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In processing X-ray diffraction data, the intensities obtained from integration of

the diffraction images must be corrected for experimental effects in order to

place all intensities on a common scale both within and between data collections.

Scaling corrects for effects such as changes in sample illumination, absorption

and, to some extent, global radiation damage that cause the measured intensities

of symmetry-equivalent observations to differ throughout a data set. This

necessarily requires a prior evaluation of the point-group symmetry of the

crystal. This paper describes and evaluates the scaling algorithms implemented

within the DIALS data-processing package and demonstrates the effectiveness

and key features of the implementation on example macromolecular crystallo-

graphic rotation data. In particular, the scaling algorithms enable new workflows

for the scaling of multi-crystal or multi-sweep data sets, providing the analysis

required to support current trends towards collecting data from ever-smaller

samples. In addition, the implementation of a free-set validation method is

discussed, which allows the quantification of the suitability of scaling-model and

algorithm choices.

1. Introduction

The first major step in processing crystallographic data is the

integration of diffraction images, i.e. the extraction of a set of

intensities and error estimates from the raw data. These

integrated intensities are a product of F 2, the squares of the

structure-factor amplitudes, and experimental effects: the aim

of scaling is to correct for the experimental contributions to

the measured intensities to give a set of intensities propor-

tional to F 2. Scaling will typically account for systematic

effects such as changes in sample-illumination volume, beam

intensity, secondary beam absorption and global radiation

damage during a single-sweep measurement, which are

multiplicative in their effect on the measured intensities. The

scaling process also places the intensities from multiple sweeps

on a common scale. Once scales have been applied to all

reflections, symmetry-equivalent reflections can be merged

together. Several programs exist to scale macromolecular

diffraction data, including SCALA (Evans, 2006), AIMLESS

(Evans & Murshudov, 2013), SADABS (Sheldrick, 1996),

SCALEPACK (Otwinowski & Minor, 1997) and XDS/

XSCALE (Kabsch, 2010b).

In recent years, technical advancements at synchrotron

X-ray sources, including the introduction of high-frame-rate

pixel-array detectors, have spurred changes in data-collection

methodologies, including an increasing focus on serial

approaches to crystallography (Stellato et al., 2014; Grimes et
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al., 2018). Increasingly brighter sources allow useful data

collections from microcrystals, but require different data-

collection approaches owing to shorter crystal lifetimes and

the practicalities of efficiently mounting and measuring

numerous microcrystals, such as in situ data collection, as at

the VMXi (Sanchez-Weatherby et al., 2019) and I24 (Axford et

al., 2012) beamlines at Diamond Light Source. These devel-

opments have spawned new approaches to data collection,

such as multi-sweep stepped transmission collection (Winter et

al., 2019), and place an increasing burden on the data-analysis

step. These advancements necessitate improved algorithms

and workflows for processing multi-sweep data sets, particu-

larly in the scaling and merging step, where the whole data set

must be analysed as one.

To provide new tools and algorithms for data analysis of

novel approaches to diffraction data collection, the DIALS

(Winter et al., 2018) software package has been developed,

with an initial focus on the integration of data from pixel-array

detectors. This paper reviews current methods for scaling and

symmetry determination before describing and evaluating the

implementation of scaling algorithms within DIALS, demon-

strating use cases by analysing a number of example macro-

molecular data sets. This work builds upon the strengths of

previous approaches, including the implementation of two

types of scaling models currently used in existing scaling

programs, with the core algorithm incorporating aspects of the

approaches taken by the programs AIMLESS (Evans &

Murshudov, 2013) and XDS/XSCALE (Kabsch, 2010b). In

addition, a number of workflows have been developed to

facilitate the scaling of multi-sweep data sets, and a free-set

validation approach has been implemented to assess the

suitability of a given scaling model by providing an assessment

of overfitting. This work therefore extends the scope of

DIALS, enabling the processing of diffraction data from raw

images to scaled intensities suitable for structure solution.

2. Background

2.1. Formalism of scaling

Following the formalism of Hamilton et al. (1965), an

inverse scale factor ghl is determined for each reflection and

then applied in order to correct the data, i.e.

Icorr
hl ¼ Ihl=ghl; ð1Þ

where Ihl is the lth observation of symmetry-unique reflection

h. The factors ghl are determined by minimizing the function

� ¼
P

h

P
l

whlðIhl � ghlhIhiÞ
2
þ
P

i

fiðpiÞ; ð2Þ

where hIhi is the current best estimate of the true intensity of

symmetry-unique reflection h, whl are weighting factors and

the second term is a general restraint term for the scaling-

model parameters pi. The best least-squares estimate of hIhi is

derived from the data by minimizing � with respect to hIhi,

giving

hIhi ¼
P

l

whlghlIhl

� �� P
l

whlg
2
hl

� �
: ð3Þ

The best least-squares estimates of the inverse scale factors

are found using weighting factors that are proportional to the

inverse variances of the intensities. To determine the inverse

scale factors, one must create a parameterized scaling model

from which the scale factors are calculated: in this imple-

mentation, the model is determined by minimizing the least-

squares target function with respect to the model parameters.

2.2. Symmetry determination prior to scaling

Prior to scaling, the point-group symmetry of the data set

must be known, as the intensities are grouped by symmetry-

unique index during scaling. It is possible to scale in all point

groups lower than the true point group of the crystal; however,

this would not account for the equivalence of reflections

related by the absent symmetry operations. Several programs

exist to perform symmetry analysis, including POINTLESS

(Evans, 2006) and XDS (Kabsch, 2010b). In POINTLESS,

each symmetry element of the lattice is scored by comparing

the intensities of reflections related by symmetry, and the

combination of different symmetry elements and their scores

provides a score for a given Laue group; systematic absences

can also be assessed to score potential space groups. In XDS,

Rmeas is calculated for all enantiomorphous groups consistent

with the lattice, and the highest symmetry group with an

acceptable Rmeas is chosen (Kabsch, 2010a).

An analysis of the point-group symmetry must also account

for indexing ambiguities in polar point groups in the case of

multiple sweeps, or accidental ambiguity for sparse multi-

crystal data sets (Brehm & Diederichs, 2014; Gildea & Winter,

2018). For wide-rotation data sets, indexing ambiguities can be

resolved by reindexing against a reference data set. For sparse

data sets, a different approach is required based on the

assessment of correlation coefficients between data sets.

Techniques include dimensionality reduction to separate

clusters based on indexing choice (Brehm & Diederichs, 2014;

Diederichs, 2017; Gildea & Winter, 2018) and the selective

breeding method (Kabsch, 2014).

