
research papers

Acta Cryst. (2020). D76, 713–723 https://doi.org/10.1107/S2059798320009080 713

Received 20 April 2020

Accepted 2 July 2020

Keywords: structure solution; software; model

building; validation; machine learning; Coot.

Supporting information: this article has

supporting information at journals.iucr.org/d

Predicting protein model correctness in Coot using
machine learning

Paul S. Bond,* Keith S. Wilson and Kevin D. Cowtan

Department of Chemistry, University of York, York YO10 5DD, United Kingdom. *Correspondence e-mail:

paul.bond@york.ac.uk

Manually identifying and correcting errors in protein models can be a slow

process, but improvements in validation tools and automated model-building

software can contribute to reducing this burden. This article presents a new

correctness score that is produced by combining multiple sources of information

using a neural network. The residues in 639 automatically built models were

marked as correct or incorrect by comparing them with the coordinates

deposited in the PDB. A number of features were also calculated for each

residue using Coot, including map-to-model correlation, density values, B

factors, clashes, Ramachandran scores, rotamer scores and resolution. Two

neural networks were created using these features as inputs: one to predict the

correctness of main-chain atoms and the other for side chains. The 639 structures

were split into 511 that were used to train the neural networks and 128 that were

used to test performance. The predicted correctness scores could correctly

categorize 92.3% of the main-chain atoms and 87.6% of the side chains. A Coot

ML Correctness script was written to display the scores in a graphical user

interface as well as for the automatic pruning of chains, residues and side chains

with low scores. The automatic pruning function was added to the CCP4i2

Buccaneer automated model-building pipeline, leading to significant improve-

ments, especially for high-resolution structures.

1. Introduction

Manual completion of a model is a very time-consuming step

in macromolecular structure solution. Initial models from

homologues or from automated model-building programs will

contain errors that must be identified and corrected. The

primary method for identifying errors is visual examination of

the model, the 2mFo � DFc map and the mFo � DFc map by

the crystallographer, using a model-building program such as

Coot (Emsley & Cowtan, 2004; Emsley et al., 2010). Errors can

often be identified by visual examination alone. However,

other validation metrics become more important in guiding

decisions when the density is less obvious, for example in less

ordered regions or lower resolution structures. Coot provides

validation tools to identify Ramachandran outliers, unusual

rotamers and other potential errors, as well as an interface to

some tools from MolProbity (Williams et al., 2018). The job

of the crystallographer is to combine all of these sources of

information and decide whether the model is acceptable or

whether it needs to be changed. The work presented here aims

to emulate this decision-making process by using machine

learning to predict the correctness of protein residues.

Machine learning is well suited for this problem as expected

patterns in the data are not written into the model in advance

but can be found through analysis of the training data. A

recent example from the field of crystallography is the use of

initial data-processing statistics to predict whether the data are

ISSN 2059-7983

http://crossmark.crossref.org/dialog/?doi=10.1107/S2059798320009080&domain=pdf&date_stamp=2020-07-27

suitable for successful structure determination through SAD/

MAD phasing (Vollmar et al., 2020).

The correctness of a model is not something that is easy to

define. If the coordinates of an atom are altered gradually,

there is no definitive point at which the position becomes

correct. The model needs to fit both the experimental data and

previously acquired knowledge of atomic structures, especially

at lower resolution when it is not possible to distinguish

individual atomic peaks. In this space it is likely there are

multiple local minima, the positions of which will vary

depending on the refinement procedure. However, alternate

conformations aside, usually only one minimum is considered

to be correct within an individual refinement procedure.

Predicting the correctness of residues can be formulated as a

supervised machine-learning problem, where each data point

has several feature attributes that are used to predict another

target attribute. In this application, a data point is a residue,

the features are pieces of information about the residue, for

example the Ramachandran score and a score of the fit to

density, and the target is correctness. The prediction could be

performed using either classification, where each residue is

labelled as correct or incorrect, or regression, where a

numerical correctness score is assigned. It was decided to use

regression as the score would be useful for graphical valida-

tion tools and for automated procedures to select badly

scoring residues at various thresholds.

The amount of manual model-building work that needs to

be performed can be drastically reduced by having better

automated model-building programs that lead to models with

fewer errors. Buccaneer (Cowtan, 2006, 2008) is a fast model-

building program that works well at a range of resolutions and

is distributed with the CCP4 software suite (Winn et al., 2011).

It does not perform any global refinement of coordinates or B

factors, so it is most effective when combined with a refine-

ment program such as REFMAC (Murshudov et al., 2011;

Kovalevskiy et al., 2018) in an iterative pipeline. The refine-

ment program improves the model geometry and fit to density

and produces an updated map that can be passed to the next

building cycle. There are Buccaneer pipelines available in

CCP4i (Potterton et al., 2003) and CCP4i2 (Potterton et al.,

2018). Buccaneer is also used in other pipelines such as

CRANK (Ness et al., 2004; Pannu et al., 2011), CAB (Burla et

al., 2018) and CCP4Build, which is a new model-building

pipeline available in CCP4Cloud (Krissinel et al., 2018).

It has been observed that although Buccaneer is good at

building complete structures at low resolution, it can build

more incorrect residues than other programs (van den Bedem

et al., 2011; Alharbi et al., 2019). The incorrect residues are

mostly small unsequenced chains built into the solvent that

need to be removed by the user at the end of the pipeline.

There are already some existing steps within Buccaneer for

removing chains: the filter step removes chains shorter than six

residues and the pruning step solves clashes between chains by

truncating the chain with the most unsequenced residues or

the shorter chain. However, if the chain contains at least six

residues and does not overlap with another chain, then it will

be kept. It would also be useful to have a method for deleting

individual residues and side chains identified as incorrect.

