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Phasing by single-wavelength anomalous diffraction (SAD) from multiple

crystallographic data sets can be particularly demanding because of the weak

anomalous signal and possible non-isomorphism. The identification and

exclusion of non-isomorphous data sets by suitable indicators is therefore

indispensable. Here, simple and robust data-selection methods are described. A

multi-dimensional scaling procedure is first used to identify data sets with large

non-isomorphism relative to clusters of other data sets. Within each cluster that

it identifies, further selection is based on the weighted �CC1/2, a quantity

representing the influence of a set of reflections on the overall CC1/2 of the

merged data. The anomalous signal is further improved by optimizing the

scaling protocol. The success of iterating the selection and scaling steps was

verified by substructure determination and subsequent structure solution. Three

serial synchrotron crystallography (SSX) SAD test cases with hundreds of

partial data sets and one test case with 62 complete data sets were analyzed.

Structure solution was dramatically simplified with this procedure, and enabled

solution of the structures after a few selection/scaling iterations. To explore the

limits, the procedure was tested with much fewer data than originally required

and could still solve the structure in several cases. In addition, an SSX data

challenge, minimizing the number of (simulated) data sets necessary to solve the

structure, was significantly underbid.

1. Introduction

Obtaining large crystals and solving the phase problem remain

the major bottlenecks in macromolecular crystallography. To

overcome the problem of a lack of sufficiently large crystals

for collecting a complete data set with little radiation damage,

multi-crystal data-collection strategies were established early

on and have recently experienced a renaissance (Kendrew et

al., 1960; Dickerson et al., 1961; Ji et al., 2010; Liu et al., 2012;

Akey et al., 2014; Huang et al., 2018). Serial synchrotron

crystallography (SSX; Rossmann, 2014) typically collects a few

degrees of rotation data from each of the small crystals

available to the experimenter.

The term ‘SSX’ has recently been used in a wider sense,

referring to fixed-target or injection-based single zero-rotation

diffraction patterns (stills) from crystals exposed to mono-

chromatic (Nogly et al., 2015; Botha et al., 2015; Owen et al.,

2017) or polychromatic (pink) radiation (Meents et al., 2017;

Martin-Garcia et al., 2019). Serial femtosecond crystallo-

graphy (SFX) takes this method to the extreme; it collects

stills from numerous small crystals before destroying them

using X-ray pulses generated by a free-electron laser.

If crystals are not rotated during exposure, monochromatic

data sets contain fewer reflections than those from SSX with
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rotated crystals and all reflections are partials (Boutet et al.,

2012; Chapman et al., 2011). Both methods ideally result in a

complete data set if enough partial data sets are combined.

To overcome the phase problem, several strategies have

been established and multiple-wavelength or single-wavelength

anomalous diffraction (MAD or SAD) predominate in de

novo structure determination (Hendrickson, 2014). Heavy-

atom derivatization or selenomethionine substitution in

proteins ensures the production of strong anomalous diffrac-

tion; however, even light native elements such as sulfur (Z =

16) in cysteine, and methionine and phosphorus (Z = 15) in

nucleic acids suffice for the generation of a weak anomalous

signal at low energies (Hendrickson & Teeter, 1981; Liu et al.,

2012). The expected anomalous signal relative to the normal

signal can be estimated based on the composition of the

sample, and the wavelength. For SAD the anomalous signal

(Bijvoet diffraction ratio) typically varies between 1% and 5%

of the total scattering signal (Watanabe et al., 2005; Liu et al.,

2012), which is often weaker than the measurement error of an

intensity value (Hendrickson, 1991). Therefore, high multi-

plicity is usually required. The combination of SAD and multi-

crystal data-collection strategies could exacerbate the correct

determination of the anomalous differences, as the weak

anomalous signals of all data sets are required to be consistent

(isomorphous) with each other.

Isomorphism of crystals in the literal sense denotes the

conservation of morphology, which entails space group and

unit-cell parameters. For crystallographic data sets, this

concept extends to the diffracted intensities and the resulting

models. Isomorphous data sets (crystals) thus represent the

same atomic model; in the strict sense, they only differ

randomly from each other, for example, owing to variation in

the intensities resulting from the Poisson statistics of photon

counting, and can be scaled and averaged (merged). On the

other hand, non-isomorphous data sets (crystals) either

represent different atomic models or crystal packings, or are

affected by experimental deficiencies; their intensities differ

both randomly and systematically and thus should not be

averaged. A robust method to identify non-isomorphous data

sets (crystals) is therefore crucial for SAD multi-crystal data

collection and the accurate determination of atomic models.

Outlier data sets can potentially be identified by hier-

archical cluster analysis (HCA), using deviations of their unit-

cell parameters as a proxy for systematic differences (Foadi et

al., 2013). However, the similarity of unit-cell parameters is a

necessary but not sufficient condition and the actual similarity

of the diffraction is not assessed in the selection process, which

therefore only identifies strongly deviating data sets (crystals).

For SSX with partial data sets, the unit-cell-based method

could further suffer from the unavoidable inaccuracy in the

determination of the unit-cell parameters. HCA has also been

employed based on the pairwise comparison of intensities of

common reflections (Giordano et al., 2012). Alternatively, the

pairwise correlation of every single data set and the reference

data set from all merged data sets has been used to reject data

based on a chosen correlation cutoff (Huang et al., 2018). The

selection is based on correlation coefficients between

intensities, but since a low correlation results from both non-

isomorphism and weak exposure, the disadvantage is that

weak (high random error) but isomorphous (low systematic

error) data sets are rejected, which trades accuracy (correct-

ness) for precision (internal consistency). Automated pipe-

lines such as MeshAndCollect (Zander et al., 2015) and

ccCluster (Santoni et al., 2017) with both unit-cell-based and

intensity-based HCA selection have recently been established.

Basu et al. (2019) provide another automated SSX software

suite with selection of data based on unit-cell parameters,

asymptotic I/� (ISa) (Diederichs, 2010; Diederichs & Wang,

2017) or pairwise correlation coefficients. Another approach

utilizes a genetic algorithm (Zander et al., 2016; Foos et al.,

2019) that generates random combinations of data sets into

subsets. These are then optimized according to an iteratively

optimized fitness score derived from a weighted combination

of Rmeas, hI/�i, CC1/2 (Karplus & Diederichs, 2012),

completeness, multiplicity and, in the case of Foos et al. (2019),

anomalous CC1/2 (called CCanom overall by Foos and coworkers

and termed CC1/2_ano in this paper). This approach again

optimizes precision but not necessarily accuracy, and may not

scale well with increasing numbers of data sets.

For experimental phasing, some selection methods focus on

the anomalous signal by calculating anomalous correlations

and rejecting data sets with an (arbitrarily) ‘low’ anomalous

correlation or ‘high’ Rmerge (Akey et al., 2014). The anomalous

correlation between a single data set and a reference data set

of all merged data sets, the relative anomalous correlation

coefficient (RACC), was employed by Liu et al. (2012) and was

further combined with cluster analysis dependent on both

unit-cell parameters and intensity correlations. Yet another

selection procedure combines frame rejection based on rela-

tive correlation coefficients (RCC) and CC1/2, crystal rejection

based on SmRmerge (smoothed-frame Rmerge, as reported in

AIMLESS; Evans & Murshudov, 2013) and further subset

selection based on anomalous correlation coefficients (ACCs;

Guo et al., 2018, 2019). As the existence of a Bijvoet partner in

the data set is required for the calculation of an anomalous

difference of a reflection, few (if any) reflections per data set

are included in the calculation if the data sets are partial. The

low number of reflections used, in combination with the

weakness of the anomalous signal, dramatically decreases the

significance of the calculated anomalous correlations. This

effect is amplified the narrower the rotation range of the single

data sets and the lower the symmetry of the space group, and

therefore selection based on anomalous correlations may not

always be feasible.

