
research papers

350 https://doi.org/10.1107/S2059798320003769 Acta Cryst. (2020). D76, 350–356

Received 1 November 2019

Accepted 13 March 2020

Keywords: cryo-EM; image processing; data

visualization; software development.

Development of basic building blocks for cryo-EM:
the emcore and emvis software libraries

José Miguel de la Rosa-Trevı́n,a* Pedro Alberto Hernández Viga,b Joaquı́n Otónc

and Erik Lindahla,d

aDepartment of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Stockholm, Sweden,
bUNEAC Manzanillo, Cuba, cMedical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom,

and dSwedish e-Science Research Center, KTH Royal Institute of Technology, Stockholm, Sweden. *Correspondence

e-mail: delarosatrevin@scilifelab.se

Image-processing software has always been an integral part of structure

determination by cryogenic electron microscopy (cryo-EM). Recent advances in

hardware and software are recognized as one of the key factors in the so-called

cryo-EM resolution revolution. Increasing computational power has opened

many possibilities to consider more demanding algorithms, which in turn allow

more complex biological problems to be tackled. Moreover, data processing has

become more accessible to many experimental groups, with computations that

used to last for many days at supercomputing facilities now being performed in

hours on personal workstations. All of these advances, together with the rapid

expansion of the community, continue to pose challenges and new demands on

the software-development side. In this article, the development of emcore and

emvis, two basic software libraries for image manipulation and data visualization

in cryo-EM, is presented. The main goal is to provide basic functionality

organized in modular components that other developers can reuse to implement

new algorithms or build graphical applications. An additional aim is to showcase

the importance of following established practices in software engineering, with

the hope that this could be a first step towards a more standardized way of

developing and distributing software in the field.

1. Introduction

Advances in cryo-EM have been closely related to image-

processing and software development since the early days of

the field (Kühlbrandt, 2014; Belnap, 2015; Bai et al., 2015).

Back in 1992, seven software packages that were in use at the

time were reviewed by Hegerl (1992), and just a few years

later, in 1996, a special issue of the Journal of Structural

Biology was dedicated to software tools for molecular

microscopy (Carragher & Smith, 1996). Over time, the number

of programs has increased considerably. At the time of writing,

the Wikipedia page https://en.wikibooks.org/wiki/Software_

Tools_For_Molecular_Microscopy contained 17 general

packages, 27 specific packages, 38 application tools, 19 visua-

lization tools and six utilities, with many programs not being

registered on the list.

Only considering packages focused on single-particle

analysis, there are a myriad of tools available to the commu-

nity. These range from command-line programs to complete

software suites (or packages) in which the whole processing

workflow can be executed. Several of these packages have

been under development and improved over many years or

decades, accumulating algorithms and methodologies for cryo-

EM image processing. Nonetheless, from a software-design

point of view, there is room for much more improvement.

Most of the development of existing software has been

ISSN 2059-7983

http://crossmark.crossref.org/dialog/?doi=10.1107/S2059798320003769&domain=pdf&date_stamp=2020-03-31


focused on the scientific part, while the overall architectural

design has not been a priority. Currently, there is a large amount

of functionality that is redundant among existing packages and

the major way of reusing other code is by duplicating it from

its original source. This approach is a waste of energy for new

development and is not sustainable in the long term for the

field. In his review in 1992, Hegerl was already raising the

concern about consolidating existing packages into a modular

system supported by the entire community (Hegerl, 1992).

The same idea of a common library was the main driving force

for the design and implementation of the Image Processing

Library and Toolbox (IPLT; Philippsen et al., 2007), which

grew into a full package but does not seem to be under active

development. Despite the clear advantages of a common

effort in terms of software libraries, there are many complex

factors that should be taken into account to analyze the

reasons for such an initiative to be widely adopted (or not) by

the community (Smith & Carragher, 2008). One example of a

basic library that has proven to be useful is mrcfile (Burnley et

al., 2017), which provides functions to operate with MRC

image files.

In this work, we present the design and implementation of

two basic software libraries for cryo-EM: emcore and emvis.

During their development, great care has been put into the

overall design of the application programming interface (API)

in order to provide other developers with basic building

blocks. emcore contains classes and methods to operate with

image data and metadata, while emvis implements graphical

components for data visualization and analysis. In the

following, we will discuss the key points of both libraries,

highlighting design decisions and possible applications. Finally,

we will discuss future directions of the current work and

general conclusions.