Errors such as peptide bonds that need flipping and side

chains built with the wrong rotamer are not uncommon. If

pruning these errors is followed by refinement, then the

resulting likelihood-weighted maps will be less biased towards

the error and future automated building cycles are more likely

to correct the issue. A pruning step has already been imple-

mented in CCP4Build that uses real-space difference density

Z-scores (RSZDs) from EDSTATS to identify residues and

side chains to delete. The RSZD metric is calculated sepa-

rately for main-chain atoms and side chains and is useful for

determining how accurately parts of a structure fit the electron

density, but the calculation can be slow for high-resolution

structures. A new pruning step is presented here that uses the

machine-learned correctness scores to delete whole chains,

individual residues and side chains. We show that this pruning

step enhances the ability of the Buccaneer pipeline to self-

correct mistakes and produce better models that need less

manual correction.

2. Methods

Calculations were performed on a Scientific Linux 7.7 server

with two AMD EPYC 7451 CPUs and 256 GB RAM.

Programs were sourced from CCP4 7.0.076 (Winn et al., 2011).

2.1. Structure-set curation

A program was written for choosing sets of target structures

and creating molecular-replacement models using existing

structures in the PDB (Berman et al., 2000). The goal was to

choose diverse, good-quality target structures that cover a

range of resolutions and to produce a range of molecular-

replacement models, some leading to good-quality phases and

some leading to poor-quality phases. Using this program, 1800

target structures at 1–3.5 Å resolution were chosen with

11 183 molecular-replacement models between them. This set

was reduced by choosing a subset of the target structures with

only one molecular-replacement model per structure. Two

reduced sets were created: a full reduced set with 1351

structures at 1–3.5 Å resolution with a wide range of initial

phase qualities and an easy reduced set with 639 structures at

1–2.5 Å resolution with only good-quality phases. The

program and structure sets are documented in detail in the

supporting information and are available to other developers.

2.2. Neural network target

For the 639 structures in the easy reduced set, models

automatically built with the CCP4i Buccaneer pipeline were

used to provide examples of both correct and incorrect resi-

dues. Refined versions of the models deposited in the PDB

were used as references that are assumed to be wholly correct.

As detailed in the supporting information, target structures

were only chosen if they had good overall quality indicators,

i.e. Rfree, clashscore (Williams et al., 2018) and percentage

outliers, so only a small minority of residues should have

errors. The target correctness values of residues were assigned

research papers

714 Bond et al. � Predicting protein model correctness in Coot Acta Cryst. (2020). D76, 713–723

by comparing them with the reference structure. An alter-

native would be to label residues manually, which could be

more accurate but would be very time-consuming and many

samples are needed for higher coverage of the feature space.

The Buccaneer models were first moved onto the reference

using CSYMMATCH, which searches for the best fit using

symmetry operations and allowed origin shifts, and refined

again using REFMAC. For an individual residue, if all of the

main-chain atoms, including the C� atom, are within 1 Å of an

equivalent atom in the reference, then the main chain of that

residue is given a correctness score of 1. However, if one of the

atoms is more than 1 Å away from the reference then the main

chain of the residue is given a correctness score of 0. The same

calculation is performed for the side-chain atoms from the �
position onwards. Asparagine, glutamine and histidine have

side chains that still fit the density well if the terminal � angle

is rotated by 180�, so these are classed as correct if built either

way round.

2.3. Neural network features

The features used are summarized in Table 1. There are

12 features for predicting main-chain correctness and nine

features for predicting side-chain correctness. Eight features

are used for both but, other than resolution, they are calcu-

lated separately for the main-chain atoms (N, C�, C�, O and C)

and side-chain atoms from the � position onwards. Coot 0.8.9.2

was used to calculate all features using functions described in

the Coot user manual (Emsley, 2020). Explanations of indi-

vidual features can be found in Sections 2.3.1–2.3.9.

2.3.1. Map-to-model correlation. Correlation coefficients

were calculated using the map-to-model-correlation function.

Two different masks were used to calculate this separately for

the main-chain atoms (atom mask mode 1) and the side-chain

atoms excluding the C� atom (atom mask mode 3).

2.3.2. Density Z-scores. Values of the 2mFo � DFc (best)

density map and the mFo�DFc (difference) density map were

measured at the atomic positions of each atom. The raw map

values were normalized by dividing them by the atomic

number of the atom, and they were then converted to modi-

fied Z-scores using (1) (Iglewicz & Hoaglin, 1993), where ~xx is

the sample median:

MAD ¼ medianifjxi � ~xxjg;

Z ¼
0:6745ðxi � ~xxÞ

MAD
: ð1Þ

This uses the median of absolute deviations from the median

(MAD) as a replacement for standard deviation as it should be

more robust in skewed distributions. Z-scores were calculated

separately for main-chain and side-chain atoms over the whole

structure. Three features were used to predict both main-chain

and side-chain correctness: the mean best density Z-score, the

minimum best density Z-score and the minimum difference

density Z-score. In addition, the difference density Z-score at

the C� position of the next residue was used as a feature to

predict main-chain correctness.

2.3.3. B-factor Z-scores. Isotropic B factors were recorded

for each atom, as well as the maximum percentage increase

from the B factors of bonded atoms. B factors and the

maximum change in B factors were converted to modified

Z-scores for main-chain and side-chain atoms as described in

Section 2.3.2. The maximum B-factor Z-score and maximum

B-factor change Z-score were used to predict both main-chain

and side-chain correctness.

2.3.4. Atom overlap. To measure the extent to which a

residue clashes with its neighbours, a list of atom-overlap

volumes was obtained using the molecule-atom-overlaps

function. This was used to calculate the maximum overlap for

the main-chain atoms and side-chain atoms of each residue.

2.3.5. Resolution. The high-resolution limit of the data does

not vary per residue, but it was included as a feature as it

should be useful for adjusting the weights of other features.

2.3.6. Ramachandran score. The main-chain conformation

of each residue is assigned a probability based on how often

the combination of its ’ and angles are observed in high-

quality protein structures. This information was obtained

using the all-molecule-ramachandran-score function, which

uses three probability distributions derived from the Top500

database (Lovell et al., 2003): one for glycine, one for proline

and one for other residue types.