Brehm & Diederichs (2014) and Diederichs (2017)

suggested a multi-dimensional scaling method for mapping

differences between data sets to a low-dimensional space

based on pairwise correlation coefficients. In this method,

every data set is represented by a vector in a unit sphere; the

angle between two vectors corresponds to their systematic

difference, whereas the lengths of the vectors are related to

the amount of random differences between the data sets. The

identification of single data sets or data-set clusters showing

systematic differences (non-isomorphism) can be performed,
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for example, by visual inspection or by cluster analysis of the

low-dimensional arrangement of vectors representing the data

sets. This method has since been used to remove the indexing

ambiguity that exists in several point groups and also for

specific combinations of unit-cell parameters when analyzing

data sets in SSX or SFX (Brehm & Diederichs, 2014).

Following previous work (Karplus & Diederichs, 2012;

Diederichs & Karplus, 2013; Assmann et al., 2016), in this

study we chose the numerical value of CC1/2 as an optimization

target depending on the data sets included in scaling and

merging. CC1/2 is a precision indicator for the scaled and

merged data set which was originally based on the random

assignment of observations to half-data sets. It allows the

calculation of CC* which, in the absence of systematic errors,

describes the correlation of the resulting data with the

underlying ‘true’ signal. CC* (and thus CC1/2) provides a

statistically valid guide to assess when data quality is limiting

model improvement (Karplus & Diederichs, 2012). Assmann

et al. (2016) suggested a method to detect data sets in a multi-

crystal experiment that would result in a decrease of overall

data quality, as assessed by CC1/2, if not rejected from data

scaling and merging. A formula to calculate CC1/2 without

random assignment was derived, which results in more precise

values of CC1/2. This allowed the introduction of the �CC1/2

method for the identification of non-isomorphous data sets.

In this study, a combination and extension of the two

methods (Diederichs, 2017; Assmann et al., 2016) is proposed

and analyzed using projects featuring multiple data sets

obtained by the rotation method. The multi-dimensional

scaling approach and the subsequent visualization of the low-

dimensional space solution provides an initial tool to detect

indexing ambiguities and data sets which display strong

systematic differences. In a second step, optimization of the

isomorphous or anomalous signal (CC1/2 or CC1/2_ano) by the

iterative rejection of the data sets with the lowest �CC1/2

makes the key difference and allows simplified structure

solution in challenging SAD test cases (data from Huang et al.,

2018; Akey et al., 2014).

2. Methods and theory

2.1. Processing and scaling of data sets

All data sets were processed with XDS (Kabsch, 2010a),

and scaled with XSCALE (Kabsch, 2010b). Since the standard

deviations �i of the reflection intensities Ii are used as weights

wi = 1/�2
i in scaling and merging, the error model of each data

set, which serves to adjust the �i such that they match the

observed differences between symmetry-related reflections,

plays an important role. The INTEGRATE step of XDS

derives a first estimate �0,i of �i from counting statistics, and

inflates it to �i = 2(�2
0,i + 0.0001Ii

2)1/2, thus limiting the Ii/�i

values to at most 50. The error model is then adjusted in the

CORRECT step of XDS. However, in the SSX case only few

(or no) symmetry-related reflections per data set exist and the

adjustment of the error model in XDS may be poorly deter-

mined or cannot be performed at all. This may lead to a biased

weighting of data sets in the scaling procedure, and should be

avoided. Consequently, we obtained the best results (see

Section 3.4) when we prevented XDS from scaling and further

adjusting the error model in its CORRECT step by using

MINIMUM_I/SIGMA=50 in versions of XDS before October

2019 (and SNRC=50 thereafter), and thus postponed the

scaling and calculation of the error model to XSCALE.

However, this required the availability of the unscaled

INTEGRATE.HKL reflection files. Some data sets were only

available to us as XDS_ASCII.HKL files, the internal scale

factors and error model of which had already been adjusted in

CORRECT if there were symmetry-related reflections within

the same data set. As we preferred to have XSCALE deter-

mine the scale and error model of each data set in the context

of all other data sets, we wrote a small helper program

RESET_VARIANCE_MODEL to (approximately) revert the

adjustment of the error model, based on the two parameters of

the error model as stored in the reflection file produced by

CORRECT.

2.2. XSCALE_ISOCLUSTER

Data sets can differ in as many ways as there are reflections.

After merging and averaging symmetry-related reflections, a

data set can therefore be represented as a point in a space that

has as many dimensions as there are unique reflections. Since

it is cumbersome to analyze data in high-dimensional space,

we use dimensionality reduction to characterize and classify

data sets in a low-dimensional space. To this end, Diederichs

(2017) suggested a multi-dimensional scaling analysis that

separates single data sets according to their random and

systematic differences. Data sets are represented by vectors

in low-dimensional space; this space has the shape of a unit

sphere.

Numerically, the arrangement of vectors in low-dimensional

space is obtained by minimization of the function �(x),

�ðxÞ ¼
PN�1

i

PN
j¼iþ1

ðCCi;j � xi � xjÞ
2; ð1Þ

dependent on the differences of the pairwise correlation

coefficients CCi,j of data sets i and j, calculated from the

intensities of common unique reflections, and the respective

dot products of vectors xi, xj representing the data sets in low-

dimensional space. At the minimum of the function, the dot

products between any pair of vectors reproduce, in a least-

squares sense, the correlation coefficients between the data

sets that these vectors represent.

It has been shown (Diederichs, 2017) that the lengths of the

vectors can be interpreted as the quantity CC* (Karplus &

Diederichs, 2012), giving the correlation between the inten-

sities of a data set and the true values. Moreover, the lengths

of the vectors are inversely related to the amount of random

error in the data sets, whereas their differences in direction

represent their systematic differences. Data sets with vectors

pointing in the same direction thus only differ in random

error; if the vectors have the same length then the data sets

also contain similar amounts of random errors. Short vectors

research papers

638 Assmann et al. � Multi-data-set crystallography Acta Cryst. (2020). D76, 636–652



represent noisy data sets; long vectors represent data sets with

high signal-to-noise ratios and low random deviation from the

‘true’ data set, which would be located in the same direction

but at a length of 1, i.e. on the surface of the sphere.

This method was implemented in the program XSCALE_

ISOCLUSTER. The program reads the XSCALE output file

(scaled but unmerged intensities) provided by the user and

calculates pairwise correlation coefficients between data sets

from averaged (within each data set) intensities of common

reflections. Next, the solution vectors are constructed from the

correlation coefficient matrix. The program writes a new

XSCALE.INP file, which also reports, for each data set, the

length of its vector and the angle with respect to the centre of

gravity of all data sets. Additionally, a pseudo-PDB file with

vector coordinates for visualization of the mutual arrange-

ment of data sets is written. For this study, the program was

run with the settings -nbin=1 (one resolution bin) and

-dim=3 (representation in three dimensions).