2. Design and implementation

2.1. Architecture overview

One of our core principles when conceiving these libraries

has been modularity. This is the main reason why all of the

code has not been concentrated into a single library with many

dependencies. Usually, graphical components bring more

dependencies into a project that are not needed by command-

line programs or if other graphical implementations are

considered. For both emcore and emvis we have chosen to

follow object-oriented programming paradigms, which have

been implemented in C++ (Stroustrup, 2000) and Python

(https://www.python.org/). This combination is quite common

in scientific domains, since C++ allows more low-level control

and more efficient code, while Python complements it with its

high flexibility and elegant syntax. Both languages are widely

used and have a variety of supporting libraries for general-

purpose and scientific computing.

The overall software-architecture layout is depicted in Fig. 1.

The emcore library contains submodules for basic mathema-

tical operations and operating system-specific functions. The

base submodule supports the essence of cryo-EM data hand-

ling: Images and Tables. Based on these submodules, the

processing submodule defines Image-

Processor as the base class to implement

basic operations such as filters, align-

ments, Fourier transforms etc. emcore is

implemented in C++11, exploiting some

of the new features of this version for

more efficient memory manipulation

and more standard library functions.

Dependencies from external libraries

are centralized and some of them are

even optional (for example, libraries for

reading specific types of images or

tabular formats). Additionally, we use

pybind11 (Jakob et al., 2017) to generate

a binding layer to the existing classes

and methods that exposes most of the

available functionality to Python. The

general architecture, as well as many

elements of the design and imple-

mentation of the main components, has

been inspired and influenced by existing

code in established packages such as

Xmipp (Sorzano et al., 2004; Scheres et

al., 2008; de la Rosa-Trevı́n et al., 2013),

EMAN2 (Tang et al., 2007), Bsoft

(Heymann & Belnap, 2007) and

RELION (Scheres, 2012; Kimanius et

al., 2016; Zivanov et al., 2018), among

research papers

Acta Cryst. (2020). D76, 350–356 de la Rosa-Trevı́n et al. � emcore and emvis 351

Figure 1
General architecture overview showing different components and their interaction. Dotted arrows
represent dependencies from one module to another. emcore is a C++ library with basic functions
for image and table manipulation. A binding layer provides access to emcore from libraries or
applications written in Python. This binding is used by emvis to implement visualization
components, based on general models, views and widgets defined in datavis.



others. Nonetheless, a strong emphasis has been put on the

clear definition of each class API, separating the imple-

mentation details from the public interface that is visible to

other developers.

On the other hand, emvis has been written entirely in

Python, where the more general components are grouped into

a separate library, datavis. This library contains definitions

of the data models that will be used by the graphical View

components. Some utility widgets are implemented using

PyQt5 (https://www.riverbankcomputing.com/software/pyqt/

intro) and PyQtGraph (Luke, 2011). Even if the initial focus is

cryo-EM data processing, the datavis design is more general

and does not depend on emcore, opening the possibility for it

to be reused in other applications dealing with images and

metadata. On top of datavis, the emvis library implements

some of the defined models more specifically for cryo-EM data

using the Python binding provided by emcore.

2.2. Using emcore and emvis

The emcore library is built around three main classes:

Image, Table and ImageProcessor. Image and Table are the

basic units for data handling that separate how data are

represented in memory from how data are read/written from

different formats. This approach simplifies the task of imple-

menting support for new formats in the future. Image-

Processor is the base class that defines the general interface

for all processing operations. All entities rely on more basic

utility classes such as Type, Object and Array, as shown in

Fig. 2.

research papers

352 de la Rosa-Trevı́n et al. � emcore and emvis Acta Cryst. (2020). D76, 350–356

Figure 2
Simplified class diagram of the emcore library, where dotted arrows represent dependencies and solid arrows represent inheritance. Image and Table are
the main classes used for data manipulation and rely on other basic classes such as Array, Object and Type. Input/output operations are delegated to
separate classes, which can be extended to support other formats. The abstract definition of ImageProcessor allows the implementation of many image-
processing operations such as arithmetic or windowing/scaling. The FourierTransformer class is used in the many-processors implementation. The special
ImagePipeProc allows the combination of many processors to perform a given operation.