2.3.7. Peptide twist. The twist of a peptide bond was

measured as the minimum deviation of the ! angle from either

0� or 180�. For residues connected by two peptide bonds, the

largest twist is used.

2.3.8. Pepflip peak. This is a binary feature that indicates

whether there is a positive peak in the difference map at a

position that the N or O atoms of a residue could move to if

the peptide bond was rotated. A list of positive difference-map

peaks was generated using the map-peaks-around-molecule

function. Each main-chain N and O atom was then examined

to see if it could be rotated to any of these peaks by checking

the distances and angles between the peak and the main-chain

atoms. Initial estimates were made for the r.m.s.d. threshold

used for peak picking and acceptable ranges for distances and

angles. The estimates were then refined using Nelder–Mead

minimization (Nelder & Mead, 1965) on the full set of 639

structures. The function being minimized was �TP+5FP,

research papers

Acta Cryst. (2020). D76, 713–723 Bond et al. � Predicting protein model correctness in Coot 715

Table 1
Summary of the features used to predict main-chain and side-chain
correctness.

Features Main/side chain Section

Map-to-model correlation Both 2.3.1
Mean best density Z-score Both 2.3.2
Minimum best density Z-score Both 2.3.2
Minimum difference density Z-score Both 2.3.2
Maximum B-factor Z-score Both 2.3.3
Maximum B-factor change Z-score Both 2.3.3
Maximum atom overlap Both 2.3.4
Resolution Both 2.3.5
Ramachandran score Main 2.3.6
Maximum peptide twist Main 2.3.7
Pepflip peak Main 2.3.8
Difference density Z-score at the next C� Main 2.3.2
Rotamer score Side 2.3.9

where TP is the number of true positives, i.e. residues that

have a pepflip peak and a main-chain target correctness of 0,

and FP is the number of false positives, i.e. residues that have a

pepflip peak and a main-chain target correctness of 1. With the

minimized parameters, only positive difference-map peaks

above 4.45 r.m.s.d. were considered. For the peak to be

attributed to the O atom, the distance between the peak and

the C atom had to be 0.89–2.75 Å, the distance between the

peak and the C� atom had to be 1.01–3.71 Å, the distance

between the peak and the C� atom of the next residue had to

be 1.84–3.87 Å and the angle between the peak, the C atom

and the O atom had to be greater than 60.9�. For the peak to

be attributed to the N atom the distance between the peak and

the C� atom had to be less than 2.09 Å and the distance

between the peak and the O atom of the previous residue had

to be less than 1.46 Å.

2.3.9. Rotamer score. These were obtained using the

rotamer-score function, which uses data from the MolProbity

Top 500 database (Lovell et al., 2003). The most commonly

observed rotamer is assigned a score of 100. Other confor-

mations are scored relative to this based on their observed

frequencies within the database.

2.4. Neural network training

The 639 structures were randomly split, using a 4:1 ratio,

into a training set of 511 structures with 305 594 residues and a

test set of 128 structures with 76 891 residues. Only residues

with side chains longer than C� were used in the side-chain

neural network, of which there are 229 967 residues (75.3%) in

the training set and 57 522 (74.8%) in the test set. This

excludes glycines and alanines, as well as unknown residues

that are built as alanine by Buccaneer.

The preprocessing and training procedure was the same for

both main-chain and side-chain correctness. If a residue had a

missing feature, because it depends on neighbouring residues

that may not be present, it was assigned the median value of

that feature in the training set. The features in the training set

were then transformed to have a mean of 0 and a unit

variance. The same transform was applied to the features in

the test set using the means and standard deviations from the

training set.

Regression was carried out using a multi-layer perceptron

(MLP) neural network from scikit-learn version 0.21.2

(Pedregosa et al., 2011), which trains using back-propagation

with the square error as a loss function. Both networks had

one hidden layer with ten neurons using the hyperbolic tan

function as an activation function, and a single output giving

the correctness value without an activation function. Default

values were kept for all other parameters, for example the �
regularization term was 0.0001 and optimization was carried

out using Adam (Kingma & Ba, 2014) for a maximum of 200

iterations. A diagram of the neural network is shown in Fig. 1

and an equation for calculating Correctness from the input

features is shown in (2), where wnk and cnk are the coefficient

and intercept between Featuren and Neuronk, and wko and cko

are the coefficient and intercept between Neuronk and the

output node:

Neuronk ¼ tanh
PN
n¼1

ðwnk � Featuren þ cnkÞ

� �
;

Correctness ¼
P10

k¼1

ðwko � Neuronk þ ckoÞ: ð2Þ

The trained neural networks were scored on both the

training and test sets using the coefficient of determination

(COD), which assesses the fit between the predicted and

target correctness values. The coefficient of determination is

usually referred to as R2, but this was avoided owing to

confusion with the crystallographic R factor. It varies between

0, where the model is no better than the mean of the target

values, and 1, where the model perfectly predicts all target

values. Training was repeated 100 times with different

random-number seeds and performance was assessed using

the mean and standard error in the COD over the test set. The

first trained network, with a random seed of 0, was used as the

final predictor. To test whether all of the features should be

included in the network, features were removed one at a time

and the training repeated, again using 100 different seeds, to

establish the change in the COD.

The final predictor was also assessed on its ability to classify

residues in the test set by converting the correctness score to a

binary class, where a score of �0.5 is predicted to be correct.

The residues in the test set were then split into true positives

(TP) that are actually correct and predicted to be correct, true

negatives (TN) that are actually incorrect and predicted to be

incorrect, false positives (FP) that are actually incorrect but

predicted to be correct, and false negatives (FN) that are

actually correct but predicted to be incorrect. Equations (3) to

(10) show a number of quality metrics that were derived from

these counts.