2.3. The r–s method and calculation of DCC1/2: XDSCC12

For the calculation of CC1/2, the observations of all

experimental data sets are randomly assigned to two (ideally

equally sized) half-data sets, and every unique reflection is

merged individually within each half-data set (Karplus &

Diederichs, 2012). In a previous study (Assmann et al., 2016)

another way to calculate CC1/2 was introduced to avoid the

random assignment to the half-data sets. The calculation of

CC1/2 is based on the Supplementary Material to Karplus &

Diederichs (2012) and on Assmann et al. (2016),

CC1=2 ¼
�2
�

�2
� þ �

2
"

¼
�2

y �
1
2 �

2
"

� �
�2

y þ
1
2 �

2
"

� � ; ð2Þ

where �y
2 is the variance of the average intensities across the

unique reflections of a resolution shell and 1
2�"

2 is the average

variance of the mean of the observations contributing to them.

��
2, the variance of �, is related to �y

2 by �y
2 = ��

2 + 1
2�"

2. For this

study, we implemented the weighting of the intensities in the

CC1/2 calculations in our program XDSCC12, which reads the

reflection output file from XSCALE containing the scaled and

unmerged intensities of all data sets.

We estimate �"
2 from the unbiased weighted sample

variance of the mean s2
"w (equations 4.22 and 4.23 in Bevington

& Robinson, 2003) for a half-data set and use the standard

deviations of the observations, modified by the error model

determined for every partial data set by XSCALE, as weights.

For each reflection i with observations j, the contribution s2
"iw

to s2
"w is calculated from the ni different data sets that include

this particular reflection. Accounting for the reduced size of

the half-data set requires division of s2
"iw

by ni/2 instead of ni,

s2
"iw
¼

ni

ni � 1
�

Pni

j

wj;ix
2
j;i

Pni

j

wj;i

�

Pni

j

wj;ixj;i

Pni

j

wj;i

0
BBB@

1
CCCA

22
6664

3
7775
�

ni

2

� �
; ð3Þ

where wj,i = 1/�j,i
2. We changed the calculation of frequency-

weighted s2
"iw

(3) to use reliability weights (following the

notation used in Wikipedia; https://en.wikipedia.org/wiki/

Weighted_arithmetic_mean#Reliability_weights), replacing

ni/(ni � 1) with ð
Pni

j wj;iÞ
2=½ð

Pni

j wj;iÞ
2
� ð
Pni

j w2
j;iÞ� and ni/2

with ð
Pni

j wj;iÞ
2=ð2

Pni

j w2
j;iÞ, which resulted in

s2
"iw
¼

Pni

j

wj;i

 !2

Pni

j

wj;i

 !2

�
Pni

j

w2
j;i

 ! �
Pni

j

wj;ix
2
j;i
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�

Pni
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777775; ð4Þ

in which some terms cancel down. Finally, the variances s2
"iw

are averaged over all N unique reflections to obtain

�2
" ¼ ð1=NÞ �

PN
i s2

"iw
.

The algorithm to optimize CC1/2 requires the calculation of

CC1/2,with-i for all of the data sets used and CC1/2,without-i, the

CC1/2 for all data sets without the observations of one single

data set i, for those unique reflections that are represented in

i and excluding those that are only represented in i. Both

CC1/2,with-i and CC1/2,without-i are calculated with the above

formulas. The difference, given by

�CC1=2;i ¼ CC1=2;with-i � CC1=2;without-i; ð5Þ

informs whether data set i improves (�CC1/2,i > 0) or

deteriorates (�CC1/2,i < 0) the merged data for the reflections

represented in data set i. In our implementation, �CC1/2,i is

calculated for all resolution bins and averaged. To obtain more

meaningful �CC1/2 differences that are independent of the

magnitude of the CC values involved, the �CC1/2 values are

by default modified by a Fisher transformation (Fisher, 1915),

thus replacing (5) with

�CC1=2;i ¼ tanh½artanhðCC1=2;with-iÞ � artanhðCC1=2;without-iÞ�:

ð6Þ

For example, this formula assigns the same value (about 0.01)

to �CC1/2 if (CC1/2,with-i, CC1/2,without-i) is (0.0100, 0.0000),

(0.2096, 0.2000), (0.9019, 0.9000) or (0.9902, 0.9900).

The equivalent quantities for the anomalous signal,

CC1/2_ano,with-i, CC1/2_ano,without-i and �CC1/2_ano,i, can be

calculated analogously. Importantly, calculation of �CC1/2_ano,i

does not require both Bijvoet mates to be present in data set i.

�CC1/2,i and �CC1/2_ano,i values for each data set are

reported by XDSCC12, and a file that may be edited and used

as input to XSCALE is written out. This file is sorted by

�CC1/2,i.

2.4. Iterative scaling and rejection

We combined the calculation of a weighted and Fisher-

transformed �CC1/2 with an iterative selection procedure.
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Firstly, all data sets (with � values as obtained in INTE-

GRATE, i.e. without adjustment in CORRECT) are scaled

with XSCALE. The following steps are then performed.

(i) XDSCC12 is run with the options -nbin and -dmax.

We use -nbin 1 to maximize the number of common

reflections per pairwise data-set combination. Using the

-dmax option, a high-resolution cutoff is chosen such that

only statistically significant data are included.

(ii) The newly generated XSCALE.INP file (written by

XDSCC12) containing all data sets sorted by �CC1/2 is

inspected and the worst data sets (at least one data set and at

most 1% of the total number) are removed from it. Data sets

with positive �CC1/2,i should not be removed since this would

impair the merged CC1/2. Sorting of the data sets by their

anomalous contribution (�CC1/2_ano,i) is also possible, but is

only recommended when complete data sets are used (see

Section 3.6). Sorting by �CC1/2 also allows the best data set to

be subsequently used as a reference data set (with a scale of 1

and a relative B factor of 0) in XSCALE, which is generally

desirable in scaling multiple data sets.

(iii) A new scaling run with XSCALE is performed with the

reduced number of data sets. The resulting reflection file can

be used for structure-solution attempts.

Steps (i)–(iii) may be iterated as long as there remain data

sets with significant negative �CC1/2,i. Because �CC1/2 has

limited precision (it has a standard error inversely propor-

tional to the square root of the number of reflections), data

sets with �CC1/2,i around 0 should not be rejected: these may

just be weak, and rejection without good reason may ulti-

mately reduce the completeness. Usually, the execution of a

few rejection iterations is enough to improve data quality, and

may enable structure solution.

2.5. Availability and use of software

The XSCALE_ISOCLUSTER and XDSCC12 programs

for Linux and MacOS are available from their respective

XDSwiki articles (https://strucbio.biologie.uni-konstanz.de/

xdswiki/index.php/Xscale_isocluster), which also document

them. The programs have negligible runtime; they can be

easily integrated into scripts and are therefore suitable for

automation.

2.6. Projects and their data sets

Three projects with partial experimental SSX data sets, one

project with complete experimental SSX data sets and one

project with simulated partial SSX data sets were examined in

this study. Their statistics can be found in Table 1.

