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Drug and fragment screening at X-ray crystallography beamlines has been a

huge success. However, it is inevitable that more high-profile biological drug

targets will be identified for which high-quality, highly homogenous crystal

systems cannot be found. With increasing heterogeneity in crystal systems, the

application of current multi-data-set methods becomes ever less sensitive to

bound ligands. In order to ease the bottleneck of finding a well behaved crystal

system, pre-clustering of data sets can be carried out using cluster4x after data

collection to separate data sets into smaller partitions in order to restore the

sensitivity of multi-data-set methods. Here, the software cluster4x is introduced

for this purpose and validated against published data sets using PanDDA,

showing an improved total signal from existing ligands and identifying new hits

in both highly heterogenous and less heterogenous multi-data sets. cluster4x

provides the researcher with an interactive graphical user interface with which

to explore multi-data set experiments.

1. Introduction

Potential ligands are either soaked into pre-formed crystals

or co-crystallized with their targets for X-ray diffraction data

collection in drug- and fragment-screening experiments, which

have been developed on several beamlines, such as XChem,

developed by Diamond Light Source in collaboration with the

Structural Genomics Consortium (Whitman, 2018), and the

pipeline at the BESSY MX beamlines (Schiebel et al., 2016;

Wollenhaupt et al., 2020). Recent advances in detectors,

robotics and beam optics (Grimes et al., 2018) have helped to

fully realize the potential of the concept of fragment screening

(Blundell et al., 2002), and more beamlines are expected to

specialize in high-throughput screening over the next few

years (Förster & Schulze-Briese, 2019).

Modern screens produce a number of related individual

data sets, known as multi-data sets, each of which must

undergo data reduction and model refinement. These multi-

data sets commonly have hundreds or thousands of individual

members. Multi-data-set methods extract information from

the plurality of data sets to inform analysis of the individual

data sets. For example, one such method performs a statistical

characterization to enable comparison across all collected data

sets, thereby allowing the identification of a signal over

background noise in electron-density maps (a hit). This

method is implemented in the software package PanDDA

(Pearce et al., 2016). This software overcomes significant

drawbacks in 2mFo � Fc and Fo � Fc maps, where phase and

overfitting biases can completely wash out any electron

density associated with a hit. In these situations the ligand can

often be clearly identified by PanDDA. PanDDA calculates
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the mean and standard deviation on a per-voxel basis across

a multi-data set (the statistical characterization step) and

produces event maps where voxel values are expressed in

terms of standard deviations from the mean (the Z-map and

event-map calculation step). Peaks which register above a

certain Z-value are expanded by connecting them to neigh-

bouring voxels above a minimum Z-value. Those which pass a

minimum size threshold become potential hits for manual

inspection. PanDDA has been effective in enabling ligand

identification in a range of crystallographic screens (Keedy et

al., 2018; Glöckner et al., 2020; Douangamath et al., 2020).

Although PanDDA includes some realignment of maps

according to C�-position variations, broad structural differ-

ences caused by crystal heterogeneity will diminish the signal-

to-noise ratio by widening the distributions of individual

voxels. To sidestep this problem, the focus is currently on

obtaining a good crystal system in the first place rather than

exploiting downstream processing methods, which has been

described as the bottleneck (Collins et al., 2018). This paper

shows that providing PanDDA with pre-clustered data sets,

where these variations are minimized within the sets, can

enhance the power of the PanDDA method.

Choosing the members of each cluster is a similar problem

to ensuring that data from multiple crystals are only merged if

they are relatively isomorphous, which has also been tackled

using hierarchical clustering (Giordano et al., 2012). Another

hierarchical method for grouping the most similar data sets

has been developed in the computer program BLEND (Foadi

et al., 2013).

The most related method to that used in cluster4x is the

XSCALE_ISOCLUSTER module in XDS (Diederichs, 2017).