Accuracy ¼
TPþ TN

TPþ TNþ FPþ FN
; ð3Þ

Error ¼
FPþ FN

TPþ TNþ FPþ FN
¼ 1�Accuracy; ð4Þ

research papers

716 Bond et al. � Predicting protein model correctness in Coot Acta Cryst. (2020). D76, 713–723

Figure 1
Diagram of the neural network. The input layer contains N scaled
features (12 for the main-chain network and nine for the side-chain
network), the hidden layer contains ten neurons and the output layer
contains only one output with the correctness value. Each arrow has an
associated coefficient and intercept that are modified during training.

Sensitivity ¼
TP

TPþ FN
; ð5Þ

Specificity ¼
TN

TNþ FP
; ð6Þ

False-negative rate ¼
FN

TPþ FN
¼ 1� Sensitivity; ð7Þ

False-positive rate ¼
FP

TNþ FP
¼ 1� Specificity; ð8Þ

Precision ¼
TP

TPþ FP
; ð9Þ

F1 score ¼
TP

TPþ
FNþ FP

2

: ð10Þ

2.5. Coot ML Correctness script

A Coot ML Correctness script was created that calculates

the features and uses the trained neural networks to obtain the

main-chain and side-chain correctness scores for each residue.

Machine-learning data were incorporated into the script

through an object containing the medians for each feature, the

means and variances used for scaling features and the coeffi-

cients and intercepts used by the neural networks. Running

this script creates two new menu items in the Coot user

interface under the heading ‘ML Correctness’. The first is a

graphical user interface (GUI) that has lists of all the residues

along with their correctness scores. Clicking on a residue will

move the view in the main window to that location. Owing to

the time that it takes to calculate some of the features, the

GUI does not update as the model changes, but check boxes

are provided so the user can keep track of which issues have

been addressed.

The second menu item is an automatic pruning function that

deletes whole chains, whole residues and side chains with low

correctness scores. Whole chains of up to 20 residues in length

are deleted if the mean main-chain correctness for that chain

is less than 0.2 times the median main-chain correctness in the

full structure. Individual residues and side chains are deleted if

the main-chain and side-chain correctness scores, respectively,

are less than half of the median for the full structure. After the

low-scoring residues have been deleted, isolated residues are

also removed. A maximum of 20% of the residues or side

chains are deleted at each stage. The pruning function is also

available via a scripting interface, where it can be called with

custom parameters.

2.6. Buccaneer pipeline

As described in Section 2.5, the Coot ML Correctness script

contains an automatic pruning function that deletes chains,

individual residues and side chains with low completeness

scores. This function was incorporated into two new versions

of the CCP4i2 Buccaneer pipeline that are summarized in

Table 2. The chain-pruning pipeline has an additional step that

prunes whole chains at the end of each iteration, followed by

a further five cycles of refinement using REFMAC. The full

pruning pipeline also starts each iteration, other than the first,

by deleting chains, residues and side chains in the model from

the previous cycle, running five cycles of REFMAC and

passing the updated model and map to Buccaneer.

All three pipelines were tested on 867 structures between

1 and 3.5 Å resolution from the full reduced set. The full

reduced set contains 1351 cases, but 483 were excluded

because the target structures were part of the neural network

training set. Another structure, PDB entry 5da8, was excluded

because the noncrystallographic symmetry in this case leads to

very long run times using the version of Buccaneer in CCP4

7.0.076; this issue has been addressed in CCP4 7.1. The pipe-

lines were run using default parameters starting from the

molecular-replacement model.

3. Results and discussion

3.1. Neural network training

The COD for the trained neural network models is shown in

Table 3 for both the training set and the test set. Values are

given as the mean with an uncertainty of one standard error

after repeating the training 100 times with different random-

number seeds. If the COD was much higher for the training set

than the test set this could indicate overfitting, but in this case

the values for the test set are higher. Overfitting is unlikely

owing to the large number of residues and the small size of the

neural network, but there could be some differences between

the training and test sets depending on the random split of the

639 structures. The COD is lower for the side-chain network,

but this is heavily dependent on the proportion of correct

residues. The main-chain sets contain a higher proportion of

correct examples so a higher COD is expected.

Although regression was used instead of classification, two

classes were obtained using a threshold correctness of 0.5.

Confusion matrices, which show the relationship between

target (true) correctness and predicted correctness, are

presented in Fig. 2. Table 4 shows various quality metrics

research papers

Acta Cryst. (2020). D76, 713–723 Bond et al. � Predicting protein model correctness in Coot 717

Table 2
Summary of the CCP4i2 Buccaneer pipeline versions that were tested.

Pipeline Initial full pruning Final chain pruning

Released (CCP4 7.0.076) No No
Chain pruning No Yes
Full pruning Yes Yes

Table 3
Trained neural network COD for the training and test sets.

Values are the mean COD after training with 100 different random-number
seeds with one standard error in parentheses.

Network Training-set COD Test-set COD

Main chain 0.6534 (2) 0.6665 (2)
Side chain 0.6004 (2) 0.6073 (2)

derived from the number of true positives, true negatives, false

positives and false negatives in the test set. Both networks do a

good job at identifying correct residues but are less good at

identifying incorrect residues, as shown by the difference in

the sensitivity (true-positive rate) and specificity (true-negative

rate) or, equivalently, by the false-positive rate being much

higher than the false-negative rate. This is a symptom of the

training data, especially the main-chain data, containing

mostly correct residues, so the networks are more likely to

assume that a residue is correct. The correctness threshold of

0.5 could be increased for a higher specificity at the cost of

lower sensitivity.

The simplistic method of determining the target correctness

needs to be taken into account when comparing the true and

predicted correctness values. This was performed by

comparing each residue with the deposited structure. If any

atom was more than 1 Å away it was marked as incorrect.