2.6.1. Partial experimental SSX data sets: BacA, PepT and
LspA. Partial data sets were kindly provided by Huang et al.

(2018) as individual XDS_ASCII.HKL files for all data sets of

the three proteins BacA (El Ghachi et al., 2018), PepT (Lyons

et al., 2014) and LspA (Vogeley et al., 2016). The error model

of every XDS_ASCII.HKL file was reset using RESET_

VARIANCE_MODEL. The parameter MINIMUM_I/

SIGMA=0, adopted from Huang et al. (2018), was used in

XSCALE (or SNRC=0.1 in XSCALE built on or after 15

October 2019). The substructure was determined with

SHELXD (version 2013/2; Sheldrick, 2010), with resolution

cutoffs of 3.3, 3.5 and 4.2 Å for BacA, PepT and LspA,

respectively, and NTRY 25000; phase improvement and

extension as well as autotracing was performed with SHELXE

(version 01/2019; Sheldrick, 2010) with the options -s0.60

(solvent fraction) -a25 (autotracing cycles) -q (�-helical

search) -z (substructure optimization) for BacA, -s0.55 -

a25 -q -z for PepT and -s0.65 -a25 -q -z for LspA or

with the CRANK2 pipeline (Skubák & Pannu, 2013) for BacA

and LspA.

2.6.2. Complete experimental data sets: NS1. Raw data for

NS1 were kindly provided by Akey et al. (2014) and served as

an example of complete SSX data. XDS processing with

SNRC=50 from 28 crystals with on average two wedges each

resulted in 62 complete data sets as XDS_ASCII.HKL files.

Scaling and merging was performed with XSCALE and

SNRC=0.1. The substructure was determined with SHELXD

with a resolution cutoff of 4.2 Å; phase refinement, auto-

tracing and refinement were performed with the CRANK2

pipeline starting from the previously found substructure.

2.6.3. Simulated SSX data sets: modified 1g1c. Artificial

data sets were provided by Holton (2019). These are based on

squared structure amplitudes calculated from the coordinates

of PDB entry 1g1c (Mayans et al., 2001), but with slightly

changed unit-cell parameters and crystal packing. The artifi-

cial intensities were modified to simulate significant radiation
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Table 1
Statistics of data sets used in this study.

PepT (S) BacA (Hg) LspA (Se/S†) NS1 (S) Modified 1g1c (Se)

No. of crystals processed 4528 742 614 28 100
No. of data sets merged in the original publication 1595 360 497 18 100
Resolution dmin (Å) 2.7 3.0 3.0 2.9 1.8
Space group C2221 C222 C2 P321 P212121

Fractional solvent content 0.55 0.60 0.65 0.65 0.53
Multiplicity 1002.8 126.7 27.2 114.8 5.1
PDB code 6fmy 6fmt 6fms 4tpl Derived from 1g1c
Average rotation range per data set (�) 10–20 10–20 10–20 90 3
Type and No. of anomalous scatterers for substructure search 12 S 2 Hg 12 Se 30 S 4 Se
Resolution cutoff for substructure search (Å) 3.5 3.3 4.2 4.2 3.5
Best CCall/CCweak from publication (%) 31.0/12.6 29.4/17.1 41.5/16.5 Not available Not available
Structure-solution software SHELXC/D/E SHELXC/D +

CRANK2
SHELXC/D +

CRANK2
SHELXC/D +

CRANK2
SHELXC/D/E

† The crystals contain a mixture of selenomethionine-labelled and native protein.



damage. Additional systematic errors were introduced in the

frame-simulation program MLFSOM (Holton et al., 2014).

After processing the 100 simulated SSX data sets (three

frames of 1� rotation each) with XDS (SNRC=50), indexing

ambiguities were analyzed with XSCALE_ISOCLUSTER.

Reindexing, scaling and merging were performed with

XSCALE. The parameters NBATCH=3 CORRECTIONS=

DECAY ABSORPTION were used. The substructure was

determined with SHELXD with a resolution cutoff of 3.5 Å;

phase refinement and autotracing was performed with

SHELXE with the options -s0.53 (solvent fraction) -L1

(minimum chain length) -B3 (�-sheet search) -a100 (auto-

tracing cycles) as suggested by Holton (2019).

2.7. Automatic model building and refinement

CCtrace/nat > 25% was used as an indicator of successful

structure solution (Thorn & Sheldrick, 2013). The structures

of BacA, LspA and NS1 could not be solved with SHELXE;

for these we used CRANK2 and monitored Rwork and Rfree

from the REFMAC (Murshudov et al., 2011) refinement which

is reported by the last CRANK2 step. Refinements in the PepT

project were performed with phenix.refine (Liebschner et al.,

2019) using PDB entry 4xnj as a model, after ‘shaking’ using

the options sites.shake=0.5 and adp.set_b_iso=53.

2.8. Flowchart

A flow chart of the main processing steps is shown in Fig. 1.

3. Results

3.1. XSCALE_ISOCLUSTER

For PepT, 4528 data sets were analyzed. XSCALE_ISO-

CLUSTER showed no clear separation of data sets or clusters

(Fig. 2a). Therefore, we tried several subsets with different

cutoffs of length and angle (within a cone relative to the centre

of gravity) in the ranges 0.5–0.95 and 5–20�, respectively (for

example, Fig. 2c shows length 0.8 and angle �10�].

Selecting vectors with length > 0.8 resulted in 4068 data sets

enabling structure solution, but resulted in a lower CFOM

(39.8) than the 1595 data sets selected by Huang et al. (2018)

(CFOM = 43.6; Fig. 2b). At a higher length threshold (0.9;

3022 data sets) the CFOM rose to 46.0. In contrast, subset

generation dependent on the angle alone did not enable

structure solution. Combined selection of length and angle

also enabled structure solution, but the results were not sub-

stantially improved relative to selection based on length alone.

For BacA, selections based on length alone were attempted

but did not lead to structure solution. For LspA, selections

based on length were attempted and led to structure solution.

This was expected, as the LspA structure could already be

solved without any rejections, and further improvement of the

signal inevitably resulted in structure solution as long as the

completeness was maintained, which was the case. No attempts

to select based on length were made for NS1 and modified

1g1c since the structures could be solved without selection.

A visualization of the analysis of the data sets of the three

SSX projects with XSCALE_ISOCLUSTER after the appli-

cation of XDSCC12 (see Sections 3.2–3.5) is shown in

Figs. 2(d), 2(e) and 2( f). Rejected data

sets after an arbitrary number of itera-

tions (40 in each project) mainly repre-

sent high random error and high

systematic error.

Visualization in the unit circle of the

62 complete experimental data sets of

NS1 in Fig. 2(g) shows that mainly data

sets with high random and systematic

error are rejected by the �CC1/2-based

iterations. The 100 data sets of modified

1g1c analyzed using XSCALE_

ISOCLUSTER are represented in

Figs. 2(h) and 2(i). Before resolving the

indexing ambiguity, these data sets fall

into two clusters with a distinct 90�

separation, as shown in Fig. 2(i). After

re-indexing, they form a single cluster

(Fig. 2h), and �CC1/2-based iterations

reject data sets without any obvious

selection pattern. The arrangement of

vectors is extended perpendicular to the

radial direction of low-dimensional

space; this indicates systematic differ-

ences which cannot be compensated by

scaling, for example radiation damage

or differences in unit-cell parameters.
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Figure 1
Flow chart of the main processing steps.



The difference between data sets rejected based on �CC1/2

and the remaining data sets is not apparent in any of the

XSCALE_ISOCLUSTER analyses, as data sets with low

random and low systematic error are also sometimes rejected.