The ImageFile class allows images to be read and written

from/to individual files or stacks. Internally, this class selects

the implementation to deal with a specific image format (for

example MRC, SPIDER, TIF etc). The format implementa-

tion class will then handle the supported data types (for

example float, int8, double etc.) and will perform internal type

conversions if required. Binary image data are then stored by

the Image class, which is implemented as a four-dimensional

array structure. The Image class is independent of file format,

although it contains convenience read and write methods

(internally using an ImageFile) for simple input/output

operations.

The code listing in Fig. 3 shows how an image stack in MRC

format is opened (the MRC implementation is instantiated

internally by the ImageFile class) and each image is written

into a separate file in SPIDER format. It can be seen that the

code in both C++ (left) and Python (right) is very similar,

apart from syntactic differences between the languages.

Together with the Image class we also implemented a Table

class, in which the internal data structure is also separated

from how it is read/written to disk. The Table class allows

tabular data to be manipulated by operating on columns or

data rows. Similarly to the Image case, the TableFile class will

centralize the implementation to read/write-specific file

formats (for example, STAR, XML, SQLITE etc). Support for

other formats can be added to the library without affecting the

way these classes are used.

On top of the classes mentioned above, the ImageProcessor

class defines the primary interface for implementing new

image-processing operations (see Fig. 2).

Each processor can define variable

parameters which are essentially a

dictionary of Object values. Apart from

these parameters, there is a process()

function that takes an image as input

and modifies it in place or stores the

result as an output. For example,

ImageMathProc implements some basic

arithmetic operations, while Image-

ScaleProc performs resizing/scaling

using the FourierTransformer class,

which is a thin wrapper around the

FFTW library (Frigo & Johnson, 2005).

ImagePipeProc is a special type of

ImageProcessor that allows the conca-

tenation of several other processor

objects. It has a special function

addProcessor() that allows a new

processor to be added to the internal

‘processing pipeline’. Then, a call to its

process() function will execute all of the

internal processors to produce the

desired result. Intermediate image

objects are handled by the ImagePipe-

Proc class and this generic imple-

mentation opens the possibility of

future performance improvements such

as parallel execution of the pipeline. The code in Fig. 4 shows a

simple example of using ImagePipeProc to create a processor

that multiplies the pixel values by �1 and scales the image by

half of its original size.

Visualization is an important component of cryo-EM data

analysis; therefore, from the beginning we started developing

the emvis visualization library using emcore as a backend. As

shown previously in Fig. 1, there is a separate datavis library

that contains more general components (mainly for image and

table display), with emvis being more specific for cryo-EM

data. datavis is composed of three main submodules: models,

widgets and views.

The models submodule contains the definitions of several

data models that will be used by graphical view components.

Some models are related to binary data, while others are

related to tabular data. TableModel is used by the graphical

components to query the data structure such as the existing

columns or the number of rows. On the other hand, Table-

Config allows different visualization configurations to be

specified based on the same data model. For example, it is

possible to display only some columns, render a given data

column or specify which labels will be displayed together with

images. This flexibility allows developers to avoid writing

repetitive code, while still allowing them to present the data

contextually.

In the widgets submodule we have implemented some

simple components with very specific functionality. Based on

both models and widgets, the views submodule defines higher

level graphical components that help to visualize more

research papers

Acta Cryst. (2020). D76, 350–356 de la Rosa-Trevı́n et al. � emcore and emvis 353

Figure 3
Code example showing how to use the Image and ImageFile classes to read from one image format
and write to another. The left side is C++ code and the right side is the Python equivalent.



complex data. Furthermore, the emvis library implements

some extra views that are more specific for cryo-EM data

formats. The provided graphical classes will help developers

to quickly create simple applications while minimizing the

required knowledge about the underlying PyQt5 toolkit. Some

concrete applications of the emvis components are described

in the next section.

2.3. Applications

In this section, we mention some of the already developed

applications of the library. These applications exemplify how

to use some of the underlying classes and graphical compo-

nents. A more detailed list of currently implemented tools can

be found at https://3dem.github.io/emdocs/emvis/.