This is based on the correlation between absolute intensities

in reciprocal space, and therefore gives an indication of the

relative closeness of data sets, as well as the identification of

clusters, based on a previous algorithm for ensuring uniformity

of indexing choice for X-ray free-electron data snapshot

images for space groups with an indexing ambiguity (Brehm &

Diederichs, 2014). The Brehm and Diederichs algorithm

introduced the concept of using an N-dimensional vector to

represent each data set. The angle between two of these

vectors, after clustering, has an inherent meaning: two data

sets with a correlation coefficient of zero between them would

have vectors at right angles with respect to the origin, and two

data sets with a correlation coefficient of one would have a

corresponding angle of zero degrees. However, variations

which are small enough to fall within the level of the noise, but

which may still have an impact on multi-data-set analyses, may

go unnoticed, making it difficult to distinguish clusters by eye.

The underlying methods for the clustering analysis presented

in cluster4x rely on correlation between differences in reflec-

tion amplitudes or model C� positions, rather than their

absolute values, and therefore the ability to identify subtle

clusters by eye is enhanced, at the expense of highlighting the

magnitude of the differences between them.

Another modification of the underlying original algorithm

for breaking indexing ambiguities (Brehm & Diederichs, 2014)

is implemented in dials.cosym (Gildea & Winter, 2018), not

only to break the ambiguity, but also to identifiy the indexing

ambiguity itself by the inclusion of all potential symmetry

operations leading to merohedral twinning in a given lattice

type. The lack of prior assumptions about the lattice symmetry

makes this particularly suited to automatic processing pipe-

lines.

For the cluster4x clustering methods reported in this paper,

although the detection and breaking of indexing ambiguities is

possible, the focus is on identifying subtle variations that are

found within a consistent indexing choice and do not neces-

sarily have boundaries that are as clear-cut. The choice of

clustering is manual and is powered through a graphical user

interface (GUI), but is not a time-consuming or labour-

intensive process, and provides plenty of opportunity for

researchers to become acquainted with the peculiarities of

their sets of crystals. Clustering using this method does not

have to be limited to drug or fragment screens, but could be

applied to the partitioning or verification of induced crystal

changes for a wide range of additional variables.

2. Materials and methods

2.1. Data acquisition

The data sets for PTP1B (Keedy et al., 2017) from a frag-

ment screen (Keedy et al., 2018) and for BAZ2BA, BRD1A

and JMJD2DA (Krojer et al., 2017a,b,c) deposited with the

original paper reporting PanDDA analysis (Pearce et al., 2016)

were downloaded from Zenodo (https://zenodo.org).

2.2. Generating average sets

Average data sets were generated from either reciprocal-

space reflection amplitudes or real-space C�-atom positions.

A default but alterable resolution cutoff of 3.5 Å removes

reflections beyond this limit from the analysis. This default was

chosen to balance the speed and quality of clustering results. If

multiple conformations of one C� atom are present, only the

first C� conformer is used. Each multi-data set has N data sets.

Each data set n has I reflections with amplitudes Fi,n. For every

reflection i, Nn amplitudes have been recorded and N � Nn

amplitudes are missing from the data set. An average data set

is generated, comprising N reflections, each of which with an

amplitude Fi, where

Fi ¼
PN
n¼0

f ðFi;nÞ

Nn

; where f ðFi;nÞ ¼
Fi;n if Fi;n is unrecorded

0 if Fi;n is recorded.

�
ð1Þ

Each data set has an associated model with J C� atoms with

3D coordinate vectors cj,n in real space. Jn atoms in data set n

have been modelled for every C� atom j, and J � Jn atoms

remain unmodelled. Similarly, an average model is generated

with J C� atoms, each of which with a coordinate vector cj,

where
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cj ¼
PN
n¼0

gðcj;nÞ

Jn

; where

gðcj;nÞ ¼

cj;n if C� atom j is modelled

0

0

0

0
B@

1
CA if C� atom j is unmodelled.

8>>><
>>>:

ð2Þ

As one may not want to guarantee that all of the entered

data sets will be of the same space group, this is not restricted

to any asymmetric unit.