Firstly, the cutoff was not chosen based on any analysis of

existing data. It was just assumed that at both high and low

resolution the same conformation is usually closer than 1 Å

and different conformations are usually further apart than 1 Å

after refinement. Another issue is that not all acceptable

conformations will be modelled in the deposited structure,

especially for flexible side chains at low resolution, when it is

hard to distinguish multiple conformations. In addition, the

deposited model may also contain errors. Structures were

filtered based on overall quality indicators from the wwPDB

validation report, but local problems may still exist. However,

the training and test sets are still useful for machine learning,

and a larger, noisy data set can even produce a better

predictive model than a smaller, less noisy one.

For both neural networks, the input features were removed

one at a time and the training was repeated to establish the

magnitude and significance of the change in the COD. Table 5

shows the results for the main-chain features and Table 6

shows the results for the side-chain features. However, the

change in the COD depends both on how much useful infor-

mation a feature has and how well it correlates with other

features. If removing a feature leads to no decrease in the

COD then it either does not provide information that is useful

for identifying incorrect residues or the information is dupli-

cated in another feature. In either case the feature can be

removed. If removing a feature causes a large reduction in the

COD then it is both useful and independent. All of the

features give a significant reduction in the COD when

removed, so they are all providing some useful information.

The pepflip peak and next C� difference density features in

the main-chain neural network are quite unusual. They are not

general validation metrics, but are designed to highlight

specific errors that may occur during model building. The

parameter minimization for the pepflip peak feature, as

described in Section 2.3.8, resulted in a score of �3574,

meaning there are at least 3574 residues (0.93%) with a pepflip

peak and a target correctness of 0. Fig. 3 shows an example

where it is useful to look at the density at the next residue. The

amide oxygen and nitrogen need to swap positions, but both

still fit the density well. However, the negative difference

density at the next C� suggests that there is something wrong

with the previous residue.

Resolution is an interesting feature because it varies per

structure and not per residue so, within a structure, it does not

give any information about which residues are correct if used

by itself. It was included to adjust the weights of other metrics;

for example, at low resolution it is harder to distinguish side-

chain positions and it is expected that rotamer score will be

given more weight as uncommon conformations should only

research papers

718 Bond et al. � Predicting protein model correctness in Coot Acta Cryst. (2020). D76, 713–723

Figure 2
Confusion matrices for (a) the main-chain and (b) the side-chain network.
Values shown are percentages of residues in the test set.

Table 4
Quality metrics for the main-chain and side-chain neural networks on the
residues in the test set, assuming that residues with correctness scores of
�0.5 are predicted to be correct.

Equations for these metrics are given in (3)–(10).

Network Main chain Side chain

Accuracy (%) 92 88
Error (%) 8 12
Sensitivity (%) 97 92
Specificity (%) 77 79
False-negative rate (%) 3 8
False-positive rate (%) 23 21
Precision (%) 94 90
F1 score (%) 95 91

Table 5
Test-set COD for the main-chain neural network after it has been trained
with individual features removed.

Values are the mean COD after training with 100 different random-number
seeds with one standard error in parentheses.

Missing main-chain feature Test-set COD Decrease

No missing feature 0.6665 (2) 0.0000
Pepflip peak 0.6646 (3) 0.0019
Maximum B-factor Z-score 0.6642 (2) 0.0023
Difference density Z-score at the next C� 0.6624 (2) 0.0041
Maximum B-factor change Z-score 0.6621 (2) 0.0044
Minimum best density Z-score 0.6613 (2) 0.0052
Maximum peptide twist 0.6604 (3) 0.0061
Minimum difference density Z-score 0.6598 (2) 0.0067
Maximum atom overlap 0.6592 (2) 0.0073
Mean best density Z-score 0.6570 (3) 0.0095
Ramachandran score 0.6563 (2) 0.0102
Resolution 0.6377 (3) 0.0288
Map-to-model correlation 0.6087 (3) 0.0578

be built if the evidence for them is sufficient. However, the

performance of Buccaneer is resolution-dependent. Fig. 4

shows that there is a higher proportion of incorrect residues at

lower resolution, so the resolution feature will likely penalize

the scores of residues in lower resolution structures. This is

compensated for during automatic pruning by deleting resi-

dues with correctness values less than a fraction of the median

value in the structure.

3.2. Buccaneer pipeline

Fig. 5 shows the change in completeness, Rwork and Rfree of

the models produced by the Buccaneer pipeline on the addi-

tion of a chain-pruning step at the end of each iteration.

Completeness is the percentage of residues in the refined

deposited structure that have a matching residue in the model.

Two residues were only considered to match if the N, C� and C

positions were all within 1 Å. At a resolution of 2.8 Å or

better, the completeness improves by 2–3% and the R factors

improve by 1–2%. Performance may be slightly less at very

high resolution, but it is hard to tell owing to the noise in this

region. At lower resolutions there is less improvement, but

Rfree still decreases. The gap between Rfree and Rwork widens at

low resolution, which suggests that deleting some of the less

correct chains is reducing the overfitting.

Fig. 6 shows the change in completeness, Rwork and Rfree of

the pipeline models if an additional pruning step is added at

the start of each iteration, other than the first, that prunes

chains, residues and side chains. The effect of this change

varies dramatically with resolution. The greatest improvement

is seen at high resolution, where the completeness improves

by around 10% and the R factors decrease by around 4%

on average. The improvement quickly drops off at lower

resolutions, with the full pruning step leading to worse pipe-

line performance below 2.6 Å resolution. Again, there is a

difference between Rwork and Rfree that shows that pruning

reduces overfitting.

Fig. 7 compares the completeness of the models from the

released pipeline and the full pruning pipeline. There are 336

research papers

Acta Cryst. (2020). D76, 713–723 Bond et al. � Predicting protein model correctness in Coot 719

Figure 3
A reversed amide bond where negative difference density at the next C�

suggests an error in the previous residue. The example is a peptide bond
between asparagine and glycine in a 1.86 Å resolution structure built by
Buccaneer that was not used in this study. The 2mFo � DFc map is shown
in grey. The positive and negative contours of the mFo � DFc map are
shown in green and red, respectively.

Table 6
Test-set COD for the side-chain neural network after it has been trained
with individual features removed.