3.2. XDSCC12: common findings for the partial experimental
SSX data sets

The three projects with partial experimental SSX data sets

can be classified as a challenging project (BacA), where

structure solution without manual model building is barely

possible, a project where structure solution is only possible

after rejection of the worst data sets (PepT), and a less chal-

lenging project where structure solution is already possible

with all data sets but further improvement can be made

through rejection of the worst data sets (LspA).

The 742, 4528 and 614 data sets of the BacA (Fig. 3), PepT

(Fig. 4) and LspA (Fig. 5) projects, respectively, were analysed

with XDSCC12. Application of the rejection procedure in

order to optimize CC1/2 was conducted as described above.
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Figure 2
Analysis of the data sets with XSCALE_ISOCLUSTER. The x and y axes represent a two-dimensional scaling analysis (equation 1) and a section of the
unit circle is shown: (a) PepT, all 4528 data sets; (b) PepT, selection (blue) of the 1595 data sets suggested by Huang et al. (2018) for structure solution; (c)
PepT, selection (blue) of 2162 data sets with length > 0.8 and |angle| � 10�. (d)–(h) Rejected data sets (black) at iteration 40 of iterative application of
XDSCC12 and remaining data sets (blue) for (d) PepT, (e) BacA, ( f ) LspA, (g) NS1 and (h) modified 1g1c; (i) analysis before re-indexing is shown in
orange for modified 1g1c.



�CC1/2,i was calculated by XDSCC12 for every data set.

Rejection of the worst ten, 50 and four data sets, respectively,

corresponding to about 1% of all data sets, was performed

iteratively. An attempt to solve the structure with

SHELXC/D/E or CRANK2 was made at each rejection cycle.

The whole procedure was performed starting with all data sets

(black curves in Figs. 3, 4 and 5) and also starting with a

randomly chosen half of the data (blue curves). Quantities

from half of the data are offset in Figs. 3, 4 and 5 by 35, 45 and

80 iterations, respectively, since in these iterations the number

of randomly omitted data sets roughly corresponds to the

numbers in the rejection rounds with all of the data sets. In

these projects, the multiplicity was so high that the rejection of

data sets did not compromise the completeness of the resulting

merged data within the range of rejection iterations shown in

Figs. 3, 4 and 5.

A total of 60, 80 and 120 iterations, respectively, were

calculated in order to investigate the asymptotic behaviour of

�CC1/2, CC1/2, CC1/2_ano, CFOM, CCtrace/nat and refinement R

values of CRANK2 solutions.

Figs. 3(a), 4(a) and 5(a) show the highest �CC1/2,i values of

all data sets rejected in each iteration. The first iterations show

strongly negative values; after iterations 50, 50 and 60,

respectively, positive data sets are rejected and subsequently

strongly positive data sets. The �CC1/2,i values of half of the

data also show strong negative values at the beginning; data

sets with positive �CC1/2,i values are rejected in the last

iterations.

We observe that in parallel with the optimization of

CC1/2 (Figs. 3b, 4b and 5b), CC1/2_ano on average increases

during the rejection iterations both for all data sets and half of

the data, but decreases slightly for the last iterations (Figs. 3c,

4c and 5c) when data sets with positive �CC1/2,i values are

rejected. Quantitatively, the correlation between CC1/2 and

CC1/2_ano is 0.66 for BacA, 0.92 for PepT and 0.79 for

LspA.
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Figure 3
60 rejection iterations of BacA (724 data sets): ten data sets are rejected per iteration. XDSCC12 analysis performed with all data sets is shown in black
and that performed with a random half is shown in blue. (a) Highest �CC1/2,i of the rejected data sets, (b) CC1/2, (c) CC1/2_ano, (d) the best SHELXD
CFOM solutions, (e) CCtrace/nat from SHELXE and ( f ) Rwork (crosses) and Rfree (circles) from REFMAC in the CRANK2 pipeline.



The CFOM (CFOM = CCweak + CCall) of the best SHELXD

solution per 25 000 attempts is depicted in Figs. 3(d), 4(d) and

5(d). It shows the highest values after a few rounds of rejec-

tions at the beginning, decreasing with following iterations for

both all data sets and half of the data. CFOM values for half of

the data are in general lower than the values for all the data.

The SHELXE CCtrace/nat values (the best obtained in 25

autotracing cycles) are shown in Figs. 3(e), 4(e) and 5(e),

indicating no successful structure solution for BacA and LspA

and indicating success for PepT.

In general it is found that a decrease in CC1/2 (Figs. 3b, 4b

and 5b), CC1/2_ano (Figs. 3c, 4c and 5c), worse SHELXD

solutions (Figs. 3d, 4d and 5d), insufficient SHELXE results

(Figs. 3e, 4e and 5e) and an increase in R values (Figs. 3f, 4f and

5f) arise from the rejection of data sets with positive �CC1/2,i

values (Figs. 3a, 4a and 5a).

Application of the iterative rejection procedure to all data

sets enables a noticeable improvement in the final merged

data, which simplifies structure solution compared with the

previous work (Huang et al., 2018). Similar improvements are

seen in a random selection of half of the available data sets.

3.3. XDSCC12: individual findings for BacA

The most challenging project (BacA) shows a varying,

relatively low CFOM for the best SHELXD solution of

between 50 and 60 (Fig. 3d). The SHELXD solutions are

improved after rejecting the worst data sets in both all-data

and half-data tests. Compared with previous work (Huang et

al., 2018) the substructure determination is easier, whereas

structure solution is still difficult: the best CCall/weak (CFOM)

from SHELXD for BacA with 360 data sets selected by Huang

et al. (2018) are 29.4/17.1 (46.5) and the best CCall/weak

(CFOM) from this study are 38.7/25.5 (64.2) with all 724 data

sets.

The CCtrace/nat values are mostly below 25%, failing to

indicate structure solution both for all and half of the data

(Fig. 3e). However, an additional diagnostic, the weighted
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Figure 4
80 rejection iterations of PepT (4528 data sets): 50 data sets are rejected per iteration. XDSCC12 analysis performed with all data sets is shown in black
and that performed with a random half is shown in blue. (a) Highest �CC1/2,i of the rejected data sets, (b) CC1/2, (c) CC1/2_ano, (d) the best SHELXD
CFOM solutions, (e) CCtrace/nat from SHELXE and ( f ) Rwork from phenix.refine.



mean phase error (wMPE) calculated by SHELXE with the

PDB reference model 6fmt, reveals a wMPE of 	70�. This

indicates a basically correct but incomplete solution for almost

all iterations. Consistent with this, Rfree values of the order of

45% result from a few iterations of the CRANK2 pipeline

(Fig. 3f) with all data sets, also indicating successful structure

solution.

In contrast, CCtrace/nat of half of the data is below 25% for all

iterations and the wMPE is mostly at 	90�, which indicates

failure of structure solution. Consistently, the R values in this

case do not indicate structure solution.

3.4. XDSCC12: individual findings for PepT

The PepT project shows low CFOM values of the best

SHELXD solution for the first two iterations in Fig. 4(d).

Consistent with this, the CCtrace/nat values indicate no solution

in the first two iterations in Fig. 4(e). The same is true for half

of the data; solutions can be found only after the first rejection

iteration and for a few of the following iterations.