2.3. Scaling data sets

A scaling step is carried out on each individual data set to

remove the effect of any global isotropic B factors on down-

stream comparisons. Reciprocal space is divided into 20 equal

volume bins, with concentrically spherical boundaries centred

on the origin, and the diameter of the final bin equal to the d*

value of the furthest recorded reflection amplitude (in Å�1).

Each bin has a list of B reflection indices, b1, b2, . . . , bB, which

point to a subset of all I reflections. For every data set, each bin

only has Bn recorded reflections, and B � Bn unrecorded

reflections. For each data set n and for every bin (not enum-

erated), a scale factor k is derived. Each amplitude Fi,n in this

bin is then multiplied by k,

k ¼
PbB

i¼b1

Fi

B

 ! PbB

i¼b1

f ðFi;nÞ

Bn

" #�1

: ð3Þ

2.4. Pairwise correlation coefficients

Correlation coefficients are calculated between series of

values associated with data sets m and n, which are used in

downstream analysis. For comparison in reciprocal space,

spanning only amplitudes Fi,m and Fi,n recorded in both data

sets, the series of values are

Vm ¼ fv1; v2; . . . ; vmg ¼ fF1;m � F1;F2;m � F2; . . . ;Fi;m � Fig;

Vn ¼ fv1; v2; . . . ; vng ¼ fF1;n � F1;F2;n � F2; . . . ;Fi;n � Fig:

ð4Þ

For comparison of C� positions, spanning only vectors cj,n

and cj,m modelled in both atomic models,

Vm ¼ fv1; v2; . . . ; vmg ¼ fx1;m � x1; y1;m � y1; z1;m � z1;

x2;m � x2; y2;m � y2; z2;m � z2; . . . ; xj;m � xj;

yj;m � yj; zj;m � zjg;

Vn ¼ fv1; v2; . . . ; vng ¼ fx1;n � x1; y1;n � y1; z1;n � z1;

x2;n � x2; y2;n � y2; z2;n � z2; . . . ; xj;n � xj;

yj;n � yj; zj;n � zjg; ð5Þ

where

cj;n ¼

xj;n

yj;n

zj;n

0
@

1
A and cj ¼

xj

yj

zj

0
@

1
A: ð6Þ

A Pearson correlation coefficient am,n was calculated

between values series vm and vn, and bounded to a value

between 0 and 1.

2.5. Clustering analysis

A matrix M was prepared with N � N rows and columns.

Each element Mn
m where m 6¼ n was set equal to an

m; where

m = n, Mn
m was set to zero. Singular value decomposition

(SVD) was then performed on this matrix,

M ¼ UWV�1; ð7Þ

where U and V are orthogonal, and W is a diagonal matrix

with positive or zero elements.

In the GUI, the researcher is presented with the N values of

the W diagonal entries. The researcher is allowed to choose

the three axes to display from a choice of W axis values; those

with larger values encompass more of the variation seen in the

data. If entries n1, n2 and n3 are picked, a submatrix S formed

of N � 3 rows and columns is formed,

S ¼

WU
n1
1 WU

n2
1 WU

n3
1

WU
n1
2 WU

n2
2 WU

n3
2

. . . . . . . . .

. . . . . . . . .
WU

n1
N WU

n2
N WU

n3
N

0
BBBB@

1
CCCCA: ð8Þ

A three-dimensional plot is populated with N vectors, each

of which has elements equal to each row of S. Each of these

vectors represents the association of a single data set with the

three selected clusters n1, n2 and n3.