Values are the mean COD after training with 100 different random-number
seeds with one standard error in parentheses.

Missing side-chain feature Test-set COD Decrease

No missing feature 0.6073 (2) 0.0000
Minimum difference density Z-score 0.6038 (2) 0.0035
Maximum atom overlap 0.6027 (2) 0.0046
Maximum B-factor change Z-score 0.6021 (2) 0.0052
Minimum best density Z-score 0.6000 (2) 0.0073
Mean best density Z-score 0.5968 (2) 0.0105
Maximum B-factor Z-score 0.5901 (2) 0.0172
Resolution 0.5874 (2) 0.0199
Rotamer score 0.5835 (2) 0.0238
Map-to-model correlation 0.5566 (2) 0.0507

Figure 5
Change in completeness, Rwork and Rfree between the released pipeline
and the chain-pruning pipeline. The 867 structures were divided into ten
resolution bins and the mean and standard error of the change for each
bin is shown.

Figure 4
Resolution and mean main-chain target correctness for 639 structures in
the training and test sets. The mean value for ten resolution bins is shown
as a line.

structures (39%) where the model from both pipelines had

<20% completeness. Of these structures which performed

badly in both pipeline versions, 173 (51%) were more

complete in the released pipeline and 135 (40%) were more

complete in the full pruning pipeline. At the other end of the

scale, there are 183 structures where both pipelines produced

a model with >80% completeness. Of these relatively

complete structures, only 23 (13%) were more complete in the

released pipeline, while 153 (84%) were more complete in the

full pruning pipeline. There are also 63 structures (7%) at the

top of Fig. 7 where the model from the full pruning pipeline

has >90% completeness and the model from the released

pipeline has <70% completeness, including an extreme

example where the completeness increases from 21% to

100%.

An overview of the effect of the new pruning steps at

different levels of completeness is shown in Fig. 8. For struc-

tures where the released pipeline produced models with

around 50% completeness, the full pruning pipeline produced

models with substantially higher completeness and lower Rfree

values on average. At higher levels of completeness there is

much less room for improvement, but a small increase in the

completeness and decrease in the R factors is still observed.

An example with high completeness in both pipeline

versions is PDB entry 4wn5 (Fala et al., 2015) at 1.15 Å

resolution. The model produced by the released pipeline has a

completeness of 90.14% and the model produced by the full

pruning pipeline has a completeness of 98.59%. Much of the

improvement in completeness is not owing to new parts of the

structure being built, but because errors in the backbone

conformations have been corrected. A section of both models

is shown in Fig. 9. The peptide between alanine and glycine at

the top of Fig. 9(a) is reversed, similar to the example shown in

Fig. 3, so the glycine C� atom is out of the density. The next

peptide bond after glycine is also twisted, as indicated by the

yellow shaded area. Both of these factors will contribute to a

low correctness score. Deleting these residues allows Bucca-

neer to build the model correctly.

When using the predicted correctness scores for pruning,

a decision needs to be made about the threshold used for

selection. Because the scores cannot predict correctness with

100% accuracy, any chosen threshold will prune some correct

residues and leave some incorrect residues. The thresholds

tested were 0.2 times the median for whole chains and 0.5

research papers

720 Bond et al. � Predicting protein model correctness in Coot Acta Cryst. (2020). D76, 713–723

Figure 8
Change in completeness, Rwork and Rfree between the released pipeline
and the full pruning pipeline against the completeness of the model from
the released pruning pipeline. The 867 structures were divided into ten
completeness bins and the mean and standard error of the change for
each bin is shown.

Figure 7
Completeness of the models from the released pipeline and the full
pruning pipeline for the 867 structures tested.

Figure 6
Change in completeness, Rwork and Rfree between the chain-pruning
pipeline and the full pruning pipeline. The 867 structures were divided
into ten resolution bins and the mean and standard error of the change
for each bin is shown.

times the median for residues and side chains. Other thresh-

olds have not yet been tested, but the optimum value is likely

to depend on the stage of model building. More caution needs

to be taken at the end of the pipeline because it is usually

easier for the user to fix an incorrect conformation than to

build a missing feature. If pruning is performed during the

pipeline, before further cycles of Buccaneer, then it can be less

cautious because correct residues that are mistakenly deleted

should be automatically rebuilt. However, a balance is still

required because deleting more correct residues than incor-

rect residues can reduce the quality of the phases and make

building more challenging.

4. Conclusion

The correctness of 382 485 residues in 639 Buccaneer models

was assigned by automatic comparison with the models

deposited in the PDB for these structures. Residues were

given correctness values of either 0 or 1, which was performed

separately for main chain and side chains. This method of

producing target correctness values is not perfect, but the vast

majority of residues will be labelled correctly. Manual label-

ling of each residue is too slow and it is important to have a

large number of data points for the machine learning to work

well.

Regression was carried out for 511 of the structures using

two neural networks to predict the correctness by combining

many features of each residue. The input features include

map-to-model correlation, density values, B factors, clashes,

Ramachandran scores, rotamer scores and resolution. Using

regression instead of classification means that intermediate

correctness scores can be obtained, hopefully for residues

where it is not obvious whether the conformation is correct or

not. If scores of less than 0.5 are classed as incorrect, the

trained networks correctly categorize 92.3% of main-chain

atoms and 87.6% of side chains in the set of 128 structures that

were not used for training. The correctness predictions show

no sign of overfitting, but they are expected to work best on

structures similar to those used in the training set, i.e. mostly

complete structures with resolutions better than 2.5 Å.

A Coot ML Correctness script was written to calculate the

predicted correctness values and show them to the user as a

validation tool. This helps to quickly identify the worst parts of

a structure for further examination. The aim is not to have

high correctness scores for the whole structure as, owing to the

reliance on Z-scores in the input features, the score is relative

to the whole structure. Deleting poor parts of the structure will

decrease the correctness scores for the remaining model. The

script also contains an automatic pruning function for deleting

whole chains, residues and side chains with low correctness

scores. It can be called with default parameters from the Coot

graphical user interface or with custom parameters via the

scripting interface.