Compared with the original publication, the structure

solution is much easier for any rejection round between 3 and

65: the best CCall/weak (CFOM) for PepT with 1595 data sets

selected by Huang et al. (2018) are 31.0/12.6 (43.6), whereas

the best CCall/weak (CFOM) found in this study are 34.0/18.8

(52.8) with 3778 data sets.

Application of the iterative rejection procedure results in

better data quality, improved SHELXD solutions and enables

structure solution. This SSX case study with PepT shows that a

few iterations which reject the worst data sets make the

difference in structure solution for both all and half of the

data.

Rwork in the highest resolution shell (2196 reflections) from

the refinement of the merged data of each iteration with the

shaken PDB model 4xnj is depicted in Fig. 4( f). These R

values decrease up to iteration 	65, indicating an improve-

ment of data quality in high-resolution shells, and continuously
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Figure 5
120 rejection iterations of LspA (614 data sets): four data sets are rejected per iteration. XDSCC12 analysis performed with all data sets is shown in black
and that performed with a random half is shown in blue. (a) Highest �CC1/2,i of the rejected data sets, (b) CC1/2, (c) CC1/2_ano, (d) the best SHELXD
CFOM solutions, (e) CCtrace/nat from SHELXE and ( f ) Rwork (crosses) and Rfree (circles) from REFMAC in the CRANK2 pipeline.



increase afterwards both for all and half of the data. Rfree on

average decreases in parallel (data not shown), but the

variation is much higher since the number of test reflections is

only 107.

3.5. XDSCC12: individual findings for LspA

The least challenging project, LspA, has CCtrace/nat lower

than 20% (Fig. 5e), which is less than expected for successful

structure solution. This is found when using all of the data sets

and for a random selection consisting of half of the data sets.

However, Rfree from the final refinement step of the CRANK2

pipeline (Fig. 5f) using the previously found SHELXD solu-

tions clearly indicates successful structure solution up to

rejection iteration 95 starting with all of the data sets. When

starting the rejection iterations with half of the 614 data sets,

solutions can be found only for the first 20 iterations.

Compared with the original publication the structure solu-

tion is eased: the best CCall/weak (CFOM) for LspA with 497

data sets selected by Huang et al. (2018) are 41.5/16.5 (58.0),

whereas the best CCall/weak (CFOM) from this study are 45.7/

26.0 (71.7) with 590 data sets.

Application of the iterative rejection procedure to all data

sets thus results in significantly better data quality and enables

structure solution without rejection steps, even with only half

of the data.

3.6. XDSCC12: complete experimental data sets for NS1

The rejection procedure that optimizes CC1/2 was applied to

62 complete data sets obtained with XDS from raw data

(derived from 28 crystals; Akey et al., 2014) and serving as an

example of multi-data-set crystallography with complete data

sets (Fig. 6). Optimization based on both �CC1/2,i (blue

curves) or �CC1/2_ano,i (black curves) was performed, as the

data sets provide sufficient reflections to calculate significant

�CC1/2_ano,i values. In each iteration, the worst data set was

rejected. 60 iterations were calculated in total, although the
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Figure 6
60 rejection iterations of NS1 (62 data sets). XDSCC12 analysis performed with all data sets based on �CC1/2 (black) and based on �CC1/2_ano (blue). (a)
Highest �CC1/2,i and �CC1/2_ano,i of the rejected data sets, (b) CC1/2, (c) CC1/2_ano, (d) the best SHELXD CFOM solutions, (e) CCtrace/nat from SHELXE
and ( f ) Rwork (crosses) and Rfree (circles) from the CRANK2 pipeline.



structure could already be solved without rejection (Fig. 6f).

Again, this was performed to investigate the behaviour of

�CC1/2,i, CC1/2, CC1/2_ano,i and SHELXD/E solutions in

further iterations.

Fig. 6(a) shows the highest �CC1/2,i and �CC1/2_ano,i of all

data sets rejected in each iteration. Both quantities increase

continuously, and data sets with positive �CC1/2,i are rejected

from iteration 20 onwards, consistent with the decline of

CC1/2_ano,i (Fig. 6c). We observe an increase of CC1/2 (Fig. 6b)

and CC1/2_ano (Fig. 6c) for optimization based on either

�CC1/2,i or �CC1/2_ano,i. CC1/2 decreases from iteration 45

onwards, whereas CC1/2_ano starts to decrease from iteration 20.

The CFOM of the best SHELXD solution per 25 000

attempts is depicted in Fig. 6(d). For both selection strategies,

the best CFOM decreases with increasing iteration. The

CCtrace/nat values are shown in Fig. 6(e). They are lower than

20%, thus not indicating structure solution. However, using

CRANK2 the structure can be solved without rejection from

the first iteration onwards for the next 	40 iterations for

either �CC1/2 or �CC1/2_ano optimization, as shown in Fig. 6( f)

representing Rfree and Rwork from the CRANK2 pipeline.

No significant difference between �CC1/2 and �CC1/2_ano

optimization can be observed; both serve well as optimization

targets. In contrast to the findings of the original publication

(Akey et al., 2014), the structure was solved over a wide range

of data-set numbers and even without rejections. We attribute

this to improvement in all procedures contributing to structure

solution.

3.7. XDSCC12: simulated SSX data sets

The challenge prepared by Holton (2019) was threefold:

firstly to resolve the indexing ambiguity arising from two axes

of the same length in an orthorhombic space group, secondly

to cope with strong radiation damage in scaling, and thirdly to
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Figure 7
80 rejection iterations of modified 1g1c (100 data sets): one data set is rejected per iteration. XDSCC12 analysis performed with all data sets based on
�CC1/2 is shown in black. Random rejection is shown in blue. (a) Highest �CC1/2,i of the rejected data sets, (b) CC1/2, (c) CC1/2_ano, (d) the best SHELXD
CFOM solutions, (e) completeness and ( f ) CCtrace/nat from SHELXE. The range of iterations where random and �CC1/2-based rejections differ is
highlighted by an orange rectangle.



find the minimal number of data sets for structure solution

using the (simulated) anomalous signal of selenomethionine

The first challenge was met by using XSCALE_

ISOCLUSTER to identify the two groups of data sets which

differ in their indexing mode (Fig. 2h). Based on this result,

data sets of one of the groups were re-indexed in XSCALE

and merged with the data sets of the other group. The second

challenge was tackled by increasing (to 3, from the default of

1) the number of scale factors used for the DECAY (i.e.

radiation damage) scaling in XSCALE. The solutions of these

challenges were obtained in previous work but not formally

published (XDSwiki; https://strucbio.biologie.uni-konstanz.de/

xdswiki/index.php/SSX).

The goal of this study was mainly to meet the third chal-

lenge. To this end, the rejection of the worst data set in order

to optimize CC1/2 was performed 80 times for the 100 data sets

(Fig. 7, black curves). As a control, the sequential omission of

one data set per iteration, as performed by Holton (2019),

which is equivalent to random rejection, was performed 80

times (Fig. 7, blue curves).

Fig. 7(a) shows the highest �CC1/2,i value of all data sets

rejected in each iteration. It increases steadily, and data sets

with positive �CC1/2,i start to be rejected after a few iterations.

In contrast to this, the random rejection shows varying

�CC1/2,i values of the rejected data set, as expected.

In Figs. 7(b) and 8(c) for the �CC1/2-based optimization we

observe a decrease in CC1/2 and CC1/2_ano, respectively, for

almost all iterations after the first iteration. CC1/2 and

CC1/2_ano for random rejection are in general lower, but show

the same behaviour.

