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For the last two decades, researchers have worked independently to automate

protein model building, and four widely used software pipelines have been

developed for this purpose: ARP/wARP, Buccaneer, Phenix AutoBuild and

SHELXE. Here, the usefulness of combining these pipelines to improve the

built protein structures by running them in pairwise combinations is examined.

The results show that integrating these pipelines can lead to significant

improvements in structure completeness and Rfree. In particular, running Phenix

AutoBuild after Buccaneer improved structure completeness for 29% and 75%

of the data sets that were examined at the original resolution and at a simulated

lower resolution, respectively, compared with running Phenix AutoBuild on its

own. In contrast, Phenix AutoBuild alone produced better structure complete-

ness than the two pipelines combined for only 7% and 3% of these data sets.

1. Introduction

X-ray crystallography has been used for several decades for

the determination of structures of proteins and RNA/DNA,

including 90% of the protein structures deposited in the

Protein Data Bank as of 2020 (Berman et al., 2000; RCSB

PDB, 2020). Multiple steps are required to obtain a protein

structure, starting with the crystallization process, obtaining an

electron-density map from the diffraction pattern and building

the protein structure. Researchers have investigated ways to

automate the building step, and four widely used pipelines

have been developed: ARP/wARP (Perrakis et al., 1999;

Lamzin & Wilson, 1993; Morris et al., 2003; Langer et al., 2008,

2013), Buccaneer (Cowtan, 2006, 2008), Phenix AutoBuild

(Terwilliger et al., 2008; Liebschner et al., 2019) and SHELXE

(Sheldrick, 2008, 2010; Thorn & Sheldrick, 2013; Usón &

Sheldrick, 2018). RNA/DNA can also be built automatically

by Phenix AutoBuild and other tools. The performance of

these pipelines varies depending on electron-density map-

quality indicators such as resolution and phases. In recent

work, we conducted a comparison of these pipelines, and we

found that the performance of the pipelines differs from one

structure to another, which suggests that there is no best

pipeline for all protein structures, although there is often a

best pipeline for each protein structure (Alharbi et al., 2019).

Researchers have focused on different aspects of the

protein-building problem and have developed appropriate

methods depending on the coverage of their test data sets. As

a result, pipelines tend to perform well when they are run

using data sets with similar features to those that were used in

developing the pipeline. Having data sets with different

features generally makes the pipelines perform poorly. We
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addressed this matter here by running the pipelines in pairwise

combinations, in which the first pipeline in the combination

built a protein structure as an initial structure for the second

pipeline. Using these pairwise pipeline combinations often

improved the final protein structure compared with using only

one pipeline.

2. Data sets

We used the original data sets from van den Bedem et al.

(2011), which have resolutions of between 1.9 and 3.2 Å, and

synthetic data sets obtained by truncating the original data

sets to 3.2, 3.4, 3.6, 3.8 and 4.0 Å (synthetic resolutions) as

described in our recent crystallographic model-building

pipeline-comparison paper (Alharbi et al., 2019). As in our

comparison paper, 52 original data sets that were used in the

development of Buccaneer and their truncated resolutions

were omitted from the main results (and are only presented in

the supporting information). This gave us 202 original and

1009 synthetic resolution data sets initially, and 150 original

and 750 synthetic resolution data sets after omitting the

Buccaneer development data sets.

Similarly large data sets of over 1000 structures have

recently been used to improve ARP/wARP (Chojnowski et al.,

2020). However, we were unable to use these data sets because

this paper builds on our recent crystallographic model-

building pipeline-comparison work (Alharbi et al., 2019),

which used the original and synthetic data sets described

above.

Density modification was performed by Parrot (Cowtan,

2010). Phase improvement was performed on the experi-

mental phasing data, but NCS averaging was not used for

those structures where NCS was present, with the aim of

providing starting data with poorer phases both to test the

limits of the model-building algorithms and to better simulate

the poorer phases that are typically associated with lower

resolution data sets.

3. Method for pairwise running

We ran the same versions of the pipelines as in our previous

comparison paper (Alharbi et al., 2019) to compare individual

pipelines with combined pipelines. The versions were Phenix

AutoBuild version 1.14, Buccaneer in CCP4i, ARP/wARP

version 8 and SHELXE version 2019/1. We used a 173-node

high-performance cluster with 7024 Intel Xeon Gold/Platinum

cores and a total memory of 42 TB. We allowed a maximum of

48 h for the building of each structure because this was the

highest time limit that the majority of our cluster nodes

allowed.