2.6. Subclustering

Structures which deviated significantly from the C� posi-

tions could easily be identified and were removed from the

clustering analysis; this was only required for the multi-data

sets PTP1B and BRD1A. For each PTP1B structure, the

appropriate symmetry operation was applied to bring all C�

positions to a common average position. On the removal of

outliers and the application of symmetry operators, the C�-

position averages could be recalculated without bias from

outliers. Subclusters were selected manually using both the

real-space and reciprocal-space clustering results as a guide.

This was performed by rotating the three-dimensional SVD

plot and either adding or subtracting from a selection using

keyboard modifiers and clicking and dragging with the mouse.

This required a few minutes to complete the clustering per

data set. Sometimes, clusters were separated from the main

group and clustering was rerun on these using either re-

calculated sets of averaged structure factors and C� atoms or

using the original averaged sets. This allowed the finer

separation of subclusters, should some data sets further from

the mean exhibit significant further internal variation, by

recalculating a new average. Alternatively, clusters could be

marked as complete if they were deemed to require no further

subdivision.
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2.7. PanDDA analysis

The output from clustering was organized into separate runs

and the pandda.analyse module from PanDDA version 0.2.14

(Pearce et al., 2016) included with CCP4 version 7.1 (Winn et

al., 2011) was executed on these partitioned data sets and also

on the unpartitioned data sets. In both cases, this was run with

the nonstandard parameter min_build_datasets=20, but

otherwise with the default parameters. Event maps were

inspected manually using pandda.inspect, with unclear results

not reported in the original studies being re-evaluated, and

new event maps evaluated by eye to determine whether they

were true hits or whether the electron density was not clear

enough. The criteria that a hit was considered to be a bound

ligand were as follows: after the exclusion of backbone rear-

rangements, side-chain flips, water-molecule rearrangements

and ions, the event-map density at the background-corrected

sigma level of 1.0 had to cover the entirety of the ligand when

modelled into the density or, for low-resolution structures,

cover the vast majority of the ligand and leave little room for

interpretation as one of the other excluded events. For

BAZ2BA, JMJD2DA and BRD1A, hits were ignored if they

were clearly present in both data sets, even if they were not

reported in the initial study, including some ligands that were

not modelled in the original analysis as they lay between

nonphysiological contact sites. Owing to the fact that all

original hits could be prescribed to two clusters in PTP1B, the

18 PTP1B clusters without any hits from the original analysis

were not subject to this restriction.

3. Results

For a total of N data sets, pairwise correlations between

difference data sets were calculated, and so every data set was

described using a vector of N scalar coefficients. Singular value

decomposition (SVD) is a linear algebra technique which can

draw out the accessible subspace of a matrix. This subspace is

the possible range of vectors which can be reached through

well defined linear combinations of the component axes of a

matrix. SVD produces a set of orthogonal axes, weighted by

their relative contribution to the accessible subspace. If there

is some concerted behaviour of several data sets that behave

in similar ways with respect to the average data set (i.e. having

more similar correlation vectors), this is indicative that these

should be combined into a cluster. SVD will therefore output

a single heavily weighted subspace axis which describes this

concerted variability. Axes associated with smaller weights

represent more minor variations between data sets, and

sufficiently small weights can be ignored. Although there are

N orthogonal axes output from SVD, only a handful of these

will have a large weight associated with them. The ratio

between weights is important, rather than their absolute

values. This clustering method can be carried out using either

the deviation in the reflection amplitudes or the deviation in

C� positions from refined structures, or, owing to the inter-

active nature of the GUI developed to aid the application of

this algorithm, a mixture of both.