Within the DIALS package, symmetry-determination

algorithms have been implemented in two programs.

dials.symmetry, which will be described elsewhere, determines

the space-group symmetry for single-sweep rotation data

using algorithms similar to POINTLESS (indexing ambi-

guities between sweeps can be resolved by reindexing against

a reference data set with dials.reindex). The second program,

dials.cosym, implements multi-crystal symmetry determina-

tion as described in Gildea & Winter (2018), which includes

the resolution of indexing ambiguities.

2.3. Scaling-model parameterization

Many model parameterizations are possible; currently,

there are two main approaches that are used for the scaling of

macromolecular diffraction data. The first uses a multi-

component parameterization based on physical descriptors of
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the instrument, experiment and sample characteristics such as

X-ray absorption by the sample, variations in illuminated

volume and beam intensity, and global radiation damage. Such

an approach is taken in SCALA (Evans, 2006), AIMLESS

(Evans & Murshudov, 2013) and SADABS (Sheldrick, 1996).

For example, AIMLESS uses a three-component model to

account for scale, radiation damage and absorption effects.

The scale and radiation-damage terms are parameterized as a

smoothly varying function of rotation or time, whilst spherical

harmonics are used to parameterize an absorption correction

surface which rotates with the crystal. A similar model is used

in SADABS, and both programs include the optimization of

standard error estimates. The second approach to scaling-

model parameterization is taken by XDS/XSCALE (Kabsch,

2010b), in which the corrections are determined by sampling

up to three two-dimensional arrays in succession, with the

purpose of removing correlation of the measured intensities

with image number, resolution and measured position on the

detector. Both approaches to scaling-model parameterization

have proved to be effective for correcting experimental data.

3. Implementation

This section describes the implementation details of the key

components of the scaling algorithms and potential scaling

workflows.

3.1. Scaling-model parameterization

Currently, three scaling models are defined within the

DIALS package: the physical model, the KB model and the

array model. The DIALS package is structured so that addi-

tional scaling models can be implemented by a user; further

details can be found in the package documentation. For all

models, a subset of possible components may be used, while

the components can be refined sequen-

tially or (by default) concurrently.

3.1.1. The physical scaling model.
The default parameterization of the

scaling model used in DIALS (referred

to as the physical model) is based on

that of AIMLESS (Evans &

Murshudov, 2013), i.e. the model is

composed of three components: a scale

term Chl, a decay term Thl and an

absorption term Shl,

ghl ¼ ChlThlShl: ð4Þ

The scale term is intended to correct for

the majority of intensity variation as a

function of rotation, such as changes in

illumination volume or average beam

absorption. The decay term uses a

relative global temperature factor (B

factor) to account for changes in inten-

sity as a function of resolution (d-

spacing) to model changes in the bulk

disorder of the crystal, i.e. global radiation damage (Garman,

2010). The absorption term accounts for relative variations in

absorption for different scattering vectors in the crystal

reference frame.

For the scale and decay terms, the correction is para-

meterized as a smooth function of rotation angle ’. Two

adjusted angles are calculated, r = ’/�1 and t = ’/�2, which in

general have different normalization factors (�1, �2), with t

acting as a proxy for time from the start of the measurement

(the assumption is of a constant rotation per frame within the

sweep). The smoothing function consists of a Gaussian

weighting over a set of regularly spaced parameters, Ci and Bi,

spanning at least the respective ranges of adjusted angles. The

correction factor at a given adjusted position is calculated

using a Gaussian-weighted sum of the nearest i values (typi-

cally i = 3),

CðrÞ ¼

P
i

Ci exp½�ðr� riÞ
2=Vr�P

i

exp½�ðr� riÞ
2=Vr�

;

TðtÞ ¼ exp½2BðtÞ sin2
ð�Þ=�2

� ¼ exp½BðtÞ=2d2
�; ð5Þ

where

BðtÞ ¼

P
i

Bi exp½�ðt � tiÞ
2=Vt�P

i

exp½�ðt � tiÞ
2=Vt�

ð6Þ

and V is a ‘variance’ to control the extent of smoothing. A

schematic of a 1D smooth scaling component is shown in

Fig. 1(a). A weak restraint term (/
P

i B2
i ) is used as part of

the minimization target (2) to weakly restrain the relative B

values towards zero. Typically, within DIALS, the parameter

spacing is automatically determined to give sufficient sampling

across the rotation range; parameters are separated by 10–20�
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Figure 1
(a) Example of a 1D smooth scaling component. The scale factor at adjusted coordinate x is
determined by a Gaussian-weighted average of the nearest three parameters at xi, with the
weighting depending on the distances |x � xi|. (b) Generalization of smooth scaling in higher
dimensions, shown in 2D. The value of the component at adjusted position (x, y) is a Gaussian-
weighted average of the nearest three parameters along each dimension, with the weighting
depending on the distances d-norm = [(x � xi)

2 + (y � yi)
2]1/2.



of rotation for a full rotation sweep and 1–3� for narrow

sweeps.

For the absorption term, a smoothly varying correction as a

function of incoming beam and scattering vectors is applied by

defining an absorption correction surface. Following the form

of the absorption anisotropy term in Blessing (1995), spherical

harmonics are used as a normalized 3D basis set for the

correction surface, which is defined as a sum of spherical

harmonic terms Ylm,

Shlðs1; s0Þ ¼ 1þ
Plmax

l¼1

Pm¼l

m¼�l

½PlmfYlmðs1Þ þ Ylmð�s0Þ�=2g; ð7Þ

where the Plm prefactors are the model parameters to be

minimized and �s0 and s1 are the reverse incident beam and

scattering vectors in the crystal frame. A restraint term

(/
P

l;m P2
lm) is used as part of the minimization target (2) to

restrain the parameters towards zero, i.e. the absorption

correction is restrained towards 1. As more harmonic terms

are added to the sum in (7), the absorption correction surface

is able to exhibit sharper features, enabling better modelling of

the absorption variation for crystals with well defined corners/

edges. As discussed in Evans (2006), including the odd

harmonic terms can help to account for effects such as crystal

miscentering, and a default lmax value of 4 is sufficient to give a

good fit.

For a 360� sweep, the physical model therefore uses 70

parameters, comprising 26, 20 and 24 parameters for the scale,

decay and absorption corrections, respectively.

3.1.2. The KB scaling model. A second model is provided,

which can be considered to be a special case of the physical

model and is referred to as the KB model. Here, a single

scaling component k and B factor is applied to all reflections in

the data set,

ghl ¼ k expðB=2d2
hlÞ: ð8Þ

This model is suitable for still-shot images and may be

preferable to the physical model for very narrow sweeps,

where C(r) and T(t) are approximately constant and there is

insufficient information to determine an absorption correction

surface.

3.1.3. The array scaling model. A third model is also

provided, following a more generalized approach to para-

meterization, motivated by that taken in XDS/XSCALE

(Kabsch, 2010b), and is referred to as the array model. This

approach attempts to remove the correlation of measured

intensities with rotation angle and measured position on the

detector. The implementation of this approach within DIALS

uses the product of up to three components, referred to as

decay (Dhl), absorption (Ahl) and modulation (Mhl) terms.

