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Model quality assessment programs estimate the quality of protein models and

can be used to estimate local error in protein models. ProQ3D is the most recent

and most accurate version of our software. Here, it is demonstrated that it is

possible to use local error estimates to substantially increase the quality of the

models for molecular replacement (MR). Adjusting the B factors using ProQ3D

improved the log-likelihood gain (LLG) score by over 50% on average, resulting

in significantly more successful models in MR compared with not using error

estimates. On a data set of 431 homology models to address difficult MR targets,

models with error estimates from ProQ3D received an LLG of >50 for almost

half of the models 209/431 (48.5%), compared with 175/431 (40.6%) for the

previous version, ProQ2, and only 74/431 (17.2%) for models with no error

estimates, clearly demonstrating the added value of using error estimates to

enable MR for more targets. ProQ3D is available from http://proq3.bioinfo.se/

both as a server and as a standalone download.

1. Introduction

The estimation of protein model quality has a long history in

protein structure prediction, originating from methods that

estimate the free energy of protein models (Hendlich et al.,

1990; Jones et al., 1992; Lüthy et al., 1992). If the free energy of

a protein can be accurately described, it should be possible to

use this to find the minimum free energy and locate the native

structure of the protein. However, the vast majority of energy

functions describing the free energy have focused on identi-

fying the native structure among a set of decoys (Park &

Levitt, 1996). These methods do not necessarily show a good

correlation with the relative quality of protein models, in

particular for difficult homology modelling or ab initio cases.

In 2003, we developed the ProQ method, which had a

different aim to previous methods (Wallner & Elofsson, 2003).

Instead of recognizing the native structure among a set of

decoys, ProQ was developed to predict the quality of a model

using machine learning and features that could be calculated

from the model itself, such as different types of atom–atom

contacts, residue–residue contacts, surface-exposure prefer-

ence, agreement with predicted secondary structure and

surface area. We used ProQ to rank models in CASP5 and it

was the main reason why our prediction servers were ranked

at the very top in terms of model quality (Wallner et al., 2003).

ProQ was later extended to estimate the local quality of

each residue in a protein model, and the quality of the entire

model was estimated by simply summing up the quality for

each residue (Wallner & Elofsson, 2006). This method was

rather successful in CASP7 (Wallner & Elofsson, 2007) and

CASP8 (Larsson et al., 2009), in which quality assessment had

now become a separate prediction category.
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In ProQ2, improved prediction was achieved by using

evolutionary sequence profile weights and features averaged

over the whole model, even though the prediction was local

(Ray et al., 2012; Uziela & Wallner, 2016). ProQ2 error esti-

mates encoded as B factors were shown to improve the success

of molecular replacement (MR) (Bunkóczi et al., 2015). This

was based on the idea that the estimation of local model

quality could be translated into coordinate uncertainty and

used to smear the atoms in the model over their range of

possible positions (Read & Chavali, 2007), which was first

implemented using ensemble consensus to estimate local

errors (Pawlowski & Bujnicki, 2012).

Since the release of ProQ2, we have made considerable

improvements in prediction accuracy. In ProQ3, we combined

ProQ2 with two novel predictors based on centroid and all-

atom energy terms calculated using Rosetta (Leaver-Fay et al.,

2011). Most recently, we developed ProQ2D and ProQ3D

(Uziela et al., 2017), which are deep-learning versions of

ProQ2 and ProQ3 optimized on a larger training set using new

developments in machine learning. In terms of performance,

we have gradually improved Pearson’s correlation between

predicted and actual quality from 0.60 for ProQ to 0.81 for

ProQ2, 0.85 for ProQ2D and ProQ3, and finally 0.9 for

ProQ3D calculated on data from CASP11 (Uziela et al., 2017).

Given the recent improvements in prediction accuracy in

ProQ3D, we wanted to analyze how this improvement

propagates to the ability to improve the quality of the models

for MR.

2. Methods

2.1. Data set

The data set consisted of 431 target–template pairs for 229

molecular-replacement targets with an LLG of <100, using the

template to calculate the LLG, and resolution between 0.8 and

3.1 Å (see the supporting information for a complete list). The

pairs have an average sequence identity of 28% (with a range

of 17–45%) calculated using the alignment constructed below.

Models for the pairs were constructed by first generating

hidden Markov models (HMMs) for the target and template

sequences, respectively, using HHblits (Remmert et al., 2012)

with two iterations against uniclust30_2018_08. The two

HMMs for targets and template were then aligned using

HHalign (Steinegger et al., 2019) with default settings. 3D

models were constructed from the alignment using Modeller

version 9.14 (Šali & Blundell, 1993). In the default setting, N-

and C-terminal regions unaligned with the template are

trimmed from the model, but all other unaligned regions are

kept.