A large multi-data set from a fragment screen of PTP1B

(Keedy et al., 2017, 2018) and three smaller publicly available

multi-data sets published with the original PanDDA study

(BAZ2BA, JMJD2DA and BRD1A; Krojer et al., 2017a,b,c)

were downloaded. Additional processing results for the

PTP1B study were kindly provided by Daniel Keedy, and for

the three smaller multi-data sets pannda.analyse was used to

recalculate the event maps and Z-maps (here referred to as

the unpartitioned analysis). Alternatively, multi-data sets were

divided into clusters using the cluster4x GUI before executing

individual pandda.analyse runs on the clusters (pre-clustered

analysis). The default parameter min_build_datasets,

which usually requires 40 data sets at a minimum resolution to

be reached for further processing, was lowered to 20 data sets

in order to compensate for the reduced number of data sets in

each cluster. An increase in noise in the statistical character-

ization may be offset by increased homogeneity in the selected

clusters. The least homogenous multi-data set is PTP1B, for

which cluster4x facilitated a dramatic improvement in the

ligand-identification rate. The three smaller data sets contain

fairly homogenous crystals; however, cluster4x is still capable

of identifying additional hits in the screens. These smaller

multi-data-set fragment screens are considerably smaller than

what is routinely achieved following improvements in high-

throughput methodology.

PTP1B was the most populous multi-data set, with 1626

paired reflection lists and atomic models, and exhibited the

highest variability. Data sets were first clustered on reciprocal-

lattice amplitudes (resolving an inconsistency in the indexing

ambiguity choice) into two major groups and were then

further subclustered into 20 data sets using C� differences,

after collapsing the coordinates of all structures onto each

other via applying the appropriate symmetry operator. For

one of the resolved indexing choices, the correlation matrix

was re-ordered by cluster and redrawn with a recalculated

average. The correlations for amplitude differences (Fig. 1a)

and C� differences (Fig. 1b) show a divide into two major

subclusters (clusters 1–5 and clusters 6–9), after which more

subtle variations were extracted. For the other indexing choice

there were more data sets, and therefore slightly more sub-

divisions could be supported (nine versus 11). The C� posi-

tions for clusters 2, 3 and 6, which were chosen for their

distinct translational and rotational shifts, are shown in

Fig. 1(c), showing the significant variability that can arise.

The resolution, unit-cell dimensions, Rwork/Rfree and hit

information for each cluster are shown in Table 1. The original

study (Keedy et al., 2018) identified 380 putative hits, of which

110 were accepted. The 110 original hits were concentrated

into only two subclusters (one from each indexing choice)

comprising 117 structures from clusters 1 and 10. These had

significantly lower Rwork and Rfree values (18.8% and 21.7% on

a background of 25.5% and 27.9%, respectively) and were

distinguishable in the C� positions in real space owing to an

allosterically active alternative conformation in the N- and

C-termini. They also had the highest average resolution

(below 1.8 Å). There were no original hits in any of the other

18 clusters. The original study was executed on all data sets
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together, but PanDDA still groups structures by resolution

range to avoid Fourier truncation errors. The likely explana-

tion for the skewed pattern of hits is that this grouping by

resolution acted as a pseudo-clustering which would have

enriched the number of structures from clusters 1 and 10

analysed together in the highest resolution bins. A secondary

effect from the significantly lower Rwork/Rfree values would

also increase the clarity of the event maps and the signal to

noise of the Z-maps. When the original analysis examined

lower resolution structures, structures from a wider range of

clusters would be combined and the signal-to-noise ratio

would reduce.

Pre-clustered analysis with PanDDA resulted in 472 hits in

total. There were only two additional hits within clusters 1 and

10 together. However, across the clusters in which identified

ligands were absent in the original analysis, an additional 74

hits were identified, together increasing the number of iden-

tified hits by 69% across the whole multi-data set. Changes in

the signal level in the calculated Z-maps for many of the

identified ligands within clusters 1–9 are shown in Fig. 1(d).