Unlike in our previous comparison paper, here we tried to

achieve the best performance of the pipelines, and to do this

we changed the default parameters as necessary. ‘Rebuild in

place’ is a feature of Phenix AutoBuild that improves the input

structure without adding or removing residues, and it is used

by default when the input structure is close to the correct

structure (Terwilliger et al., 2008). Phenix AutoBuild is unable

to use ‘rebuild in place’ when the initial structure contains

unknown residues that cause a mismatch between the input

model chains and the model sequence. This occurred in 13.7%

and 3.5% of the structures built by Buccaneer and ARP/

wARP, respectively. We forced Phenix AutoBuild not to use

this feature if it failed in the first attempt. An alternative

workaround for this scenario is to remove the unknown resi-

dues before using the initial structure in Phenix AutoBuild.

SHELXE was not run after other pipelines because it only

builds the main chain, while the other pipelines build complete

structures. However, SHELXE structures were used as the

initial structure for input to other pipelines. Additionally,

SHELXE structures were only built for the original resolution

data sets, as the synthetic structures fall outside the resolution

range recommended for SHELXE.

The evaluation measures that we considered were structure

completeness calculated from the deposited model and Rfree.

Structure completeness represents the percentage of atoms

from the built structure with coordinates within 1.0 Å of the

corresponding atoms from the deposited structure with the

same residue type. Rfree was obtained by running ‘zero-cycle’

REFMAC (Murshudov et al., 2011) to avoid the effect of the

different parameterizations used by different refinement

programs. The different model parameterizations used by

different model-building programs lead to overfitting and the

underestimation of Rwork in some cases, so we focus on Rfree in

this comparison. While the use of a free set is not normally

recommended for ARP/wARP, in this paper we are not

primarily interested in individual pipeline performance, so we

used a free set for analysis purposes (Chojnowski et al., 2020).

ARP/wARP does not necessarily set aside the same free

reflections as the other pipelines, so the REFMAC evaluation

step was changed to use the same free set as that chosen by

ARP/wARP when run immediately after ARP/wARP.

Dummy atoms were not removed unless ARP/wARP removed

them, as they did not significantly affect Rfree.

In the next section, we deemed one pipeline or pipeline

combination to be better than another when it produced an

improvement of at least 5% in the relevant measure

(completeness or Rfree); other improvement thresholds are

reported in the supporting information. Execution time was

not considered here, as this has been compared previously for

the individual pipelines (Alharbi et al., 2019).

4. Results

4.1. Overview

We present the results of our comparison using the pipeline

and pipeline-combination identifiers defined in Table 1. Table 2

shows the number of ‘complete’, ‘intermediate’ and ‘failed’

data sets for each of the pipeline variants (i.e. pipelines and

pipeline combinations) that we used in our experiments. The

data sets were marked as ‘intermediate’ either when the

48-hour time limit was reached while the pipeline was still

executing or when the pipeline stopped/crashed before

building the final structure. Data sets for which no structure
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was built were marked as ‘failed’, and this occurred when the

time limit was reached before the pipeline built an inter-

mediate model.

As shown in Table 2, structures were successfully built for

most of the data sets; the pipelines only failed to build six data

sets (original and synthetic data sets) out of a total of 1211.

After omitting the 52 data sets used in Buccaneer development

(see Section 2) and the failed data sets, 148 (original) and 746

(synthetic) data sets were used in the analysis, representing

74% of the original and synthetic data sets.

Table 3 shows the mean and standard deviation (SD) of the

structure completeness and Rfree achieved for these data sets

by each pipeline variant. The pipelines built structures with

high completeness from the original data sets, the majority of

which are at better than 2.5 Å resolution. The highest mean

completeness was 94% with 11% SD (for Phenix AutoBuild

followed by Buccaneer), compared with a lowest mean

completeness of 78% with 33% SD (for SHELXE followed by

ARP/wARP). The highest mean completeness decreased to

50% with 30% SD for the synthetic data sets, the resolutions

of which range from 3.2 to 4.0 Å. From the original data sets,

the pipelines built the structures with a mean Rfree of between

0.26 and 0.33 and an SD of between 0.04 and 0.10. When

building the structures from synthetic data sets, the mean Rfree

increased to between 0.38 and 0.52 with an SD of between 0.05

and 0.09.