2.2. Local error estimation

Local errors were estimated using ProQ2 (Ray et al., 2012)

and ProQ3D (Uziela et al., 2017). Both programs predict the S

score (Cristobal et al., 2001), a score between 0 and 1, where 0

is no quality and 1 is perfect quality. The score Si transforms

the local distance deviation di using the formula Si(di) =

1/[1 + (di/d0)2], where d0 is a parameter that monitors how fast

the function goes to zero; here, d0 = 3.0 Å was used, which

makes the transform most sensitive to distances around 3 Å;

for example, the 0–6 Å range is mapped to [0.2–1], while all

distances larger than 6 Å are mapped to [0–0.2]. The predicted

local qualities Si were transformed to predicted local error

estimates by solving the equation for di: di = d0(1/Si � 1)1/2. To

restrict the range of di, all di > 15 were set to 15.

2.3. Molecular replacement

To estimate the usefulness of models for molecular repla-

cement, the log-likelihood gain (LLG) measure from Phaser

(McCoy et al., 2007) was used. The LLG measures how much

better an atomistic model explains the measured X-ray data

compared with a random model (Read, 2001). In the general

case, calculating the LLG is time-consuming. However, for the

purpose of this study we can utilize the fact that the target

structures are available and can be used to place the models in

roughly the optimal position by superimposing them on the

target structures using phenix.superimpose_pdbs (Liebschner

et al., 2019). This faster version of Phaser (McCoy et al., 2007)

was used to calculate the LLG both without and with local

error estimates from ProQ2 and ProQ3D.

To be able to compare different LLG values and their

usefulness, an LLG of >50, corresponding to a 90% chance of

success in MR (McCoy et al., 2017), was used as threshold to

define models of good quality for MR.

3. Results and discussion

We wanted to compare the potential success in molecular

replacement (MR) for the models in the data set (see Section

2) using ProQ2, ProQ3D and no error estimates. As outlined

in the flowchart in Fig. 1, we first ran Phaser (McCoy et al.,

2007) on the models without any error estimates to establish a

baseline. We then used ProQ2 and ProQ3D to predict residue-

specific error estimates, as illustrated in the top right panel in

Fig. 1, and added these to the B-factor column of the model

(see the model colored by predicted error in the bottom right

panel in Fig. 1). Finally, Phaser was run again with the same

model, but now with error estimates. Following this procedure,

three LLG values were calculated for each of the 431 models

in the data set: without error estimates, with ProQ2 error

estimates and with ProQ3D error estimates, respectively.

3.1. Model quality in MR

The target sequences from all models have a relatively low

sequence identity to the templates, with a majority (61%)

below 30%; however, the produced models are still relatively

accurate overall, with most GDT_TS (Zemla, 2003) values

above 0.7, corresponding to roughly 70% correct residues

(Fig. 2a). It can also be noted that at this sequence-identity

level there is almost no correlation (0.06) between the

sequence identity and the quality of the models. Next, we

analyzed whether the quality of the models (GDT_TS) is

important for the models to be useful in MR as measured by

the LLG for the models without error estimates (Fig. 2b).
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Indeed, models with high LLG are also of high quality, and

almost all cases (LLG > 50) have GDT_TS > 0.7. However,

not all high-quality models receive a high LLG. In fact, quite a

few models with GDT_TS above 0.7 have an LLG of less than

50. Thus, it is not only the overall quality of the model that

impacts on whether a model is of good quality for MR.

Both ProQ2 and ProQ3D predict global overall model

quality based on its local error estimates. The correlation to

the correct GDT_TS measure in this data set is 0.57 and 0.66

for ProQ2 and ProQ3D, respectively (Figs. 2c and 2d). As we

know from previous experience, both ProQ2 and ProQ3D are

very good at separating bad from good models, but not as

good when it comes to ranking already high-quality models. In

this case, both ProQ2 and ProQ3D are able to discriminate

between low-quality and high-quality models, and almost all

cases with LLG > 50 have a ProQ score above 0.5 (Figs. 2e and

2f). In addition, the relation between ProQ2 and ProQ3D to

LLG is very similar to the relation between GDT_TS and

LLG (compare Figs. 2e and 2f with Fig. 2b). Thus, it should be

possible to use a threshold on the ProQ score to predict

whether a model is of good quality for MR.

3.2. MR with error estimates

Next, we calculated the LLG using models with error esti-

mates from ProQ2 and ProQ3D (Fig. 3). Clearly, for the vast

majority of the models ProQ2 and ProQ3D error estimates

improve the LLG compared with no error estimates (Figs. 3a

and 3b). ProQ3D improves 383/431 (88.9%) of the models,

which is significantly larger than the 329/431 (76.3%) of the

models that were improved by ProQ2 (Table 1).