PanDDA reports two values for clusters of voxels (here

termed peak-clusters) characterized as hits: the mean Z-value

of the peak-cluster and the peak-cluster volume in Å3, which is

the total volume of the peak-cluster extending above the

minimum peak value of Z = 2.5. One can calculate an estimate

of the total signal for ligands shared between both runs by

multiplying the peak-cluster volume by the mean Z-value. For

data sets where a single putative hit was shared between the
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Figure 1
Cluster outcomes for multi-data set PTP1B. (a) Correlation plot showing relationships between data sets in reciprocal space according to Section 2 for
clusters 1–9 in that order. The colour scale ranges from blue (coefficient of 0) through white (coefficient of 0.5) to red (correlation of 1). Alternating dark/
light boundaries down the right-hand-side bar are a guide to the cluster boundaries. (b) Similar correlation plot based on C� differences. (c) Two views of
C� positions for structures from clusters 2 (light blue), 3 (purple) and 6 (pink). (d) Views of 16 of the newly identified ligands, chosen from clusters 1–9
where the data-set number is less than y1000. PanDDA background-corrected event maps are displayed from the pre-clustered analysis in all cases (2�),
as these were often not calculated for maps dropping below the Z threshold in the unpartitioned analysis. Z-maps were available for both analyses in all
cases, and so the corresponding map is displayed with positive values in green and negative values in red (�3�). Electron-density figures were rendered
in Coot (Emsley et al., 2010).



unpartitioned and pre-clustered analyses, the total signal

increased by 15%, and was broken down into an increase of

18.4% in the the peak-cluster volume and a reduction in the

mean Z-value of 3.5%, although the pre-clustered mean

Z-value is calculated over a larger number of voxels and is

therefore not strictly comparable. This suggests that pre-

clustering produces broader peaks rather than higher peaks in

the Z-maps. Note that this comparison does exclude a subset

of weaker hits only identified in the pre-clustered analysis.

The PanDDA analysis of the unpartitioned data sets for

the three smaller multi-data sets reproduced similar results as

in the original study (Pearce et al., 2016) as viewed using
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Table 1
Average Rwork, Rfree, unit-cell dimensions and hit information for the 20
clusters determined by cluster4x for PTP1B.

Cluster
No. of
data sets

Rwork/Rfree

(%) a (Å) c (Å)

Average
resolution
(Å)

No. of
hits

+cluster4x
hits

1 51 18.8/21.7 89.87 106.57 1.79 47 +2
2 98 25.3/27.4 89.81 106.57 1.84 0 +5
3 114 25.6/27.5 89.95 106.63 1.83 0 +5
4 64 24.3/26.9 89.37 106.00 2.02 0 +0
5 104 25.3/27.6 89.67 106.34 1.89 0 +8
6 92 25.5/27.5 90.22 106.89 1.96 0 +1
7 86 25.6/27.6 90.10 106.79 1.89 0 +3
8 45 25.9/28.9 90.86 107.41 2.28 0 +1
9 114 25.7/28.1 90.48 107.01 2.02 0 +14
10 66 18.7/21.6 89.92 106.61 1.79 63 +0
11 73 25.8/28.1 89.83 106.51 1.89 0 +8
12 69 25.8/27.7 89.91 106.61 1.79 0 +5
13 50 26.2/28.9 89.92 106.56 2.06 0 +0
14 57 26.0/28.0 89.72 106.45 1.76 0 +1
15 65 24.6/27.3 89.31 105.98 2.04 0 +1
16 72 24.9/27.3 89.60 106.28 1.95 0 +5
17 114 25.6/27.5 90.11 106.79 1.86 0 +4
18 79 26.0/28.4 90.26 106.83 1.94 0 +2
19 58 25.4/28.7 90.69 107.48 2.43 0 +1
20 89 27.1/29.7 90.55 107.03 2.12 0 +9

Table 2
Average Rwork, Rfree and unit-cell dimensions for the two clusters
determined by cluster4x for BAZ2BA.

Cluster

No. of
data
sets

Rwork/Rfree

(%) a (Å) b (Å) c (Å)

Average
resolution
(Å)

No.
of
hits

+cluster4x
hits

A 97 18.8/22.2 82.09 96.77 57.96 1.81 7 +0
B 102 18.6/21.7 82.46 96.68 57.98 1.78 2 +2

Table 3
Average Rwork, Rfree and unit-cell dimensions for the two clusters
determined by cluster4x for JMJD2DA.