The decay term is parameterized by a 2D grid of parameters

regularly spaced in adjusted rotation angle r and normalized

‘resolution’ d0 / d�2 (see Fig. 1b). In a similar manner to the

smooth scale and decay terms of the physical model, the scale

factor for each reflection is given by a Gaussian-weighted

average of the nearest i, j parameters in each dimension of a

2D array of parameters Cij,

Dðr; d0Þ ¼

P
ij

Cij expf�½ðr� riÞ
2
þ ðd0 � d0jÞ

2
�=Vg

P
ij

expf�½ðr� riÞ
2
þ ðd0 � d0jÞ

2
�=Vg

: ð9Þ

For the modulation term, a 2D array is defined over normal-

ized detector pixel positions and smoothed values are

obtained analogously, whereas for the absorption term a 3D

array is defined over normalized detector pixel positions x0

and y0 and adjusted rotation angle, and an analogous 3D

smoothing is used to determine values for Ahl at a given x0, y0, r.

The default configuration of the array model in DIALS uses

the decay and absorption corrections, with no modulation

correction, as a detector-based correction at the scaling step is

not always necessary for modern single photon-counting

detectors. Excluding the modulation correction also reduces

the correlation between scaling-model parameters and aids

the stability of scaling in DIALS. This configuration enables

corrections to be determined based on resolution, rotation

angle and scattering vector (through the x and y dependence

of the absorption correction), with the only assumption on the

form of the scale correction being that it is smoothly varying in

nature. For a 360� sweep, the array model therefore uses 240

parameters for the decay correction and 500 parameters for

the absorption correction.

3.2. Selection of reflections for model optimization

Owing to the small number of scaling-model parameters

relative to the number of observations, scaling-model opti-

mization is typically overdetermined and therefore a subset of

the data can be used for computational efficiency when

minimizing the scaling models; this may be critical for very

large data sets (e.g. greater than a million observations) to

reduce memory requirements and total runtime.

For scaling a single sweep, a random subset of the groups of

symmetry-equivalent reflections are used for scaling-model

optimization. For multiple sweeps, a random selection can also

be used; however, it is necessary to ensure that a sufficiently

connected subset of the data is selected for a stable mini-

mization, i.e. low parameter uncertainty, particularly for the

case of narrow-sweep multi-crystal data sets. To ensure this, in

addition to a purely random selection on groups of symmetry

equivalents, a ‘quasi-random’ inter-sweep reflection-selection

algorithm was implemented. We define a quasi-random algo-

rithm as an algorithm that selects a distribution similar to a

random algorithm, in terms of the number of reflections per

data set, but in a way that ensures higher connectivity than a

random algorithm. To achieve this, the quasi-random algo-

rithm builds a subset by successively choosing the symmetry

group which spans the highest number of sweeps and that also

has a reflection in the currently least-populated sweep in the

subset. The subset is built in this way until at least a given

number of reflections, or the maximum available reflections,

have been selected for each sweep, thus ensuring that inter-

sweep connected reflections are selected for all data sets. The

algorithm is run on each resolution bin separately to give an

inter-sweep connected subset which contains approximately
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the same number of reflections per data set, which are

distributed approximately evenly in resolution. This is

augmented by further random selections of groups for each

sweep individually, and across sweeps, to form the subset of

reflections to be used for scaling-model optimization.

For both single- and multi-sweep scaling, the number of

reflections selected is controlled by two thresholds: the greater

of a minimum number of groups and a minimum number of

total reflections. The effect of these parameter values and the

multi-sweep selection algorithm will be assessed in Section 4.4.

3.3. Adjustment of intensity uncertainties

At the point of scaling, one can compare the expected and

observed distribution of intensities and uncertainties (sigmas)

to evaluate the suitability of the intensity uncertainties esti-

mated during integration. It is recognized that these uncer-

tainties typically underestimate the true errors in the data, as

there are systematic experimental effects that will not have

been fully accounted for (Evans, 2006; Diederichs, 2010). To

correct for this, current scaling programs tend to use a varia-

tion of a two-parameter error model of the general form

�02 ¼ a2
½�2
þ ðbIÞ

2
�; ð10Þ

however, a third parameter giving a correction proportional

to I is used by AIMLESS (Evans & Murshudov, 2013). In

DIALS, a two-parameter error model is used to adjust the

uncertainties, as this form has a simple physical interpretation:

the b parameter models systematic errors that scale with the

intensity, whereas the a factor accounts for general systematic

errors affecting the whole data set. These parameters can then

be related to the asymptotic I/� limit (ISa; Diederichs, 2010) as

ISa ¼ 1=ab: ð11Þ

For an experiment with low systematic error, the a value is

expected to be close to 1, with a b value around the range of

0.02–0.04.

To optimize the error model, a number of approaches are

possible. One possibility is to use a linear regression by

equating �02 with the observed variance of symmetry equiva-

lents; however, outliers must be treated carefully. An alter-

native approach is an optimization based on analysis of the

normalized intensity deviations, defined as (Evans &

Murshudov, 2013)

�hl ¼
nh � 1

nh

� �1=2
Ihl � ghlhIhi

�0ðIhlÞ
: ð12Þ

The assumption is that �hl should be normally distributed with

a standard deviation of 1 across the intensity range measured.

Within DIALS, the a parameter is estimated by using a linear

regression to fit the central section of the normal probability

plot (Howell & Smith, 1992); however, this requires an esti-

mate of the b parameter. To determine an estimate for the b

parameter, a minimization is performed to correct the stan-

dard deviation of �hl to 1.0 for the data binned by intensity (a

principle described in Evans & Murshudov, 2013), which

depends on the a estimate. These two methods are used in
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Figure 2
Flow chart showing the main processes of the default scaling algorithm, which consists of several rounds of model optimization and outlier rejection, as
well as optimization of profile and summation intensity combination and adjustment of uncertainty (error) estimates by refining a two-parameter error
model.



DIALS to sequentially estimate a and b until the respective

values converge, starting with a = 1.0, b = 0.02. During the

parameter estimation, the inverse-variance weights used in the

estimation of hIhi are fixed to be the best estimate at the start

of the error-model refinement, i.e. either the initial variances

from integration or updated variances based on a previous

round of error-model refinement. Further details of the

implementation within DIALS are given in Appendix A.

Importantly, the fact that a and b are estimated separately

removes the need for restraints during the analysis of intensity

dependence, while using aggregate data properties such as the

standard deviation of �hl and the central part of the normal

probability plot reduces the influence of data with high

deviations, giving error-model parameters that suitably

describe the data on average.