We can also observe a clear shift in the LLG distribution

towards higher LLG values when using error estimates

(Figs. 3c and 3d). For ProQ3D the average LLG increases

from hLLGnoerrori = 35.8 to hLLGerrori = 51.7. In terms of

modelling there is a small advantage to pruning all unaligned

regions from the search model when not using error estimates,

hLLGnoerror-prunedi = 36.5 (an increase of 0.7), and a small

disadvantage when using error estimates, hLLGerror-prunedi =

51.4 (a decrease of 0.3). In both cases, the advantage of using

error estimates is clear.
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Figure 1
Overview of the workflow used. Input models superimposed on the target structures are used as input. Errors in the models are estimated using ProQ2 or
ProQ3D; the errors are added to the B-factor column in the model. Models with both no error estimates and error estimates are used in MR calculations
to estimate the LLG.

Table 1
LLG improvements using error estimates for 431 models in the data set.

LLG increase is the fractional improvement in LLG when using error
estimates, #targets �LLG>0 is the number of targets that improve when using
error estimates and #targets LLG>50 is the number of targets that have an
LLG of >50.

Method LLG increase (%) #targets �LLG>0 #targets LLG>50†

No error 0.0 0 (0.0%) 74 (17.2%)
ProQ2 36.7 329 (76.3%) 175 (40.6%)‡
ProQ3D 52.0 383 (88.9%)§ 209 (48.5%)}
True errors 116.9 425 (98.6%) 318 (73.8%)

† Corresponding to 90% chance of success in MR (McCoy et al., 2017).
‡ ProQ2 significantly better than no error on LLG > 50 (p < 10�21, binomial test).
§ ProQ3D significantly better than ProQ2 on �LLG > 0 (p < 10�10, binomial test).
} ProQ3D significantly better than ProQ2 on LLG > 50 (p < 10�3, binomial test).
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Figure 2
Global model quality and potential success in MR. (a) Sequence identity for the target–template sequences versus global model quality measured by
GDT_TS, (b) GDT_TS against the LLG for a model without error estimates, (c) GDT_TS in relation to the predicted global quality by ProQ2, (d)
GDT_TS in relation to the predicted global quality by ProQ3D, (e) ProQ2 against the LLG for a model without error estimates, ( f ) ProQ3D against the
LLG for a model without error estimates.



In a previous study, we reported an average 25% increase in

the LLG using ProQ2 error estimates compared with models

using no error on models submitted to CASP10 (Bunkóczi et

al., 2015). Here, the average improvement in the LLG using

ProQ2 is 36.7% (Table 1); since there is no change in

methodology between the two sets, this number indicates that

this particular data set is slightly easier than the CASP10 data

set. ProQ3D error estimates improve the average LLG by

52%, suggesting that the success in MR can be improved even

further by using ProQ3D instead of ProQ2. Indeed, if we

check how many models that have LLG values indicating a

high chance of success (LLG > 50), we see that only 74/431

models without error estimates are successful, while 175/431

and 209/431 are successful using ProQ2 and ProQ3D,

respectively; the difference between ProQ2 and ProQ3D is

significant.

3.3. Prediction example

Finally, we conclude by demonstrating a successful predic-

tion case. The target is a 206-amino-acid dihydrofolate

reductase from Pneumocystis carinii solved using X-ray

diffraction at 2.1 Å resolution (PDB entry 2fzh). The template

is a 332-amino-acid dihydrofolate reductase from Bacillus

anthracis solved using X-ray diffraction at 2.25 Å resolution

(PDB entry 3e0b, chain A). The alignment between the target

and template sequence is 30.9% identical and the quality of

the model based on this alignment has a GDT_TS of 0.67. The

predicted error by ProQ3D as well as the actual error (capped

at 8 Å) is shown in Fig. 4(a). The correlation between the

predicted and actual error is 0.85. The model colored by the

error with the corresponding template superimposed is shown

in Fig. 4(b); some obvious bad loops that do not align well with

the template are correctly identified as such, but then there are

also some secondary-structure elements, such as the leftmost

strand, which align well with the template but are correctly

predicted as bad (data not shown). The model without error

estimates received an LLG of 8.2 and this improved to 81.3 for

the model with error estimates, clearly demonstrating the

value of using error estimates.

4. Conclusion

We have demonstrated that the use of error estimates can

increase the number of models useful for MR substantially.

The most recent version of our model-quality assessment

program ProQ3D is more accurate and significantly better

than ProQ2. ProQ3D improved the LLG score by over 50%
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Figure 3
LLG values without error estimates and with error estimates from ProQ2 and ProQ3D.



on average, resulting in significantly more models of good

quality for MR compared with not using error estimates.

ProQ3D is available from http://proq3.bioinfo.se/ both as a

server and as a standalone download.
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Figure 4
Prediction example for the target PDB entry 2fzh modelled on PDB entry
3e0b chain A. (a) The predicted error estimates by ProQ3D compared
with the actual error. (b) The model colored by ProQ3D-predicted error
and superimposed on the template (grey) used to build the model.
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