4.2. Structure completeness

Fig. 1 shows the structure-completeness results for the

original resolution data sets. Running the pipelines in pairwise

combinations shows significant improvements compared with
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Table 2
Complete and intermediate models produced by the 23 pipeline variants
for the original and synthetic resolution data sets, where ‘(T)’ and ‘(C)’
denote intermediate models produced by pipeline executions that timed
out and crashed, respectively.

Models used in the comparison: 148 original and 746 synthetic.

Original Synthetic

Pipeline
variant Complete Intermediate Failed Complete Intermediate Failed

A 202 0(T) 0(C) 0 1008 1(T) 0(C) 0
A!P* 201 1(T) 0(C) 0 1007 2(T) 0(C) 0
A!B 202 0(T) 0(C) 0 1009 0(T) 0(C) 0
B 202 0(T) 0(C) 0 1009 0(T) 0(C) 0
B!P* 197 4(T) 0(C) 1 1005 0(T) 0(C) 4
P* 199 1(T) 1(C) 1 1001 8(T) 0(C) 0
P*!A 200 1(T) 0(C) 1 1008 1(T) 0(C) 0
P*!B 201 0(T) 0(C) 1 1009 0(T) 0(C) 0
S* 200 2(T) 0(C) 0 — — —
S*!A 202 0(T) 0(C) 0 — — —
S*!B 202 0(T) 0(C) 0 — — —
S*!P* 196 4(T) 0(C) 2 — — —
A!P 199 2(T) 0(C) 1 1009 0(T) 0(C) 0
B!P 200 0(T) 0(C) 2 1003 2(T) 0(C) 4
P 199 1(T) 0(C) 2 1001 7(T) 0(C) 1
P!A 200 0(T) 0(C) 2 1002 6(T) 0(C) 1
P!B 200 0(T) 0(C) 2 1008 0(T) 0(C) 1
S 200 2(T) 0(C) 0 — — —
S!A 202 0(T) 0(C) 0 — — —
S!B 202 0(T) 0(C) 0 — — —
S*!P 197 3(T) 0(C) 2 — — —
S!P* 198 2(T) 0(C) 2 — — —
S!P 197 3(T) 0(C) 2 — — —

Table 1
The pipeline and pipeline-combination identifiers (IDs) used to present
the results.

ID Description

A ARP/wARP
B Buccaneer in CCP4i using five iterations
P Phenix AutoBuild
P* Phenix AutoBuild with Parrot
S SHELXE
S* SHELXE with Parrot
x!y Pairwise pipeline combination, with pipeline y executed after

pipeline x; for example, A!P* denotes a pairwise
combination in which Phenix AutoBuild with Parrot is run
after ARP/wARP

Table 3
Mean and standard deviation (SD) for structure completeness and Rfree

for the original and synthetic data sets.

The tables are sorted by structure completeness.

Original data sets.

Completeness (%) Rfree

Pipeline variant Mean SD Mean SD

P*!B 94 11 0.30 0.04
B!P* 93 8 0.26 0.04
B!P 93 10 0.26 0.04
S!P* 92 7 0.26 0.04
S*!P* 92 9 0.26 0.04
S*!P 92 9 0.26 0.04
S!P 92 9 0.26 0.04
P*!A 92 11 0.28 0.04
P!B 92 14 0.31 0.05
P* 91 10 0.26 0.04
P 90 15 0.27 0.05
A!P 90 16 0.27 0.06
A!P* 90 17 0.27 0.06
P!A 89 17 0.28 0.06
S!B 89 18 0.32 0.06
S*!B 89 18 0.32 0.06
A!B 88 22 0.32 0.06
B 85 23 0.33 0.07
S* 82 18 — —
S*!A 81 31 0.30 0.09
A 80 30 — —
S 79 21 — —
S!A 78 33 0.31 0.10

Synthetic data sets.

Completeness (%) Rfree

Pipeline variant Mean SD Mean SD

P*!B 50 30 0.43 0.08
B!P 49 29 0.38 0.07
P!B 49 30 0.43 0.08
B!P* 48 29 0.38 0.07
B 42 31 0.45 0.08
A!B 40 32 0.45 0.09
P* 25 16 0.42 0.05
P 25 16 0.42 0.05
A!P 21 18 0.41 0.08
A!P* 20 18 0.41 0.08
A 3 9 — —
P*!A 2 8 0.51 0.06
P!A 2 8 0.52 0.06



running a single pipeline. For example, both Phenix AutoBuild

post-ARP/wARP and Buccaneer post-ARP/wARP achieved at

least a 5% higher structure completeness than ARP/wARP

alone for 28% or more of the data sets; in contrast, ARP/

wARP on its own was better than the two-pipeline combina-

tions for only 6% and 7% of the data sets, respectively. Simi-

larly, running Phenix AutoBuild after Buccaneer increased the

completeness for 30% of the data sets compared with running

Buccaneer on its own, while Buccaneer alone was only better

than this pipeline combination for 7% of the data sets.