3.4. Scaling algorithms and workflows for multi-data-set
scaling

The principal steps of the single-sweep scaling algorithm

used in DIALS are shown in Fig. 2. Parts of the algorithm that

can be disabled by the user are indicated by the decision

nodes; however, by default all steps are performed.

At each step of scaling-model refinement, the minimization

is performed using the initially determined subset of reflec-

tions minus identified outliers. The minimization is performed

using the lstbx subpackage (Bourhis et al., 2015) of the

Computational Crystallography Toolbox (cctbx; Grosse-

Kunstleve et al., 2002). Except for the final minimization cycle,

the minimization is performed using a quasi-Newton mini-

mizer (L-BFGS method; Liu & Nocedal, 1989) to minimize the

nonlinear equation (2). The advantage of this method is that it

does not require the calculation of the Jacobian matrix, which

can be computationally slow and memory-intensive for

problems involving a large number of parameters or obser-

vations. The final minimization cycle uses a Levenberg–

Marquardt full-matrix minimizer (Moré, 1978), which enables

the model-parameter uncertainties to be determined via

matrix inversion. These parameter uncertainties are propa-

gated to give an estimation of the uncertainties of the scale

factors for all reflections and an adjustment to the variance of

the scaled intensities.

Several rounds of outlier assessment are performed during

the scaling algorithm to retest all observations based on the

updated models (even if they were previously determined to

be outliers). Following the methods described in Evans (2006),

an observation is classed as an outlier if its normalized

deviation from the weighted mean of the group of symmetry

equivalents, excluding the test reflection, is above a given

threshold, which is 6� by default. In the final round of outlier

assessment, reflections determined as outliers are marked as

such for output and merging.

Another important consideration during scaling is whether

the profile or summation intensity estimates give the most

reliable estimates of the measured intensity. In general, profile

fitting improves the estimation of weak intensities by reducing

the random counting error; however, for very large intensities

the error in the profile model can be greater than the counting

error (Leslie, 1999). After the first cycle of scaling and outlier

rejection, which uses profile intensity estimates, the optimal

intensity choice is investigated. To reflect the fact that

summation estimates can be better than profile estimates for

very large intensities, a smooth crossover from profile to

summation intensities, as a function of uncorrected intensity,

can be defined (Evans & Murshudov, 2013):

Iscale ¼ wprf � Iprf þ ð1� wprfÞ � Isum; ð13Þ

wprf ¼ 1=½1þ ðIsum=ImidÞ
3
�: ð14Þ

At the ‘optimize intensity combination’ step, a number of

logarithmically spaced crossover Imid values are tested, and the

choice (summation/profile) or combination with the lowest

Rmeas is used for the remainder of scaling and output. Here,

Rmeas is favoured over CC1/2, as the CC1/2 values are typically

all very similar to unity, hindering discernment of the optimal

choice.

The final key component is the optimization of the error

model to give an improved estimate of the intensity uncer-

tainties. After the first instance of error-model optimization,

the improved error estimates are used to update the weights/

uncertainties in subsequent rounds of scaling-model optimi-

zation and outlier rejection. For the penultimate step, the

error model is minimized again and the variances of all

reflections are updated before data output. At the point of

output, the data can be merged using algorithms available in

cctbx or retained in unmerged format. The merging process

has also been packaged into the command-line program

dials.merge, which produces a merged MTZ file containing

intensities and ‘truncated’ amplitudes suitable for structure

solution (French & Wilson, 1978).

For scaling multiple sweeps, one possibility is to scale all

sweeps concurrently: if none of the sweeps have previously

been scaled, the first round of outlier rejection is performed on

the individual sweeps before all sweeps are combined for the

scaling-optimization algorithm (Fig. 2). A novel feature in

DIALS is the support for a workflow in which individual

sweeps can be added one or more at a time to build up the

whole data set incrementally. This is supported by a round of

scaling against a reference, shown in Fig. 3, where the unscaled

sweeps are scaled against reference hIhi values calculated from

previously scaled data. This acts to quickly scale the new

sweep based on the current best estimates of hIhi, before the

data are combined and passed to the scaling-optimization

algorithm, to further minimize the scaling models for all

sweeps. This process can be repeated for additional sweeps,

allowing the full data set to be built up incrementally. One

advantage of this method is that as the data set is built the

estimates of hIhi become closer to the true hIhi, so that when a

new sweep is added the majority of its model optimization can

be performed in the quick reference scaling before all scaling

models are adjusted to account for the combined hIhi estimate.

Additionally, the incremental workflow allows inspection and

evaluation of the scaled data set after each addition, enabling

incorporation into data-collection and processing routines,
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providing essential, near-real-time feedback to users of

synchrotron beamline facilities.

The algorithms in DIALS also allow scaling against a

reference data set (Fig. 4). Practically, a merged MTZ file or a

DIALS reflection file can be used to give input intensities with

which to calculate the reference hIhi. The scaling-optimization

algorithm is then run only on the nonreference data using the

reference hIhi, with only the nonreference data exported. An

example use case for these modes includes time-resolved

pump–probe experiments, where one may have a full

measurement of a test crystal as a reference followed by short

time-resolved measurements of many crystals, which should

all be scaled against the reference crystal, placing the time-

resolved data on a common scale.

3.5. Data-set selection for multi-crystal scaling

To process multi-crystal narrow-sweep data sets, where non-

isomorphism and radiation damage can be significant, it is

necessary to consider the suitability of all data sets for scaling

and merging before accepting the best combined scaled data

set.

One approach to data-set selection is to perform hier-

archical clustering based on unit-cell parameters, as performed

in the program BLEND (Foadi et al., 2013), where clustering is

performed before scaling. Another approach, described in

Giordano et al. (2012), is to perform hierarchical clustering

based on the correlation-coefficient matrix between data sets

after scaling. A further approach based on optimizing the

overall CC1/2 has been described by Assmann et al. (2016). It

was shown that an approach that optimizes CC1/2, referred to

as the �CC1/2 method, is favourable as a means to predomi-

nantly exclude data sets that are systematically different from

the majority of the data set without a bias to exclude weak

data sets. The contribution of a subset of the data to the

overall CC1/2 is determined by calculating the �CC1/2 for the

ith subset of the data, defined as

�CCi
1=2 ¼ CC1=2�i � CC1=2; ð15Þ

where CC1/2�i is the overall CC1/2 excluding the ith subset. The

�–� method (Assmann et al., 2016) is used to reliably calculate

CC1/2 in resolution bins, while a single CC1/2 value per subset

is given by the weighted average over the resolution bins.

Subsets of the data with a highly negative �CCi
1/2 can be

considered to be significantly degrading the quality of the

whole data set owing to systematic differences in the inten-

sities.