The pruning function was incorporated into the Buccaneer

pipeline in CCP4i2 to prune whole chains at the end of each

cycle and also individual residues and side chains at the

beginning of each cycle. The pipeline changes were tested on

867 structures at 1–3.5 Å resolution. The final pruning of

whole chains leads to improved models and the improvement

is not very dependent on resolution. In contrast, the initial

pruning of residues and side chains gives large improvements

at high resolution but often leads to worse models at low

resolution. Hence, it is only recommended to include residue-

level pruning when the resolution is better than 2.6 Å. There

are many structures that have changed from being partially

built to almost fully built with the addition of the new pruning

steps.

5. Future work

Although the addition of the pruning step leads to improve-

ments in the Buccaneer pipeline, the correctness score is far

from optimal. One of the main problems is that machine

learning was carried out as a mixture of classification and

regression. Regression was used in order to obtain a contin-

uous correctness score instead of a binary classification.

However, as the target data were categorical, i.e. all samples

had a target correctness of 1 or 0, it would have been better to

use a classifier and obtain continuous values in the form of the

predicted probabilities for each class. Another option would

be to perform regression against a different, continuous target;

for example, the r.m.s.d. between the atoms of the query

structure and the reference structure. This has the advantage

that no cutoff has to be chosen, although it may also have

difficulties in that a residue built into the solvent 5 Å away

from the structure is no different to one 10 Å away. Classifi-

cation using the r.m.s.d. could be a solution to this, but it does

research papers

Acta Cryst. (2020). D76, 713–723 Bond et al. � Predicting protein model correctness in Coot 721

Figure 9
A section of PDB entry 4wn5 in (a) the model built by the released
pipeline and (b) the model built by the full pruning pipeline. The
2mFo � DFc map is shown in blue. The positive and negative contours of
the mFo � DFc map are shown in green and red, respectively. The yellow
shaded area shows that the peptide bond is twisted, i.e. the ! angle is
between 30� and 150�.

not have to be binary: for example, the classes could be an

r.m.s.d. of <0.5 Å, <1 Å, <2 Å and �2 Å.

After choosing the training target and either classification

or regression, the model should be examined in more detail.

For this study a neural network model was used, and hyper-

parameters such as the learning rate and the regularization

term were kept at their default values. However, other models

such as a decision tree or a random forest should also be

explored as they may produce better results, and hyperpara-

meters should be tuned for optimum performance.

The structures built by Buccaneer in the easy reduced set

contain mostly correct residues and side chains. This imbal-

ance means that the networks will be better at identifying

correct residues than incorrect residues and explains the high

false-positive rate. Incorrect residues are identified, but these

are likely to be obvious errors such as residues built into the

solvent. Resampling should be considered to either under-

sample the correct residues or oversample the incorrect resi-

dues. More difficult cases could be included, but these need to

be chosen carefully. The models built by Buccaneer are often

either largely correct or composed of small fragments built

into noise, and the incorrect residues in these two extremes

will have very different features. The correctness score was not

intended to help in the latter case, where better initial phases

may be required.

As mentioned in Section 4, owing to the use of Z-scores in

the features, the correctness of a residue is not only dependent

on its immediate environment but on the whole structure. This

is counterintuitive and should be changed. Map values will still

be needed in the features, but dependencies on the absolute

scale of the map or the solvent content of the structure may be

introduced depending on how they are measured.

It would also be beneficial to have a correctness score using

features that can be calculated quickly for an individual

residue for the purpose of providing feedback during model

building. This could be provided in addition to a more accu-

rate score that is only calculated after refinement. For the

quick score, difference-map values should not be used as they

would need to be recalculated after the model changes. It may

also be necessary to remove B factors from the features unless

they can be obtained quickly, for example using shift-field

refinement (Cowtan & Agirre, 2018). Other features that are

missing from the current implementation should be investi-

gated. It is likely that more generic geometric scores would be

helpful, such as the �2 values of the bond and angle restraints

displayed in Coot after real-space refinement.

6. Availability

The Coot ML Correctness script and scripts used for training

the neural networks are available at https://doi.org/10.15124/

44145f0a-5d82-4604-9494-7cf71190bd82. Coot version 0.8.9.2

or later is required for the script to work. The new pruning

steps added to the Buccaneer pipeline in CCP4i2 will be

available in CCP4 version 7.1. They can be turned on and off

from the Options tab on the Input page of the task.

Acknowledgements

The authors would like to thank Paul Emsley for help and

advice with Coot.

Funding information

This work was supported by a White Rose BBSRC DTP in

Mechanistic Biology (BB/M011151/1 to Paul S. Bond) and a

BBSRC grant (BB/S005099/1 to Kevin D. Cowtan).

References

Alharbi, E., Bond, P. S., Calinescu, R. & Cowtan, K. (2019). Acta
Cryst. D75, 1119–1128.

Bedem, H. van den, Wolf, G., Xu, Q. & Deacon, A. M. (2011). Acta
Cryst. D67, 368–375.

Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N.,
Weissig, H., Shindyalov, I. N. & Bourne, P. E. (2000). Nucleic Acids
Res. 28, 235–242.

Burla, M. C., Carrozzini, B., Cascarano, G. L., Polidori, G. &
Giacovazzo, C. (2018). Acta Cryst. D74, 1096–1104.

Cowtan, K. (2006). Acta Cryst. D62, 1002–1011.
Cowtan, K. (2008). Acta Cryst. D64, 83–89.
Cowtan, K. & Agirre, J. (2018). Acta Cryst. D74, 125–131.
Emsley, P. (2020). The Coot User Manual. https://www2.

mrc-lmb.cam.ac.uk/personal/pemsley/coot/web/docs/coot.html.
Emsley, P. & Cowtan, K. (2004). Acta Cryst. D60, 2126–2132.
Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. (2010). Acta

Cryst. D66, 486–501.
Fala, A. M., Oliveira, J. F., Adamoski, D., Aricetti, J. A., Dias, M. M.,

Dias, M. V. B., Sforça, M. L., Lopes-de-Oliveira, P. S., Rocco, S. A.,
Caldana, C., Dias, S. M. G. & Ambrosio, A. L. B. (2015). Sci Rep, 5,
12698.