Running Phenix AutoBuild in combination with Buccaneer

led to higher completeness than using ARP/wARP after or

before Phenix AutoBuild. Using Buccaneer to build an initial

structure for Phenix AutoBuild resulted in completeness
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Figure 1
Structure-completeness comparison for the models generated from the original data sets. Each plot corresponds to a pipeline variant, and shows the
percentage (rounded to the nearest integer) of structures that the pipeline variant built with at least 5% higher structure completeness than each of the
other pipeline variants.



improvements (of at least 5%) for 24% of the data sets,

compared with only 10% when ARP/wARP was used to build

an initial model. These results decreased slightly to 20% and

9%, respectively, when Parrot was used before Phenix Auto-

Build.

It is interesting to consider the extent to which the pairwise

combination of pipelines produces a better model compared

with running both of the component pipelines and picking the

best result; this allows us to distinguish between the case

where the second pipeline simply conserves the good features

of the first and that where the pipelines have complementary

features which can augment one another. Table 4 shows the

percentage of the original and synthetic data sets that are built

with least 5% higher structure completeness by the combined

pipelines or either of the two pipelines alone. Running Phenix

AutoBuild alone built the structures with higher completeness

compared with when ARP/wARP had been run before it: 11%

and 49% of the original and synthetic data sets, respectively,

were built with higher completeness by

Phenix AutoBuild alone, compared with

8% and 10% of the original and

synthetic data sets, respectively, when

ARP/wARP was run in combination

with Phenix AutoBuild. However,

Buccaneer with Phenix AutoBuild

showed greater benefits; only 2% and

11% of Buccaneer models built from the

original and synthetic data sets, respec-

tively, are better in terms of structure

completeness, compared with 14% and

41% of both data sets built with higher

completeness when Phenix AutoBuild

ran after Buccaneer.

Fig. 2 shows the mean completeness

for both the original and synthetic data

sets. Combined pipelines outperformed

individual pipelines at resolutions of

1.0–1.9 Å, and Buccaneer post-Phenix

AutoBuild with Parrot outperformed

the other pipeline variants at resolu-

tions worse than 3.1 Å. Phenix Auto-

Build after Buccaneer obtained close

results at resolutions worse than 3.1 Å
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Table 4
Structure completeness and Rfree comparison for the original and synthetic data sets, indicating how often pairwise running outperforms either of the
component pipelines.

Each row corresponds to a pipeline variant and shows the percentage (rounded to the nearest integer) of the models where either the combined pipeline (x!y) or
the individual pipelines alone (x or y) built structures with at least 5% higher completeness and lower Rfree.

Original Synthetic

Completeness Rfree Completeness Rfree

Pipeline variant x!y x y x!y x y x!y x y x!y x y

A!B 14 3 8 — — — 27 0 33 — — —
A!P* 6 3 11 — — — 12 1 50 — — —
A!P 8 4 11 — — — 10 0 49 — — —
B!P* 9 3 5 3 0 2 40 14 4 30 1 4
B!P 14 2 2 4 0 3 41 11 2 29 1 4
P*!A 6 11 1 — — — 1 91 1 — — —
P*!B 14 3 2 0 29 0 47 7 17 9 23 4
P!A 6 12 3 — — — 0 91 1 — — —
P!B 17 7 3 0 36 0 42 7 18 8 24 5
S!A 6 11 16 — — — — — — — — —
S!B 22 4 11 — — — — — — — — —
S!P* 9 4 8 — — — — — — — — —
S!P 13 4 7 — — — — — — — — —
S*!A 7 13 9 — — — — — — — — —
S*!B 21 6 11 — — — — — — — — —
S*!P* 5 3 7 — — — — — — — — —
S*!P 12 5 7 — — — — — — — — —

Figure 2
Mean completeness for the protein models built for all data sets. The data sets are grouped into bins
based on their resolution, with the number of data sets in each bin shown in parentheses under the
graph.



and ARP/wARP combined with Phenix AutoBuild performed

poorly at these resolutions.