For scaling multi-crystal data sets in DIALS, an option is

available to perform successive cycles of scaling and exclusion,

based on �CC1/2 values, until the data set is not significantly

improved by further exclusions. The exclusion can be

performed on whole sweeps, or sets of image groups within

sweeps, to enable only the end of sweeps to be removed in the

case of radiation damage. The scaling and exclusion uses

successive cycles of the scaling-optimization algorithm,

without using full-matrix minimization, and the �CC1/2 algo-

rithm, followed by a final cycle of the scaling-optimization

algorithm with full-matrix minimization. A number of termi-

nation criteria may be used, including the number of cycles,

the data-set completeness and the percentage of observations

removed. The usage of this option is intended as a semi-

automated tool, enabling an exploration of the evolving

characteristics of the scaled data set as the most non-isomor-

phous data are successively removed.

3.6. Free-set validation of scaling models

An important consideration for scaling and merging is the

suitability of a particular choice of model parameterization;

however, precision indicators such as Rp.i.m. and CC1/2 can be

misleading, particularly if the model is minimized against a

subset of the data. Increasing the number of model parameters

will generally increase the precision of the data by improving

the agreement between symmetry-related reflections, yet this

may result in overfitting experimental noise rather than
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Figure 4
Flow chart showing the stages of the reference scaling algorithm, which uses the scaling-optimization algorithm with the reference set of intensities in the
minimization target.

Figure 3
Flow chart showing the stages of the incremental scaling algorithm, in which an additional prescaling round is performed using the already scaled data as
a reference data set.



modelling a true signal in the data. To assess the impact of

model or algorithm choices on the scaling-model quality, a

free-set validation option has been implemented, analogous to

the free-set validation used in macromolecular refinement

(Brünger, 1992, 1993). It is important to stress that the free-set

validation does not form part of the recommended routine

scaling in DIALS, but exists as an additional tool.

In the general method of free-set validation, the data set is

split into a work and a free set, with the free set typically

containing 5–10% of the data. The model (for example atomic

coordinates) is minimized using only the work set, and by

testing the fit of the model to the free set using a suitable

metric one can obtain additional insights into the suitability of

the refined model. When comparing models, an improved

model should improve the precision of data in both the free

and work set, although it must be stressed that an increase in

precision does not necessarily lead to a more accurate data set.

In scaling, the purpose is to increase the precision to the extent

allowed by the quality of the data, but no further. The

selecting and testing of free sets can be repeated with different

subsections of the data to increase the significance of the

results, i.e. n-fold validation, to avoid large fluctuations based

on the particular free set chosen (Brünger, 1993).

In the implementation for scaling within DIALS, the free

set is chosen by taking a percentage of the groups of

symmetry-equivalent reflections, typically 10%, so that all

symmetry equivalents of a given reflection are fully contained

in either the work or the free set. Only the work set is used to

determine parameter values during the scaling algorithm,

with a subset of the work-set reflections typically used in the

minimization procedures. The refined models are then applied

to both the work-set and free-set reflections, as well as outlier

rejection being performed on both sets. This algorithm can be

repeated n times until all of the data have been used as part of

a free set once, with the resulting metrics being averaged over

the repeats. Rmeas and CC1/2 metrics are reported for the work

and free set, with the Rmeas metric being favoured over Rp.i.m.

owing to the fact that it is independent of multiplicity, as the

multiplicities of the work and free set are in general unequal.

Typical uses for this approach in scaling would be to investi-

gate the effect of including particular model components,

changing the parameterization for the individual model

components or assessing the effects of algorithm choices.

Furthermore, a large discrepancy between the work and free

metrics is a simple indicator of deficiencies in the current

model.

4. Scaling of example data sets

To validate the new scaling algorithms within DIALS and to

demonstrate the use of the tools, the results of scaling a variety

of experimental data sets are shown in this section, including a

weak macromolecular data set, a multi-crystal narrow-sweep

data set with significant radiation damage and a multi-crystal

data set. The scaling algorithms in DIALS can be run using the

command-line program dials.scale, with optional keyword

parameters. The full commands used to analyse each example

data set are given in Appendix B, and the majority of plots

shown can be found in the HTML report generated by

dials.scale.

4.1. Scaling of high-multiplicity weak data

To test the handling of data for macromolecular crystallo-

graphy, a weak high-multiplicity data set from a thermolysin

crystal was used. Diffraction data were collected on beamline

I03 at Diamond Light Source, consisting of 7200 images at

0.1� intervals, following a low-dose high-multiplicity strategy

(Winter & McAuley, 2016). The integrated data were processed

with dials.scale and a summary of the merging statistics is

shown in Table 1. Plots of the scaling-model components are

shown in Fig. 5, and resolution-dependent statistics and plots

of the anomalous signal are shown in Fig. 6.

The 180� periodicity is evident in the scale component, and

some features are evident in the absorption correction surface,

although the relative variation in this correction is well below

1%. The relative B factor shows no major deviation from its

null value, as expected given the low-dose collection strategy.

Despite the fact that hI/�(I)i tends towards zero at high

resolution, a significant half-data set correlation is maintained

to the highest resolution, with significant anomalous correla-

tion for d > 2.13 Å (significant at p = 0.01). Furthermore, the

anomalous signal is evident in the anomalous difference plots

(Fig. 6).

Error-model optimization determined parameters of a =

1.061 and b = 0.036, suggesting an I/� asymptotic limit of 26.5.

The normal probability plot of �hl and the intensity-binned

variances, for the data used for error-model optimization, are

shown in Fig. 7. The normal probability plot shows good

agreement with a normal distribution, but with some deviation

at greater than two standard deviations from the mean. The
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Table 1
Crystallographic parameters, data-set statistics and renement statistics for
data scaled with DIALS and solved by molecular replacement and
renement (see text).

Values in parentheses are for the outer shell.

Thermolysin TehA

Crystal parameters
Space group P6122 R3:H
Unit-cell parameters (Å) a = b = 92.339,

c = 127.707
a = b = 98.434,

c = 136.012
Data-set statistics

Resolution (Å) 79.97–1.50 (1.53–1.50) 72.23–2.30 (2.34–2.30)
CC1/2 1.000 (0.262) 0.998 (0.748)
Rmerge 0.216 (5.965) 0.135 (0.745)
Rmeas 0.217 (6.025) 0.140 (0.780)
Rp.i.m. 0.025 (0.811) 0.032 (0.224)
hI/�(I)i 12.3 (0.2) 16.9 (3.2)
Completeness (%) 97.58 (83.09) 95.23 (93.62)
Multiplicity 72.9 (51.1) 14.3 (9.9)
Observations 3700696 (108764) 297618 (10428)
Unique reflections 50774 (2128) 20821 (1057)
Wilson plot B factor (Å2) 20.2 48.5

Refinement statistics
Work-set reflections 45981 19824
Free-set reflections 2413 994
Rwork (%) 19.1 15.1
Rfree (%) 21.6 18.6



intensity-binned variance plot shows that the error-model

correction is able to bring the variance of �hl into much closer

agreement with the expected value of unity across the inten-

sity range, with the greatest effect at high intensity owing to

the error-model b term.

