =

0.2364, F = 0.4130. All residual correlations were close to zero,

giving a substantial improvement over the Oeffner estimates

derived from X-ray models (Table 3).

3.3. The importance of accurate VRMS estimates

It is important to start the calculations with accurate esti-

mates of VRMS to achieve the highest initial LLGI scores,

because the absolute value of the LLGI score is highly

correlated to the signal to noise achieved in the search

(McCoy et al., 2017). To evaluate this, we calculated the LLGI

in rigid-body refinements starting with the correctly placed

model but without refining the VRMS parameter. The same

set of cases used for curve fitting of both X-ray and NMR

models were considered in this study. The calculations using

both X-ray-derived and NMR-derived models were

performed with both the Oeffner and the new estimates of

VRMS. For NMR models, only the first member of the NMR

ensemble was considered in these calculations.

An incremental improvement was observed in the case of

the X-ray models. The LLGI calculated with the new VRMS

estimates (median LLGI = 163.9) was slightly better than that

calculated with Oeffner estimates (median LLGI = 160.1)

(Fig. 4). However, a larger improvement was observed in the

case of the NMR models, where the median LLGI was 7.4 for

calculations using the Oeffner estimates based on X-ray

models and 14.7 using the new values derived for NMR

models. The distribution of LLGI values for the NMR models

has also become much narrower using the new VRMS esti-

mates (Fig. 4). Note that few NMR models in our tests yield an
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Figure 3
Frequency distribution of refined over estimated VRMS ratios from the curated data set as a function of SCOP class. A red line represents all cases. An
ideal distribution should be Gaussian, with the lowest possible variance, and centred on 1 (represented by a black dashed line). X-ray case: the Oeffner
estimate has a shoulder, which is not present in the new X-ray estimate. NMR case: the distribution for the Oeffner estimate based on X-ray data is
shifted to the right, indicating that errors are systematically underestimated when applied to models derived by NMR. The new estimate based on NMR
data has a symmetrical distribution centred around 1.



LLGI score of 60 or more, which would normally indicate a

correct solution, but the new LLGI values have been brought

into a range that should help to enrich a pool of potential

solutions with correct solutions (McCoy et al., 2017). It should

be noted that the calculations reported here used individual

NMR models in order to calibrate the VRMS estimates, but in

a real molecular-replacement search one would use the whole

ensembles, which would improve the results.

3.4. Comparative analysis of X-ray and NMR models

Our error estimates show why molecular replacement with

NMR models is a challenge, as NMR models have much

higher estimated errors than comparable X-ray models. To

compare model quality over the whole range of sequence

identity, for structures of the typical size addressed by NMR,

we supplemented our data set with all available models

between 60 and 100% sequence identity for targets in our

database of between 125 and 175 residues in size, adding 444

X-ray models and 20 NMR models. For this size range, we

found that using an NMR model with 90–100% sequence

identity is equivalent to using an X-ray model with about 20–

30% sequence identity (Fig. 5). The data in this figure can be

approximated reasonably well by assuming that the NMR

models differ in having an additional independent error

component with a standard deviation of about 1.25 Å. This

error component dominates across the sequence-identity

distribution.

4. Discussion

The Oeffner estimation of VRMS for X-ray models was

systematically overestimating the errors when the sequence

identity was less than 30%. This artefact appears as a shoulder

in the distribution of the ratio between refined and estimated

VRMS (Figs. 3 and 5b in Oeffner et al., 2013). Inspection of the

cases populating this shoulder shows that this is owing to

limitations in using sequence identity to measure sequence

similarity between distant homologues.

After the target and model sequences have been optimally

aligned, sequence identity represents a binary (true/false)

score for each position in the alignment, which becomes a

rather coarse measure for distant homologues with low

sequence identity. Sequence identity also fails to distinguish

between conservative and nonconservative substitutions.

Hence, we considered 20 matrix scores, listed in Table 1 and

discussed in the review by Vogt et al. (1995), which were

expected to give a sensitive assessment of sequence similarity

between homologues with less than 50% sequence identity.

When we consider the full range of sequence identity (10–

100%), BLOSUM30, BLOSUM35, BLOSUM40, BLOSUM45

(Henikoff & Henikoff, 1992), Benner22, Benner 74 (Bennet

et al., 1994) and Gonnet scores (Gonnet et al., 1992) are all
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Figure 5
Comparative analysis of errors between X-ray and NMR models of size
150 � 25 residues. Although the Gonnet score was used to estimate
VRMS, sequence identity (x axis) is provided for ease of comparison.

Figure 4
Calculation of LLGI starting with the Oeffner and new estimates of
VRMS performed without VRMS refinement. (a) Values for X-ray
models. (b) Values for NMR models. A limited range of LLGI values
(along with the most extreme outliers) is displayed for the sake of clarity.



strongly correlated to the VRMS, with similar correlations of

�0.70 to �0.71. Sequence identity gives a slightly weaker

correlation of �0.67 (Table 2). However, looking at progres-

sively lower levels of sequence identity, where MR is more

challenging, some scoring matrices start to perform better. The

Benner22, Benner74 and Gonnet scores all yield a correlation

of �0.38 for models with sequence identity below 30%; for

models with sequence identity below 20%, the Gonnet score

gives a correlation of �0.15, which is slightly better than those

of �0.14 for Benner74 and �0.11 for Benner22. Our obser-

vations agree with an earlier finding that the Gonnet score is

one of the top three matrices to assess sequence similarity

among distant homologues (Vogt et al., 1995). By replacing

sequence identity with the Gonnet score, we have addressed

the systematic overestimation of errors in the distant

homology regime.