Fig. 3 shows how the mean completeness varied with the

mean initial map correlation (F-map) for the original data sets.

ARP/wARP running after Phenix AutoBuild with Parrot at an

initial map correlation lower than 0.5 led to greater than 90%

completeness, compared with running ARP/wARP on its own,

which achieved less than 60% completeness. When the initial

phases are better, the majority of the pipeline results reach

greater than 90% completeness at initial map correlations of

between 0.7 and 0.9.

Fig. 4 shows the fraction of incorrect residues that were built

for both the original and synthetic data

sets. Compared with other pipelines, a

known problem of using Buccaneer is

that it may build a large number of

incorrect residues, which can be 50% of

the structure at 4.0 Å resolution. Phenix

AutoBuild outperformed Buccaneer in

decreasing the number of incorrect

residues, and using Phenix AutoBuild

post-Buccaneer reduced junk residues

to around 30% of the structure at 4.0 Å

resolution.

Fig. 5 provides an illustration of a

case in which pairwise running of two

pipelines gave substantially better

results than either pipeline alone, in this

case PDB entry 2awa. The Buccaneer

model is substantially incomplete, with

some correctly traced fragments but

with only 8% of the sequence correctly

docked. The Phenix AutoBuild model is

more complete, but still only 59% of the

sequence is correctly docked. When

both pipelines are used, a largely

complete model is obtained and

correctly sequenced. Running Phenix

AutoBuild with Parrot after Buccaneer

built a structure with a higher

completeness of 91%.

4.3. Rfree

Fig. 6 shows the Rfree results for the

original resolution data sets. Similar to

the completeness comparison in

Section 4.2, the individual pipelines

performed worse than when we used

them in combination with other pipe-

lines. Comparing Buccaneer on its own

with the combination in which it was

followed by Phenix AutoBuild shows

significant improvement on including

Phenix AutoBuild, as the structures

produced for 65% of the data sets

decreased (by at least 5%) in Rfree when

Phenix AutoBuild ran after Buccaneer.

None of the structures built by Bucca-

neer on its own was better in Rfree than

those built by Phenix AutoBuild after

Buccaneer.
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Figure 4
Mean fraction of residues incorrectly built in the protein models built for all data sets. The data sets
are grouped into bins based on their resolution, with the number of data sets in each bin shown in
parentheses under the graph. The number of residues incorrectly built was normalized by dividing it
by the number of residues in the deposited model.

Figure 3
Mean completeness for the models built for the original data sets, grouped into bins based on their
initial map correlation (F-map correlation); the number of data sets in each bin is reported in
parentheses under the graph.



Finalizing the structures using Buccaneer as the second

pipeline of a pipeline combination caused high Rfree, while

starting with a Buccaneer structure as an initial model for

other pipelines was more effective. As shown in Table 4, using

Buccaneer after Phenix AutoBuild did not improve Rfree

compared with Phenix AutoBuild alone, as 36% of the original

data sets have a lower Rfree. Running Phenix AutoBuild after

Buccaneer improved 4% of the original data sets in terms of

Rfree, and no Buccaneer models had a lower Rfree than the

combination. Following Phenix AutoBuild by ARP/wARP

generated better results than using Buccaneer after Phenix

AutoBuild. ARP/wARP built 17% of the data sets with a
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Figure 5
Four structures built by Buccaneer, Phenix AutoBuild (Parrot) and their combinations, and comparison with the deposited structures. The chains of
deposited structures are coloured with red and black bonds. The PDB code is 2awa and its resolution is 2.7 Å.



better Rfree than Buccaneer, while only 3% were better built

by Buccaneer compared with ARP/wARP.

Fig. 7 shows the mean Rfree for the data sets grouped into

classes based on their resolution. Running Phenix AutoBuild

with Parrot after ARP/wARP or Buccaneer led to a lower Rfree

at resolutions better than 1.9 Å compared with Buccaneer or

ARP/wARP run after Phenix AutoBuild. The combination of

Buccaneer and Phenix AutoBuild achieved the lowest Rfree

across all pipeline combinations at resolutions worse than

3.1 Å, while ARP/wARP after Phenix AutoBuild achieved the

highest Rfree for the same resolution range.