To confirm the suitability of the scaled data set, phasing was

performed by molecular replacement using Phaser (McCoy et

al., 2007) with PDB entry 2tlx (English et al., 1999) as the

search model (without water or ligands), resulting in a TFZ

score of 15.2, an LLG of 260 and a refined LLG of 8029. The

structure was refined using REFMAC5 (Murshudov et al.,

2011) using a free set of 2413 reflections (5%). The final

R-value statistics obtained were Rwork = 19.1% and Rfree =

21.6% for a model including Zn2+, Cl�, Ca2+ and SO4
2� ions

and a short peptide.

To confirm the suitability of the scaling model and evaluate

the effect of including the approximately null decay correc-

tion, a free-set validation comparison was performed.

The work/free-set values were

practically identical; including

the decay correction gave an

overall work and free Rmeas of

0.21759 and 0.21959, respectively,

compared with values of 0.21760

and 0.21956 without the decay

correction, and the overall CC1/2

values were identical for each

case. The low gap between

the free-set and work-set

statistics indicates negligible over-

parameterization, as expected for

a high-multiplicity data set, while

the free-set statistics show that

the inclusion of the ‘null’ decay

component has no implication for

the scaled data set.

4.2. Scaling multi-crystal in situ
data with DIALS

To demonstrate the new

approaches available for scaling

multi-crystal data in DIALS,

previously published in situ data

for Haemophilus influenzae TehA

(TehA; Axford et al., 2015) were

investigated. The data set inves-

tigated consisted of 72 sweeps

with oscillation ranges of 4–10�.

The data were integrated using

xia2 (Winter, 2010) and a

symmetry analysis was performed

using dials.cosym, which deter-

mined the Laue group to be R3,

resulting in an assigned space

group of R3:H, and reindexed all

sweeps to a consistent setting.

Given the potential for non-

isomorphism and radiation

damage, an exploratory analysis

was performed using ten cycles of

scaling and �CC1/2 exclusion. A

dmin cutoff of 2.3 Å was applied,

while the �CC1/2 analysis was

performed on groups of ten

images to allow exclusion of only
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Figure 6
Resolution-dependent CC1/2 (a) and hI/�i (b) for the scaled data set. (c) Normal probability plot of
anomalous differences �anom = (I+

� I�)/[�2(I+) + �2(I�)]1/2 (d > 2.13 Å). (d) Scatter plot of �Ianom pairs
(�I1 = hI+

i1 � hI
�
i1, �I2 = hI+

i2 � hI
�
i2 for random splitting of I+ and I�) and (e) anomalous correlation

ratio for acentric reflections [ratio of r.m.s. deviation along y = x to r.m.s. deviation along y = �x in (d)].

Figure 5
Scaling-model components determined for the weak but high-multiplicity thermolysin data set. The error
bars indicate the standard parameter uncertainties determined from the final minimization cycle. (a)
Inverse scale-factor correction for the scale correction Chl (parameter uncertainties are too small to
distinguish). (b) Smoothly varying B factor for the decay correction Thl. (c) Values of the spherical
harmonic coefficients Plm that define the absorption surface correction. (d) The angular dependence of the
absorption surface correction factor Shl in the crystal frame (i.e. Shl plotted for �s0 = s1).



the end of sweeps to account for

systematic errors owing to radiation

damage. Image groups were excluded if

their �CC1/2 values were 4� below the

mean value. The results of this scaling

and filtering are shown in Fig. 8.

Initially, significant improvements

were made in the data quality, as the

most systematically different data are

removed. As can be seen from the

histogram plots of �CC1/2, from the

ninth filtering cycle onwards the

extremal �CC1/2 values are significantly

reduced, and the merging statistics show

more gradual improvement towards the

end of the ten cycles of scaling and

filtering. In the last two filtering cycles,

the analysis is starting to remove some

groups which could be considered to be

in the tail of the central distribution of

�CC1/2 values. Based on these insights,

the initial data were rescaled, excluding

all regions identified by the first eight

filtering cycles (this excludes 3.4% of

the observations). Plots of the data-set

statistics, as well as a plot of the

retained/excluded image ranges, are

shown in Fig. 9, while the data-set

statistics, including refinement, are

shown in Table 1. While further

improvement could be obtained by

further exclusion, in this example a

conservative approach is taken. It is for

this reason that this tool is described as

semi-automated, as some user discre-

tion is required to make a decision on

when to stop excluding data. It is not

clear that there is a suitable metric for

an appropriate automatic cutoff that

would be applicable to all data sets, as

the form of the distribution of �CC1/2

values is not well characterized. In this

example, a cutoff of 4� was used;

however, other cutoffs could be equally

valid for exploratory purposes, which

may result in a slightly different,

although functionally similar, set of data

for the final data set. In the example, the

decision on the final data set is guided

by the observation that the majority of

the improvement appears to have been

achieved by the end of the eighth cycle.

The data set after eight cycles of

scaling and filtering was used for struc-

ture determination to verify the scaled

data set. The scaled data were merged

and truncated with dials.merge and
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Figure 8
Initial exploratory scaling and filtering analysis on a multi-crystal TehA data set on 263 groups of
ten images. (a) The distribution of �CC1/2 values for the image groups after each round (n) of
scaling, with the plots limited to counts of 4 and below to display low-count histogram bins. Groups
with �CCi

1/2 < h�CC1/2i � 4� are shown in red and were removed by the filtering algorithm (the 4�
cutoff is indicated by the dashed line). From the ninth cycle, the lowest �CCi

1/2 could be considered
to be within the tail of the central distribution. (b, c, d) Resolution-averaged CC1/2

�–�, hI/�i and Rp.i.m.

per cycle, which show significant improvement in the first seven cycles of scaling and filtering, with
more gradual improvement towards the end of the ten cycles.

Figure 7
(a) Normal probability plot of the normalized deviations �hl after error-model correction compared
with an expected normal distribution (solid line), showing good overall agreement but with some
discrepancy for deviations below �2. (b) Comparison of the variance of the normalized deviations,
binned by intensity, before and after error-model correction, which reduces the variances close to
the target of unity across the intensity range.



molecular replacement was performed using Phaser with the

search model PDB entry 4ycr (Axford et al., 2015) with no

water or ligands. The structure was refined with REFMAC5,

adding waters but without building ligands into the model. The

final R-value statistics obtained were Rwork = 15.1% and Rfree =

18.6%, verifying the quality of the subset of data determined

in this manner. In comparison, the previous published analysis

used data from 56 crystals, consisting of 99 220 reflections to a

resolution limit of 2.3 Å, to determine a structure with Rwork =

15.6% and Rfree = 20.0% (Axford et al., 2015). Although the

results of this analysis are not directly comparable to the

previously published analysis, as a different subset of the data

are used, as well as different data-analysis programs, we note

that slightly more favourable R factors are obtained,

confirming the validity of this approach. The analysis

presented here suggests that, as judged from the merging

statistics, a scaling/�CC1/2 analysis can in fact identify a small

number of image groups that are the most systematically

different parts of the data. In general, in the analysis of such

data sets, a compromise must be made between obtaining a

data set with higher completeness and multiplicity and

obtaining a data set with reduced radiation damage. The tool

presented here allows the retention of completeness and

multiplicity, providing a filtered data set that can be used as a

starting point for further assessments of radiation damage.