2.3.1. Command-line tools. While developing these

libraries, two command-line tools were developed to help

during implementation and testing. em-image is one of these

programs and provides some functions for image manipula-

tion. It contains basic operations similar to those provided by

other existing packages, but we find it convenient to include

such a tool for command-line operations without the need to

write code. One interesting feature of the program is that

many operations can be concatenated and applied to the input

images without requiring the writing of intermediate files, as is

performed by many other implementations. Another provided

program is em-table, which deals with tabular data. It supports

many operations to analyze and modify data items. Although

it is also possible to find similar tools in other packages, this

program provides some advanced operations that are usually

achieved in more cumbersome ways using text processors such

as AWK. A complete description of these programs together

with many examples can be found at https://3dem.github.io/

emdocs/emcore/.

2.3.2. File browser. We have also implemented a file

browser that uses the tools provided in emvis. It has turned out

to be quite a useful application that helps to navigate the

output results from existing programs such as RELION

(Scheres, 2012; Kimanius et al., 2016; Zivanov et al., 2018),

Scipion (de la Rosa-Trevı́n et al., 2016) and others. The

browser itself is a component that could be embedded in other

applications. When exploring files, the browser uses the

factory classes in emvis to create appropriate views of the

selected file, which are displayed in the preview panel. For

example, Fig. 5(a) shows the MultiSlicesView for the selected

volume and Fig. 5(b) shows the ColumnsView for a Sqlite3

(https://www.sqlite.org) file generated from Scipion. The left

panel shows the list of files and supports two navigation

modes: one in which a file in the current folder is shown

(Fig. 5a) and another that expands as a tree view (Fig. 5b). The

browser can be invoked from the command line by using the

em-viewer program with a folder path as its first argument.

2.3.3. Particle-picking visualization. Another versatile

component is PickerView, implemented in emvis, which is

instantiated by the em-viewer program to display the results of

particle picking. The underlying PickingModel allows the easy

support of different output formats from many programs such

as Xmipp (Sorzano et al., 2004; Scheres et al., 2008; de la Rosa-

Trevı́n et al., 2013), RELION (Scheres, 2012; Kimanius et al.,

2016; Zivanov et al., 2018), Scipion (de la Rosa-Trevı́n et al.,

2016), EMAN (Tang et al., 2007), crYOLO (Wagner et al.,

2019) and Topaz (Bepler et al., 2019). It also facilitates the

addition of new programs by providing a minimal amount of

code to parse from a specific format. Fig. 6 shows a screenshot

of a tool comparing two picking results. In this example, it is

comparing outputs from two RELION picking runs, but it can

easily be adapted to compare different picking programs.

Additionally, a mask-creator tool has been integrated with

MicrographCleaner (Sanchez-Garcia et al., 2019), highlighting

possible bad regions from the micrographs and particles lying

in these regions.

3. Code availability, installation and documentation

We strongly believe that open-source software is one of the

supporting pillars of modern science, and as such we distribute

the tools described in this work under GPLv3 (https://

www.gnu.org/licenses/gpl-3.0.en.html). Apart from the tech-

nical aspects, another strong motivation for this work is to

create a community project that will unite efforts among

scientific developers. The only possible way to pursue this goal

is to use a license that protects the freedom of the code and

encourages collaboration and sharing.

Source code is freely available at the following repositories:

emcore at https://github.com/3dem/emcore, datavis at https://

github.com/3dem/datavis and emvis at https://github.com/

3dem/emvis.

research papers

354 de la Rosa-Trevı́n et al. � emcore and emvis Acta Cryst. (2020). D76, 350–356

Figure 4
Simple code example using the ImagePipeProc class. First an Image-
MathProc is used to invert the pixel values (multiplying by �1) and the
image is then scaled half of its size using ImageScaleProc.



Regarding installation, a large amount of effort has been

dedicated to simplifying the installation process and distri-

buting the code as standard Python packages. The three

libraries can be installed into an existing Python environment

using pip by the command pip install emcore datavis

emvis or, using Conda, conda install emcore datavis

emvis -c conda-forge -c emforge.

Another priority of this work is to produce good docu-

mentation around the provided code. Again, engaging the

community to contribute is very

important, and for this docu-

mentation is essential to growing

and sustaining the community.

Good documentation helps

prospective users to succeed

using the software and enables

them to give further feedback.

Online documentation can be

found at https://3dem.github.io/

emdocs/emcore/ for emcore and

at https://3dem.github.io/emdocs/

emvis/ for datavis and emvis.