5. Discussion

We have presented the pairwise running of widely used model-

building pipelines using the original and simulated lower
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Figure 6
Comparison of Rfree (rounded to two decimal places) for the structures generated from the original data sets. Each plot shows the percentage of models
that a pipeline variant built with an Rfree at least 5% lower than each other pipeline variant.



resolution data sets and have focused on

the successful combinations. We have

focused on the results of running pipe-

lines in sequence with at most minor

adjustments to the pipeline options;

however, in the future it may be possible

to produce further improvements by the

deeper integration of methods from

different pipelines.

Combining the pipelines improved

the structure built by the first pipeline in

most of the data sets. The significance of

the improvement depended on the

limitations of the first pipeline and the

ability of the second pipeline to address

these limitations. Running Buccaneer

after Phenix AutoBuild improved the

structure completeness at resolutions

worse than 3.1 Å, as it is known that

Phenix AutoBuild is more effective at

resolutions better than 3.0 Å. Running

the same two pipelines in the reverse

order yielded better results than either

pipeline because Phenix AutoBuild was

able to address poor finalization of the

model by Buccaneer, leading to improved R factors.

When we compared the structure completeness on the basis

of the initial map correlation, few pipeline combinations

performed well when the initial phases were poor. ARP/

wARP after Phenix AutoBuild obtained the best results when

Phenix AutoBuild ran after Parrot. Also, Phenix AutoBuild

after SHELXE and Buccaneer after Phenix AutoBuild with

Parrot obtained close results. We notice from these combi-

nations that the pipelines that perform density modification

internally during model building produced a good structure

for others to use as an initial structure. For example, Bucca-

neer after SHELXE showed better results than Buccaneer

alone, as SHELXE contributes substantially to phase quality

and the performance of Buccaneer is affected by the quality of

the phases.

When comparing Rfree, most of the pipeline variants

achieved a close Rfree at resolutions better than 3.1 Å, and

Phenix AutoBuild run after Buccaneer outperformed the

others at resolutions worse than 3.1 Å. ARP/wARP run after

Phenix AutoBuild and Buccaneer run after ARP/wARP were

the worst combinations at resolutions worse than 3.1 Å, as

they produced structures with the highest mean Rfree values.

The results of our comparison show the usefulness of

pipeline combinations instead of running them individually.

Pairwise pipeline combinations have the ability to fix errors

caused by the first pipeline in the combination. For instance,

Buccaneer alone often produced a highly complete structure

but with a large number of incorrect residues owing to its

building method. In contrast, when Buccaneer was followed by

Phenix AutoBuild, the number of incorrect residues signifi-

cantly decreased because of the ability of Phenix AutoBuild to

fix the structure without adding new residues. The pipelines

that do not perform density modification as part of model

building (for example ARP/wARP and Buccaneer) showed the

worst results against the initial map correlation (correlation of

<0.5). Therefore, combining ARP/wARP and Buccaneer with

Phenix AutoBuild produced a more complete structure than

that generated by either ARP/wARP or Buccaneer alone, both

when Phenix AutoBuild was used on its own or with Parrot.

The performance of the pipelines might be biased owing to

our approach in truncating the data sets to lower resolution, as

explained in detail in our recent work (Alharbi et al., 2019);

however, this was necessary owing to the difficulty of

obtaining large real data sets.

The decision on which pipeline to start with depends on the

quality of the electron-density map. When the initial phases

are not good, starting with a pipeline that includes density

modification is the most effective approach. However, the

decision can change from one structure to another, even if the

structural features are very similar. Running all of these

pipeline variants can be time-consuming, and there is not one

individual or combined pipeline that is the best across all

resolution ranges. Developers are inevitably influenced by

their own interests and by the coverage of their test data sets.

Combining features from different model-building pipelines

improves the model-building results because in many cases the

complementary features of models from different pipelines

are preserved. Further efforts to understand the strengths and

weaknesses of different tools may allow further improvements

through a more systematic approach to combining compo-

nents from different pipeline. Moreover, further research is

required to provide users with clear guidelines as to which

individual pipeline or combined pipeline is the best depending

on their model features.

research papers

822 Alharbi et al. � Pairwise running of model-building pipelines Acta Cryst. (2020). D76, 814–823

Figure 7
Mean protein model Rfree for the data sets partitioned into classes based on their resolution. The
number of data sets in each class is indicated in parentheses under the graph.



6. Data and methods

The structures built by the pipeline combinations and the log

files are available at https://doi.org/10.15124/4b7c880a-d6b0-

471a-a379-d52c4ee947fe.
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