4.3. Incremental scaling to build a merged data set

As discussed in Section 3.4, dials.scale also supports an

incremental workflow for scaling multi-sweep/multi-crystal

data sets, which can be used to support recent new data-

collection strategies (Winter et al., 2019). This functionality

could be used to guide data-collection strategies, particularly

for in situ experiments, where measurements from many

crystals need to be combined until a data set with the desired

characteristics is obtained. This can be demonstrated with the

following example, using data collected on the VMXi beam-

line at Diamond Light Source (Sanchez-Weatherby et al.,

2019) consisting of 20� rotation measurements on crystals of

thaumatin. Following data integration with xia2 using DIALS,

the first three data sets were scaled together: this suggests a

resolution limit of 2.1 Å based on a CC1/2 threshold of 0.3;

however, the completeness is insufficient. It is important to

note that the resolution on VMXi was also limited by the

detector size. Overall, the completeness is 87.4% for a reso-

lution limit of 2.1 Å; however, it falls below 80% in both the

lowest and the highest resolution shells. Based on this initial

assessment, a typical experimental strategy would be to

continue collecting until reaching a given completeness. In this

demonstration, a target completeness of 98% in all resolution

shells was chosen. Each subsequent integrated data set was

added individually to the combined scaled data set, triggering

the reference-scaling algorithm (Fig. 3) and restoring the

scaling models for the already scaled sweep to aid in conver-

gence of the scaling algorithm. After the 12th data set was

added, a completeness of 98% was obtained across the reso-

lution range. The resolution-dependent completeness and

CC1/2 per scaling run are shown in Fig. 10.

While this analysis was performed using repeated runs of

the command-line program, one could integrate such func-

tionality into a server-type application for more efficient

algorithm execution by retaining the data set in memory and

bypassing some of the initial setup of data structures. In this

example use case non-isomorphism was not considered, which

could be a significant issue for certain systems. To enhance this

approach, one could use workflows involving periodic non-

isomorphism investigation using a �CC1/2 analysis or intensity

clustering; however, it may be preferable to use the approach

outlined in Section 4.2, depending on the nature of the

experiment.

4.4. Validation of the reflection-selection algorithm

Motivated by the desire to use as few reflections as neces-

sary during scaling-model optimization to improve computa-

tional efficiency, without sacrificing the

quality of the scaling result compared

with using all reflections, a free-set

validation analysis was performed to

determine suitable parameters for the

reflection-selection algorithms. The

effect of changing the number of

randomly selected groups of symmetry

equivalents was investigated, as well as

the difference between the random and

quasi-random algorithms for multi-

sweep data sets, the results of which are

shown in Fig. 11.

For single-sweep scaling, four data

sets were investigated; two high-multi-

plicity data sets of thermolysin (inves-

tigated in Section 4.1; multiplicity

m = 73.2) and insulin (m = 71.4), and

two lower multiplicity data sets of

thaumatin (m = 4.6) and �-lactamase
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Figure 9
(a) CC1/2 and hI/�i of the selected data set (after eight cycles of scaling and exclusion). (b) The
image ranges retained or removed for the selected data set. The whole of the first two sweeps were
removed, in addition to the ends of several other sweeps, removing 3.4% of the reflections from the
initial data set.



(m = 6.7). For the high-multiplicity data

sets, using as few as 800 groups of

symmetry equivalents results in an

almost identical free Rmeas compared

with using all reflections, i.e. a �Rfree
<
�

0.05%, whereas for the lower multi-

plicity �-lactamase data set a much

higher number of groups is required.

Considering the trends as a function of

total reflections used, shown in Fig.

11(d), the lower multiplicity data sets

show a lower �Rfree for a given number

of reflections, with around 20 000

reflections needed for the lower multi-

plicity data sets to have a �Rfree of
<
� 0.05%. Overall, this means that

choosing a single threshold based on the

number of reflections/groups is unsui-

table, as one must also consider that a

minimum number of groups/reflections

should be used for high- or low-

multiplicity data sets, respectively.
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Figure 11
The difference in the free Rmeas determined using all reflections and using a subset of reflections [�Rfree = free Rmeas� free Rmeas(all)] plotted against the
minimum number of groups (top) and the number of reflections in the subset (bottom) for (a, d) single-sweep data sets, (b, e) multiple-sweep data sets
and (c, f ) a multi-crystal data set. For single sweeps a random group selection is used, whereas for multiple-sweep and multi-crystal data a random (R)
and a quasi-random (QR) algorithm are tested. Based on the observed trends, two criteria were chosen for the reflection subset to be used for scaling-
model optimization: it must contain at least 2000 groups and 50 000 reflections, as indicated by the vertical dashed lines.

Figure 10
Incremental scaling of 20� rotation sweeps collected in situ. (a) Completeness and (b) correlation
coefficient for the number of sweeps in the combined data set. Each sweep is added individually to
the combined scaled data set measured up to that point, triggering the reference-scaling algorithm.
As each sweep is added, the completeness is monitored until a given completeness is obtained
across the resolution range (98% in this example, which is obtained after adding sweep 12).



For multi-sweep scaling, three data sets were investigated:

the multi-crystal TehA data set investigated in Section 4.2, a

12-sweep thaumatin data set (Section 4.3) and a four-sweep

proteinase K data set (Sandy et al., 2019). For the TehA data

set, the validation was performed on the 68 sweeps resulting

from the scaling and filtering, and also on a subset of 20

complete sweeps (sweeps 12–31) for comparison. For both

data sets, the quasi-random reflection selection results in a

significantly improved result for a given number of groups/

reflections, particularly for a low number of groups, while for

the thaumatin data set both algorithms give similar results. For

the proteinase K data set, the quasi-random selection gives an

inferior result when fewer than 2000 groups are used: this was

owing to the fact that for this data set the well connected

groups selected contained an uneven distribution of reflec-

tions across data sets (for example, for 500 groups the subset

contained only 10% of one sweep yet 37% of another).