While we were expecting to find a correlation to the reso-

lution of the model, we were surprised to find target resolution

instead to be correlated to the VRMS. Several other target

properties such as asymmetric unit volume, Wilson B factor

and Matthews coefficient are also correlated to the VRMS, but

they are all correlated to each other and to the target reso-

lution. Once the resolution of the target had been accounted

for in the VRMS estimation, there were no residual correla-

tions to these other target properties. This finding indicates

that a higher r.m.s.d. should be expected if the crystal has

diffracted to lower resolution. It could be explained by noting

that crystals diffracting to lower resolution are intrinsically

less well ordered and possess a larger number of conforma-

tional states, which are explained poorly by a single model.

Similar conclusions have been drawn in the context of the gap

between Rcryst and Rmerge (Holton et al., 2014).

Of the properties considered for evaluating model quality,

resolution of the model, Rfree, clashscore and MolProbity score

were all correlated with VRMS, with MolProbity score giving

the highest correlation. These measures were all correlated to

each other, and once the influence of MolProbity score had

been accounted for there were no residual correlations with

other properties of the model. Considering that MolProbity

score (Chen et al., 2010) combines contributions from clash-

score, Ramachandran outliers and rotamer outliers, it is

surprising that MolProbity score is a significantly better

predictor than clashscore, even though the correlations with

Ramachandran and rotamer outliers are small. This presum-

ably indicates that MolProbity score nonetheless integrates

the influence of all three measures to assess the quality of

model building and refinement better than any of the

measures on its own.

The properties correlated to VRMS in the case of X-ray

models were also found to be correlated to VRMS for NMR

models. However, the relative importance of these factors

differs. For the X-ray case, the most important factors were

sequence similarity measured by Gonnet score, followed by

the number of residues in the model, the resolution of the

target and the MolProbity score of the model. However, the

number of residues in the model is the dominant factor for the

NMR case with a correlation of 0.5, followed by Gonnet score,

the resolution of the target and NMR ensemble consistency

(measured as median r.m.s.d. between the models). Using the

X-ray equation to estimate VRMS for NMR models will

systematically underestimate the errors (Fig. 3), leading to

suboptimal molecular-replacement calculations, so a separate

nonlinear least-squares fit was performed for NMR models.

With the new functional forms, we have achieved better

accuracy and a better (more symmetrical and unimodal)

distribution of errors for the estimates. The new estimates

perform better for both X-ray and especially for NMR models.

Representing and querying highly interconnected data as a

graph simplifies data analytics. The graph database has

enabled us to overcome redundancies in the data and has

provided an easy way of extending the existing X-ray data

along with the NMR data. It provided a platform to compare

results from several trials of molecular-replacement runs

quickly and consistently. Further extension of the data in the

future, for example to include cryo-electron microscopy-

related data, would also be possible.

By including properties of the target in the error estimates,

we are pushing the boundaries of molecular replacement by

personalizing the model for a given data set. The data-driven

model generation will pave the way for handling complex

molecular-replacement search strategies for structures with

multiple domains or subunits.

The new VRMS estimates will be available as part of the

phaser.voyager pipeline to run the new version of Phaser,

phasertng (McCoy et al., 2020), which is currently under

development.
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V. B., Croll, T. I., Hintze, B., Hung, L.-W., Jain, S., McCoy, A. J.,
Moriarty, N. W., Oeffner, R. D., Poon, B. K., Prisant, M. G., Read,
R. J., Richardson, J. S., Richardson, D. C., Sammito, M. D., Sobolev,
O. V., Stockwell, D. H., Terwilliger, T. C., Urzhumtsev, A. G.,
Videau, L. L., Williams, C. J. & Adams, P. D. (2019). Acta Cryst.
D75, 861–877.

Mao, B., Guan, R. & Montelione, G. T. (2011). Structure, 19, 757–
766.

McCoy, A. J. et al. (2020). In preparation.
McCoy, A. J., Grosse-Kunstleve, R. W., Adams, P. D., Winn, M. D.,

Storoni, L. C. & Read, R. J. (2007). J. Appl. Cryst. 40, 658–674.

McCoy, A. J., Oeffner, R. D., Wrobel, A. G., Ojala, J. R. M.,
Tryggvason, K., Lohkamp, B. & Read, R. J. (2017). Proc. Natl Acad.
Sci. USA, 114, 3637–3641.

Millán, C., Sammito, M. & Usón, I. (2015). IUCrJ, 2, 95–105.
Montelione, G. T., Nilges, M., Bax, A., Güntert, P., Herrmann, T.,

Richardson, J. S., Schwieters, C. D., Vranken, W. F., Vuister, G. W.,
Wishart, D. S., Berman, H. M., Kleywegt, G. J. & Markley, J. L.
(2013). Structure, 21, 1563–1570.

Murzin, A. G., Brenner, S. E., Hubbard, T. & Chothia, C. (1995). J.
Mol. Biol. 247, 536–540.

Oeffner, R. D., Afonine, P. V., Millán, C., Sammito, M., Usón, I.,
Read, R. J. & McCoy, A. J. (2018). Acta Cryst. D74, 245–255.
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