Iglewicz, B. & Hoaglin, D. (1993). How to Detect and Handle Outliers,
pp. 11–13. Milwaukee: ASQC/Quality Press.

Kingma, D. P. & Ba, J. (2014). arXiv:1412.6980.
Kovalevskiy, O., Nicholls, R. A., Long, F., Carlon, A. & Murshudov,

G. N. (2018). Acta Cryst. D74, 215–227.
Krissinel, E., Uski, V., Lebedev, A., Winn, M. & Ballard, C. (2018).

Acta Cryst. D74, 143–151.
Lovell, S. C., Davis, I. W., Arendall, W. B., de Bakker, P. I. W., Word,

J. M., Prisant, M. G., Richardson, J. S. & Richardson, D. C. (2003).
Proteins, 50, 437–450.

Murshudov, G. N., Skubák, P., Lebedev, A. A., Pannu, N. S., Steiner,
R. A., Nicholls, R. A., Winn, M. D., Long, F. & Vagin, A. A. (2011).
Acta Cryst. D67, 355–367.

Nelder, J. A. & Mead, R. (1965). Comput. J. 7, 308–313.
Ness, S. R., de Graaff, R. A., Abrahams, J. P. & Pannu, N. S. (2004).

Structure, 12, 1753–1761.
Pannu, N. S., Waterreus, W.-J., Skubák, P., Sikharulidze, I., Abrahams,

J. P. & de Graaff, R. A. G. (2011). Acta Cryst. D67, 331–337.
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B.,

Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V.,
Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M.
& Duchesnay, E. (2011). J. Mach. Learn. Res. 12, 2825–2830.

Potterton, E., Briggs, P., Turkenburg, M. & Dodson, E. (2003). Acta
Cryst. D59, 1131–1137.

Potterton, L., Agirre, J., Ballard, C., Cowtan, K., Dodson, E., Evans,
P. R., Jenkins, H. T., Keegan, R., Krissinel, E., Stevenson, K.,
Lebedev, A., McNicholas, S. J., Nicholls, R. A., Noble, M., Pannu,
N. S., Roth, C., Sheldrick, G., Skubak, P., Turkenburg, J., Uski, V.,
von Delft, F., Waterman, D., Wilson, K., Winn, M. & Wojdyr, M.
(2018). Acta Cryst. D74, 68–84.

Vollmar, M., Parkhurst, J. M., Jaques, D., Baslé, A., Murshudov, G. N.,
Waterman, D. G. & Evans, G. (2020). IUCrJ, 7, 342–354.

Williams, C. J., Headd, J. J., Moriarty, N. W., Prisant, M. G., Videau,
L. L., Deis, L. N., Verma, V., Keedy, D. A., Hintze, B. J., Chen, V. B.,

research papers

722 Bond et al. � Predicting protein model correctness in Coot Acta Cryst. (2020). D76, 713–723

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qj5003&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qj5003&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qj5003&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qj5003&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qj5003&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qj5003&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qj5003&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qj5003&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qj5003&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qj5003&bbid=BB5
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qj5003&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qj5003&bbid=BB7
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qj5003&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qj5003&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qj5003&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qj5003&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qj5003&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qj5003&bbid=BB27
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qj5003&bbid=BB27
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qj5003&bbid=BB27
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qj5003&bbid=BB27
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qj5003&bbid=BB11
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qj5003&bbid=BB11
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qj5003&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qj5003&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qj5003&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qj5003&bbid=BB14
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qj5003&bbid=BB14
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qj5003&bbid=BB15
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qj5003&bbid=BB15
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qj5003&bbid=BB15
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qj5003&bbid=BB16
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qj5003&bbid=BB16
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qj5003&bbid=BB16
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qj5003&bbid=BB17
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qj5003&bbid=BB18
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qj5003&bbid=BB18
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qj5003&bbid=BB19
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qj5003&bbid=BB19
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qj5003&bbid=BB20
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qj5003&bbid=BB20
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qj5003&bbid=BB20
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qj5003&bbid=BB20
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qj5003&bbid=BB21
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qj5003&bbid=BB21
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qj5003&bbid=BB22
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qj5003&bbid=BB22
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qj5003&bbid=BB22
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qj5003&bbid=BB22
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qj5003&bbid=BB22
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qj5003&bbid=BB22
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qj5003&bbid=BB24
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qj5003&bbid=BB24
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qj5003&bbid=BB25
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qj5003&bbid=BB25

Jain, S., Lewis, S. M., Arendall, W. B. III, Snoeyink, J., Adams, P. D.,
Lovell, S. C., Richardson, J. S. & Richardson, D. C. (2018). Protein
Sci. 27, 293–315.

Winn, M. D., Ballard, C. C., Cowtan, K. D., Dodson, E. J., Emsley, P.,

Evans, P. R., Keegan, R. M., Krissinel, E. B., Leslie, A. G. W.,
McCoy, A., McNicholas, S. J., Murshudov, G. N., Pannu, N. S.,
Potterton, E. A., Powell, H. R., Read, R. J., Vagin, A. & Wilson,
K. S. (2011). Acta Cryst. D67, 235–242.

research papers

Acta Cryst. (2020). D76, 713–723 Bond et al. � Predicting protein model correctness in Coot 723

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qj5003&bbid=BB25
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qj5003&bbid=BB25
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qj5003&bbid=BB25
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qj5003&bbid=BB26
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qj5003&bbid=BB26
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qj5003&bbid=BB26
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qj5003&bbid=BB26
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qj5003&bbid=BB26