4. Conclusions and future
plans

Here, we have presented our

work in developing basic libraries

for cryo-EM image processing

and data analysis. The main focus

of these libraries is to create solid

building blocks with a clear API

and following good software-

engineering practices. Currently,

the libraries do not aim to

implement many processing

algorithms or visualization tools,

but rather to establish a well

structured framework that others

might build on. Nonetheless, the

current implementation already

provides interesting features that

could be useful for users or

developers. Moreover, the overall

design has been conceived with

integration in mind, either with

other cryo-EM packages in the

field or with more general scien-

tific packages in the Python

ecosystem.

Even if we have made the

current design and implementa-

tion thinking of the future and of

possible integration, we have also

identified existing cases where

this work may already be useful.

For example, the Scipion frame-

work will benefit from using the provided libraries to rewrite

some of the core functionality and some of the visualization

tools. This approach will remove the current dependencies on

the more complex Xmipp software package, and will fit better

with the current Scipion philosophy of a general Python

framework with modular plugins. Nonetheless, some legacy

classes have been included to facilitate possible migrations

from existing C++ codebases such as Xmipp or RELION.

While we understand the amount of work that is involved in a

research papers

Acta Cryst. (2020). D76, 350–356 de la Rosa-Trevı́n et al. � emcore and emvis 355

Figure 5
Screenshots of different data visualizations with BrowserView. (a) Navigation in ‘Directory’ mode, where a
volume is selected and previewed with MultiSlicesView. (b) Navigation in ‘Tree’ mode, which displays a
Sqlite3 file generated by Scipion.



nontrivial refactoring process, it may be that a progressive,

partial incorporation of the libraries could be considered.

We still expect to polish some details of the current

implementation with feedback from the community, but do

not anticipate major changes in the overall design and archi-

tecture. A possible extension of the current work would be to

incorporate basic functions for parallelization with minimal

effort. For example, some options that could be implemented

include threading, multiprocessing and graphics cards. By

having some ready-to-use built-in functions, scientists could

prototype ideas more quickly and decide whether it is worth

investing effort in further optimization.

It is almost impossible to predict the success of these

libraries in the future and whether they will be widely adopted

by the community. We have tried our best to provide easy-to-

use, extensible and robust code to remove possible hurdles,

but there are many factors beyond technical aspects. We hope

that this work will lay the first stone for building a more

collaborative environment for software development in cryo-

EM, where best practices are shared and best ideas are

consolidated.

Acknowledgements

This work used data generated by the Cryo-EM Swedish

National Facility funded by the Knut and Alice Wallenberg,

Family Erling Persson and Kempe Foundations, SciLifeLab,

Stockholm University and Umeå University. For testing we

have used several public data sets from EMPIAR (Iudin et al.,

2016). We also wish to thank Dustin Morado and Grigory

Sharov for reviewing the manu-

script and providing feedback

about this work.

References

Bai, X.-C., McMullan, G. & Scheres,
S. H. W. (2015). Trends Biochem.
Sci. 40, 49–57.

Belnap, D. M. (2015). Curr. Protoc.
Protein Sci. 82, 17.2.1–17.2.61.

Bepler, T., Morin, A., Rapp, M.,
Brasch, J., Shapiro, L., Noble, A. J.
& Berger, B. (2019). Nat. Methods,
16, 1153–1160.

Burnley, T., Palmer, C. M. & Winn,
M. (2017). Acta Cryst. D73, 469–
477.

Carragher, B. & Smith, P. (1996). J.
Struct. Biol. 116, 2–8.

Frigo, M. & Johnson, S. (2005). Proc.
IEEE, 93, 216–231.

Hegerl, R. (1992). Ultramicroscopy,
46, 417–423.

Heymann, J. B. & Belnap, D. M.
(2007). J. Struct. Biol. 157, 3–18.

Iudin, A., Korir, P. K., Salavert-
Torres, J., Kleywegt, G. J. &
Patwardhan, A. (2016). Nat.
Methods, 13, 387–388.

Jakob, W., Rhinelander, J. &
Moldovan, D. (2017). pybind11: Seamless Operability Between
C++11 and Python. https://github.com/pybind/pybind11.

Kimanius, D., Forsberg, B. O., Scheres, S. H. W. & Lindahl, E. (2016).
eLife, 5, e18722.