The CFOM of the best SHELXD solution per 25 000

attempts is depicted in Fig. 7(d). For both random and �CC1/2-

based rejection, the best CFOM decreases with increasing

iteration number. The best CFOM values based on random

rejection are in general higher than the CFOM values of the

rejection based on �CC1/2.
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Figure 8
40 rejection iterations of PepT (4528 data sets): 50 data sets are rejected per iteration. XDSCC12 analysis performed with all data sets based on (4)
(weighted �CC1/2,i) is shown in black, that with unweighted �CC1/2,i (3) in blue, that without Fisher transformation in green and that without resetting
the error model in dark violet. Random rejection is shown in orange. (a) Highest �CC1/2,i of the rejected data sets, (b) CC1/2, (c) CC1/2_ano, (d) the best
SHELXD CFOM solutions, (e) the number of SHELXD CFOM solutions > 40.0 in 25 000 attempts and ( f ) CCtrace/nat from SHELXE.



The completeness of the merged data set for each iteration

is shown in Fig. 7(e). For both rejection algorithms the

completeness decreases with increasing iterations.

The CCtrace/nat values are shown in Fig. 7( f). The structure

can be solved in all iterations down to a minimum of 30 data

sets if data sets are rejected based on �CC1/2. We believe that

the lack of completeness (about 80% in all resolution ranges

when only 30 data sets remain) becomes the limiting factor for

successful structure solution.

In comparison, the structure is solved for every iteration

down to a minimum of 42 data sets (as found by Holton, 2019)

if data sets are randomly rejected.

3.8. XDSCC12: technical aspects of the scaling method and
DCC1/2 calculation

For the PepT project only, we assessed the importance of

individual elements of the rejection iterations as follows.

(i) By omitting the reset of the variance model.

(ii) By using frequency weights (3) in XDSCC12 instead of

reliability weights (4).

(iii) By using no Fisher transformation in XDSCC12, i.e.

using (5) instead of (6).

(iv) By random rejection instead of �CC1/2,i-based rejection.

40 rejection iterations were used in each case. Fig. 8(a)

shows the highest �CC1/2,i of all rejected data sets, Fig. 8(b)

shows CC1/2, Fig. 8(c) shows CC1/2_ano, Fig. 8(d) shows the best

CFOM solutions, Fig. 8(e) shows the number of ‘high’

SHELXD solutions per 25 000 attempts and Fig. 8( f) shows

CCtrace/nat for all five alternatives.

We find that random rejection performs worst, as expected.

Rejection based on �CC1/2,i without Fisher transformation

enables structure solution for only six out of 40 rejection

iterations. CC1/2 and CC1/2_ano decrease constantly, the best

CFOM values are low and almost no ‘high’ SHELXD solu-

tions are found. The highest �CC1/2,i values (Fig. 8a) of all

rejected data sets are slightly below zero for all iterations.

Use of XDSCC12 without reliability weights or without

resetting the variance model shows increasing CC1/2 and

CC1/2_ano, but enables structure solution for only 25 and 17 out

of 40 rejection iterations, respectively. The best CFOM solu-

tions are higher than for random rejection, and more ‘high’

SHELXD solutions are found.

As shown in Fig. 8, rejection based on �CC1/2,i with relia-

bility weights in combination with upstream resetting of the

variance model and Fisher transformation, i.e. the procedure

combining the methodological improvements that we suggest

in this study, improves the anomalous signal (CC1/2_ano)

significantly (Fig. 8c), has the best CFOM solutions and the

highest number of ‘high’ SHELXD solutions (Figs. 8d and 8e),

and enables structure solution in all except for the first two

iterations.

4. Discussion

The paradigm of multi-data-set scaling and merging is that

averaging reduces random errors in the merged intensities,

according to the laws of error propagation. However, this

assumes that the intensity differences of different data sets

with respect to the unknown ‘true’ intensities are unrelated,

which does not hold in the case of non-isomorphism. If the

data sets have systematic differences, merging introduces

systematic errors that are not necessarily reduced by aver-

aging. Without non-isomorphism, the accuracy of the merged

data is identical to their precision, for which a number of

crystallographic indicators exist. However, in the presence of

systematic differences (the crystallographic term for which is

‘non-isomorphism’), the accuracy of the merged data is worse

than their precision by an amount that is difficult to quantify,

but which can be large enough to prevent structure solution.

Our finding in this work is that non-isomorphous data sets

can be identified by the computational tools XSCALE_

ISOCLUSTER and XDSCC12 and that their rejection results

in merged and averaged data that are better suited for

experimental phasing, structure solution and refinement.

XSCALE_ISOCLUSTER was used in all projects described

here to find out whether there are distinct subgroups in the

data sets. It was our hope and expectation that subgroups may

represent distinct and different conformations or packings of

the molecules, and that scaling and merging within each

subgroup may yield opportunities for insight into the bio-

logically relevant conformations that are accessible by the

crystallized proteins.

However, except for the modified 1g1c project, where the

use of XSCALE_ISOCLUSTER was instrumental, we did not

find obvious subgroups in any of the projects that would have

enabled us to analyze possible alternative structures. Removal

of outliers based on direction in the low-dimensional repre-

sentation of the data sets was tried, but we found no simple

algorithm to perform this sensibly. One reason for this failure

to identify subgroups is the fact that partial data sets on

average have only a low number of reflections in common.

This results in large standard errors of the correlation coeffi-

cients calculated from the common reflections, and gives rise

to deviations of the vectors from their ideal angles, thus

diminishing the signal that could be used to identify

subgroups. Even more importantly, the set of common

reflections is different for each pair of data sets if these are

partial, which leads to correlation coefficients CCi,j that are

not strictly comparable. This is only partially compensated by

the fact that the low-dimensional vectors are highly over-

determined if many data sets are available. Another reason

may be that our choice of projects is biased towards those that

were previously solved using less advanced methods, possibly

because no such subgroups existed.

On the other hand, the modified 1g1c project demonstrates

that XSCALE_ISOCLUSTER is a valuable tool to identify

major systematic differences in SSX data sets. A distinct

separation of data sets in terms of direction is a reliable

indicator, and allows either rejection or different treatment

(for example re-indexing) of the separated data sets. Clusters

of data sets can be selected according to random properties

(vector length) and systematic properties (direction) and

processed separately, as was performed to resolve the indexing
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ambiguity of the simulated SSX data. Therefore, we suggest

that XSCALE_ISOCLUSTER should be applied to SSX data

to detect distinct clusters or indexing issues before outlier

removal using XDSCC12 is initiated. Future work will inves-

tigate algorithmic improvements through Fisher transforma-

tion of correlation coefficients and scalar products in (1) and

weighting of its terms with the number of common reflections.

XDSCC12 implements a target function that allows the

large number of possible combinations of data sets to be

conquered by a greedy algorithm, i.e. an efficient procedure

that ranks the data sets by their contribution towards the CC1/2

of the final, merged data set. By doing so, XDSCC12 enables

the reliable rejection of outlier data sets which, after rescaling

the remaining data sets, first and foremost improves the

precision of merged data to the point where difficult projects

can be solved. Our results confirm that data sets with negative

�CC1/2,i are non-isomorphous relative to the bulk of the other

data sets and that their exclusion improves the overall level of

isomorphism. Rejection and subsequent scaling of data sets

should be iterated at most until the rejected data sets show a

positive �CC1/2,i, since further rejection iterations noticeably

deteriorate the signal and ultimately prevent downstream

structure solution.