Overall, these results indicate that the quasi-random algo-

rithm is preferable for scaling a large number of sweeps, as in

the case of multi-crystal data, as a more suitably connected

reflection subset is chosen compared with a random selection.

For wider sweeps, the selection algorithms are comparable if

using a sufficient number of groups to ensure an approxi-

mately uniform distribution of reflections across data sets.

Based on these results, the following defaults were chosen

for dials.scale, although the algorithm choice and parameters

remain under user control, as detailed in Appendix B. For

both single-sweep and multi-sweep data, two criteria must be

met in selecting the reflection subset for model optimization: it

must contain at least 2000 groups of symmetry equivalents and

at least 50 000 reflections; these threshold values are indicated

by the vertical lines in Fig. 11. These values would place the

example data sets well within 0.1% of the free Rmeas(all)

values, i.e. a functionally equivalent scaling result, and ensure

a sufficient number of reflections for both the low-and high-

multiplicity data sets. With these thresholds in place sufficient

sampling is obtained for cases such as the proteinase K data

set, and therefore the quasi-random algorithm can be used by

default for multi-sweep scaling. It is anticipated that this will

have the greatest benefits when scaling a large number of

sweeps by requiring only a low fraction of reflections for

minimization, or in cases where the per-sweep multiplicity is

low by helping to choose reflection groups that best constrain

the model optimization.

The advantage of this approach, as opposed to using a fixed

percentage of the data, is to limit the data needed for large

data sets to allow practical scaling while ensuring optimal use

of the data for lower multiplicities, whether the low multi-

plicity is owing to low symmetry or owing to a narrow

measurement sweep. For example, for the high-multiplicity

thermolysin data set the default thresholds use 4% of the

observations. As the scaling-model refinement scales

approximately linearly with the number of reflections used,

the total scaling runtime is reduced by over 50% when using

4% of the observations compared with using 30%. Given that

the number of parameters used for full-rotation data is typi-

cally below 100, the thresholds ensure an observation-to-

parameter ratio of over 500 for single-sweep data, while for

the TehA data set the observation-to-parameter ratio is still

high at approximately 100. The low �Rmeas values of the free-

set validation confirm that for this order of observation-to-

parameter ratio the general risk of scaling-model overfitting is

very low. The insights from this validation analysis can also be

used by automated processing pipelines, such as xia2, to adjust

the algorithm choice and thresholds based on the properties of

the input data.

5. Conclusions

Scaling algorithms have been implemented in dials.scale,

which is part of the DIALS software package, incorporating

well established scaling approaches and introducing specia-

lized tools for multi-crystal data scaling, validation of scaling

parameterization and optimization approaches, and a high

degree of flexibility to its workflow. The effectiveness of the

implementation has been demonstrated on example macro-

molecular crystallographic data.

It was demonstrated how the validation tool can be used to

instruct the implementation of an algorithm component,

namely reflection selection, enabling a methodical approach to

future algorithm development and testing. The analysis

presented confirmed that using a subset of reflections for

scaling-model optimization gives a functionally equivalent

result to using all reflections, which need only be a small

fraction of the total observations for high-multiplicity data

sets. Although the default physical model parameterization is

appropriate for many use cases, with a low risk of overfitting

the data, the free-set validation tool can guide a user in the

construction of a tailored scaling model for more complex and

challenging data sets, allowing the impact of overfitting to be

quantified. For multi-crystal scaling, a scaling and exclusion

tool was presented which provided a simple, automated way to

explore the evolution of a H. influenzae TehA data set as the

least isomorphous data were removed, giving a substantial

improvement in merging statistics while only removing a small

fraction of the data. The scaling workflows described for

handling multi-sweep data sets, in addition to other tools

available in DIALS, are examples of how the package can be

used to provide a high degree of flexibility in the design of

workflows and the approaches taken. The development of the

algorithms presented have benefitted from extensive testing

on experimental data measured at Diamond Light Source

beamlines: data reduction using DIALS tools has been

implemented as the default workflow for xia2 since the release

of DIALS 2.0.

In summary, the implementation of symmetry-determination

and scaling algorithms in DIALS extends the capabilities of

the package, allowing processing from raw diffraction images

to scaled, merged data suitable for structure determination

using DIALS. It is intended that the tools described here will

enable the investigation and implementation of new algo-

rithms and approaches to post-integration data reduction,

furthering our ability to deal with increasingly inventive ways

of measuring macromolecular crystallography data.
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APPENDIX A
Implementation details of error-model optimization

The error model in DIALS is a two-component model, with

the updated form of the variance given by

�02 ¼ a2
½�2
þ ðbIÞ

2
�: ð16Þ

The error model is optimized by assessing the distribution of

normalized deviations �hl under the assumption that the

expected distribution is normal. This assumption only holds

when the Poisson distribution owing to counting statistics can

be sufficiently described by a normal distribution; therefore,

the model is only minimized on reflection groups with hIhi >

25.0. Furthermore, if a significant contribution to the variance

is uncertainty in the background, then the assumption may not

hold; therefore, only reflection groups with hI/�2
i > 0.85 are

used.

To determine the a parameter, a linear fit is made to the

central region (|x| < 1.5) of the normal distribution plot of �hl

for a given b, with the fitted slope used as the updated estimate

for a (i.e. the slope of the normal probability plot would be 1

after correcting with this value of a). To determine the b

parameter, the data are divided into logarithmically spaced

intensity bins. A minimization is performed, with a fixed a,

using an adaptation of a previously described target function

(Evans & Murshudov, 2013),

� ¼
P

i

wi ð0:5� viÞ
2
þ

1

vi

� �
; ð17Þ

where vi is the variance of the �hl distribution in intensity bin i

and wi is the bin weight. The addition of a 1/v term reflects the

mathematical constraint that a variance below zero is impos-

sible, and a variance close to zero should be strongly avoided

for a good model. The modification to the square term is

chosen such that the target function has the minimum at v = 1.

A weight proportional to hIi is used to favour obtaining a good

agreement for the stronger reflections, which are most affected

by the correction. The a and b parameters are sequentially

estimated in this manner until convergence is achieved.

APPENDIX B
Program usage within the DIALS framework

As with other programs in the DIALS framework, the scaling

program can be run from the command line by providing

integrated reflection data and model information. The

command used to analyse the thermolysin data set in Section

4.1 is as follows:

To validate the scaling-model decay correction, the

following command was used:

The exploratory multi-crystal analysis in Section 4.2 was

performed with the following command (using the output data

files from dials.cosym):

After deciding on the appropriate subset of the data, the

data set was scaled using the command

The incremental scaling analysis in Section 4.3 was

performed with the following commands. To scale the first

three sweeps

and thereafter each individual sweep was added using a

command such as

To perform the validation analysis in Section 4.4, additional

options of the following form were used:

To vary the reflection-selection parameters when not

performing validation, the relevant parameters are
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