Kühlbrandt, W. (2014). Science, 343, 1443–1444.
Luke, C. (2011). PyQtGraph: Scientific Graphics and GUI Library for

Python. http://www.pyqtgraph.org/.
Philippsen, A., Schenk, A. D., Signorell, G. A., Mariani, V., Berneche,

S. & Engel, A. (2007). J. Struct. Biol. 157, 28–37.
Rosa-Trevı́n, J. M. de la, Otón, J., Marabini, R., Zaldı́var, A., Vargas,

J., Carazo, J. M. & Sorzano, C. O. S. (2013). J. Struct. Biol. 184, 321–
328.

Rosa-Trevı́n, J. M. de la, Quintana, A., del Cano, L., Zaldı́var, A.,
Foche, I., Gutiérrez, J., Gómez-Blanco, J., Burguet-Castell, J.,
Cuenca-Alba, J., Abrishami, V., Vargas, J., Otón, J., Sharov, G.,
Vilas, J. L., Navas, J., Conesa, P., Kazemi, M., Marabini, R., Sorzano,
C. O. S. & Carazo, J. M. (2016). J. Struct. Biol. 195, 93–99.

Sanchez-Garcia, R., Segura, J., Maluenda, D., Sorzano, C. O. S. &
Carazo, J. M. (2019). bioRxiv, 677542.

Scheres, S. H. W. (2012). J. Struct. Biol. 180, 519–530.
Scheres, S. H. W., Núñez-Ramrez, R., Sorzano, C. O. S., Carazo, J. M.

& Marabini, R. (2008). Nat. Protoc. 3, 977–990.
Smith, R. & Carragher, B. (2008). J. Struct. Biol. 163, 224–228.
Sorzano, C. O. S., Marabini, R., Herman, G. T., Censor, Y. & Carazo,

J. M. (2004). Phys. Med. Biol. 49, 509–522.
Stroustrup, B. (2000). The C++ Programming Language, 3rd ed.

Reading: Addison-Wesley.
Tang, G., Peng, L., Baldwin, P. R., Mann, D. S., Jiang, W., Rees, I. &

Ludtke, S. J. (2007). J. Struct. Biol. 157, 38–46.
Wagner, T., Merino, F., Stabrin, M., Moriya, T., Antoni, C.,

Apelbaum, A., Hagel, P., Sitsel, O., Raisch, T., Prumbaum, D.,
Quentin, D., Roderer, D., Tacke, S., Siebolds, B., Schubert, E.,
Shaikh, T. R., Lill, P., Gatsogiannis, C. & Raunser, S. (2019).
Commun. Biol. 2, 218.

Zivanov, J., Nakane, T., Forsberg, B. O., Kimanius, D., Hagen, W. J.,
Lindahl, E. & Scheres, S. H. W. (2018). eLife, 7, e42166.

research papers

356 de la Rosa-Trevı́n et al. � emcore and emvis Acta Cryst. (2020). D76, 350–356

Figure 6
Screenshoot of the em-picker application comparing two different results from RELION particle-picking
runs.

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5111&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5111&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5111&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5111&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5111&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5111&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5111&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5111&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5111&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5111&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5111&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5111&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5111&bbid=BB5
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5111&bbid=BB5
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5111&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5111&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5111&bbid=BB7
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5111&bbid=BB7
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5111&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5111&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5111&bbid=BB99
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5111&bbid=BB99
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5111&bbid=BB99
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5111&bbid=BB99
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5111&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5111&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5111&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5111&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5111&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5111&bbid=BB98
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5111&bbid=BB11
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5111&bbid=BB11
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5111&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5111&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5111&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5111&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5111&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5111&bbid=BB14
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5111&bbid=BB14
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5111&bbid=BB14
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5111&bbid=BB14
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5111&bbid=BB14
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5111&bbid=BB15
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5111&bbid=BB15
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5111&bbid=BB16
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5111&bbid=BB17
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5111&bbid=BB17
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5111&bbid=BB18
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5111&bbid=BB19
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5111&bbid=BB19
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5111&bbid=BB20
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5111&bbid=BB20
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5111&bbid=BB21
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5111&bbid=BB21
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5111&bbid=BB22
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5111&bbid=BB22
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5111&bbid=BB22
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5111&bbid=BB22
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5111&bbid=BB22
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5111&bbid=BB23
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5111&bbid=BB23