The type or nature of non-isomorphism that is present in

the rejected data sets cannot in general be derived from �CC1/2,

and a significant correlation of �CC1/2 with unit-cell differ-

ences from the average was not found in the projects that we

investigated (data not shown). For the simulated modified

1g1c project, we found a rejection preference for smaller

(<100 mm3) crystals, but some large crystals were also rejected.

To further assess the possibility that an alternative and simpler

procedure could outperform our �CC1/2-based scaling/rejec-

tion procedure for modified 1g1c, we ran rejection iterations

based on crystal size only, but found that this was about as

successful as random rejection.

The statistics for all projects (Figs. 3, 4, 5, 6, 7 and 8) are

consistent with the interpretation of �CC1/2 as a non-

isomorphism indicator since they initially show an increase in

CC1/2 and CC1/2_ano when rejecting data sets with negative

�CC1/2. As expected, this improves substructure determina-

tion, as shown by significant increases in the CFOM values.

Additionally, a promising aspect of data selection by �CC1/2 is

the improvement of a model by refinement with the selected

merged data set, as shown in the PepT case, where we moni-

tored Rwork for the highest resolution shell. Consistently, in all

projects both CC1/2 and CC1/2_ano deteriorate upon the rejec-

tion of data sets with positive �CC1/2.

Our results thus validate the choice of CC1/2 as a target

function, and in particular an approach that scales and scores

each data set in the context of all other data sets. Our method

avoids arbitrary cutoffs, but instead uses �CC1/2 = 0 as the

natural threshold between data sets that are isomorphous and

those that are not.

Would it be possible to devise an alternative but analogous

procedure attempting to optimize, for example, the mean I/�,

Rmeas or completeness as a target function? In the case of

optimization of the mean I/�, once the data sets are scaled the

I/� of each unique reflection increases on average with every

additional observation (Ii, �i). This is because the intensity I

on average does not change, since scaling results in the

intensities of all observations of a unique reflection being

approximately equal, but � decreases monotonically with

every additional observation according to

� ¼
1P

i

��2
i

0
@

1
A

1=2

:

If I/� of each unique reflection increases on average, so does

the mean I/�. This thought experiment reveals that every data

set would display a positive �I/�; data sets could still be

ranked in such a procedure, but ranking on �I/� would just

reproduce the ranking of the I/� values, independent of any

possible non-isomorphism. This property would defeat the

purpose of the optimization. In addition, an explicit �I/�
optimization appears to be unsuitable as although it is known

that there is a practical difficulty in estimating accurate �i

values in a data-processing package, the I/� calculation

explicitly assigns an important role to the �i values.

Choosing Rmeas as a component of a target function in our

view would not necessarily improve the final result since Rmeas

indicates the precision of the unmerged data (individual

observations) rather than that of the merged data, and thus

favours strong data sets regardless of their level of non-

isomorphism. However, in ‘easy’ cases optimizing Rmeas may

lead to structure solution, as may happen with any other

method that just rejects weak data.

Completeness does not appear to be required as an explicit

component of a target function, as optimization of CC1/2 alone

automatically favours high completeness for a given number

of data sets, as is shown by the results for simulated 1g1c.

Most importantly, and at the same time somewhat unex-

pectedly and encouragingly to us, the improvement of the

anomalous signal (CC1/2_ano) and the success of substructure

determination run parallel to the improvement of the

isomorphous signal (CC1/2), even if just the latter is explicitly

optimized by rejecting data sets based on �CC1/2. The

anomalous signal, which owing to its low magnitude can easily

be swamped by noise, benefits from the exclusion of data sets

with negative �CC1/2, leading to high correlation (0.66, 0.92

and 0.79 for BacA, PepT and LspA, respectively) between

CC1/2_ano and CC1/2 for the three experimental SSX projects

that we investigated. This demonstrates that our rejection

procedure improves not only the precision of the merged data,

but also, much more importantly, their accuracy.

When implementing and testing XDSCC12, we identified a

number of technical aspects that each substantially improve

the target function on their own, and even more so when taken

together.

(i) The postponement of the scaling and estimation of the

error model from XDS (using SNRC=50 or resetting the error

model) to XSCALE ensures consistent variances of the

observations, regardless of the number of symmetry-related

observations within a data set. This results in better anomalous
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signal not only for highly partial data sets, where the error

model cannot be reliably determined without reference to the

other data sets, but also in cases with almost complete data

sets (data not shown). We believe that the postponed global

adjustment of the error model, which typically increases the �
of the strong reflections, results in higher weights for the low-

resolution reflections at the start of the scaling iterations in

XSCALE, and as a consequence yields lower systematic

differences for these, which enhances the anomalous signal.

(ii) The inclusion of reliability weights (4) in the calculation

of CC1/2 is essential to obtain correct CC1/2 values and the

respective differences, as the reliability weights reduce the bias

in the weighted estimator for �"
2. This procedure also improves

CC1/2_ano significantly in all cases tested in this study.

(iii) Fisher transformation of the �CC1/2 values is

performed to obtain meaningful differences independent of

the magnitude of the CC1/2 values involved. We believe that

this is particularly important in the case of significantly

anisotropic data.

Our results show that taken together these measures

improve, relative to variations of the procedure, the merged

data for substructure solution using the anomalous signal and

for model building and refinement using the isomorphous

signal.

Additional work will be required to determine whether

further improvement of the merged data can be obtained by a

more fine-grained rejection based on resolution shells of data

sets, instead of the rejection of complete data sets, by using the

�CC1/2,i values for each resolution range.

Besides the application of XDSCC12 to multi-data-set

projects, as shown in this study, the program can also be used

for frame ranges (for example encompassing 1� of rotation) of

single (complete) data sets. This helps to detect frame ranges

that deteriorate the CC1/2 of the data set, for example owing to

radiation damage, owing to the crystal moving out of the X-ray

beam during rotation or owing to reflections from a second

crystal interfering with integration of the main crystal. This

function of the program is documented in XDSwiki (https://

strucbio.biologie.uni-konstanz.de/xdswiki/index.php/Xdscc12)

and is used to produce a �CC1/2 plot in XDSGUI (Brehm &

Diederichs, to be published). Moreover, we also consider the

application of XDSCC12 to SFX data or data with still images

in general. This should also enable the optimization of merged

data from clusters of isomorphous SFX shots after their

identification with XSCALE_ISOCLUSTER (for an example

with data from photosystem I, see Diederichs, 2017). For such

data, our methods will greatly benefit from the progress made

in partiality estimation.

SSX has emerged as a viable tool for macromolecular

crystallography, and enables structure determination from

weakly diffracting microcrystals that were previously intract-

able. To ensure its successful applications at macromolecular

crystallography beamlines, robust data-set selection methods

become essential. Our methods offer a fast and deterministic

approach and can readily be incorporated into beamline

pipelines. As demonstrated in the three SSX test cases,

structure solutions can be found with half of the data

previously required. Therefore, not only can sample consump-

tion be significantly reduced, but the synchrotron beamtime

can also be used more efficiently. We expect that this work will

help in making SSX a routine structure-determination method

for structural biologists.
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