Cluster
No. of
data sets

Rwork/Rfree

(%) a (Å) c (Å)

Average
resolution
(Å)

No. of
hits

+cluster4x
hits

A 70 15.7/18.8 71.29 150.27 1.55 8 +3
B 43 15.8/18.2 71.69 150.87 1.41 4 +4
C 108 15.6/18.1 71.40 150.32 1.39 18 +2

Figure 2
Cluster outcomes for multi-data set BAZ2BA. (a) Matrix plot showing relationships between data sets in reciprocal space according to Section 2. The
cluster was separated in reciprocal space into two groups. (b, c) Matrix plots for subgroups plotted against the same average values calculated from all
data sets. (b) corresponds to cluster A and (c) corresponds to cluster B in the main text. (d) Plot showing the second, third and fourth major axes of the
SVD plot, showing separation of the two groups, which could be manually subdivided by splitting across the second axis. (e) shows separation in real
space as a result of these reciprocal differences, plotting all C� atoms in the structure. Blue corresponds to the data sets in cluster A and purple denotes
those in cluster B. ( f ) Unit-cell deviations in the a and b axes from the average values across all data sets. (g, h) PanDDA background-corrected event
maps in blue (2�) and Z-map with positive values in green and negative values in red (�3�) for (g) a newly identified hit from x447 and (h) a newly
identified hit from x557.



pandda.inspect. Small differences will be attributable to the

change in the min_build_datasets parameter from the

default. The list of putative hits is a mixture of events such as

clearly bound ligands, unclearly bound ligands, backbone

rearrangements, catalytic events, side-chain flips, bound ions,

solvent fluctuations and false hits owing to statistical error

rather than true density variation. Events in all but the first

category are discarded. As for the PTP1B multi-data set,

discarded events significantly outnumber those which are

accepted as identified hits. False positives resulting from

statistical error cannot be easily distinguished from true

positive results where poor binding has led to unclear electron

density. The same inspection was carried out on each of the

pre-clustered analysis outputs. If a potential plausible ligand

was identified but was present in both the pre-clustered and

unpartitioned analyses, it was not included in the list of

additional hits from cluster4x.

The BAZ2BA multi-data set comprised 199 data sets for a

small four-helix bundle. The protruding N-terminus lay

alongside the equivalent from one of the symmetry mates, and

the longer loop region between the first and second helices sat

against the corresponding loop of another symmetry mate.

This was pre-clustered using cluster4x before downstream
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Table 4
Average Rwork, Rfree and unit-cell dimensions for the eight clusters
determined by cluster4x for BRD1A.

Cluster

No. of
data
sets

Rwork/Rfree

(%) a (Å) b (Å) c (Å)

Average
resolution
(Å)

No.
of
hits

+cluster4x
hits

A 25 19.9/23.0 55.74 56.61 101.97 1.76 2 +1
B 31 18.5/22.7 55.31 56.37 101.93 2.02 0 +0
C 59 17.9/21.2 55.18 56.26 101.71 1.60 15 +0
D 63 18.5/21.9 55.40 56.49 101.82 1.59 9 +1
E 10 19.0/22.6 55.57 56.17 101.73 1.73 0 +0
F 11 27.3/31.4 56.42 56.38 101.56 2.40 0 +0
G 55 20.6/24.4 55.70 56.51 101.71 1.81 27 +0
H 37 19.1/22.9 55.32 56.46 101.66 1.71 12 +0

Figure 3
Screenshot of the cluster4x GUI. (a) View of the correlation-coefficient matrix plot after clustering. Clusters are listed down the left-hand column, which
will also be populated with subclusters. Controls for generating new clusters are displayed on the right. (b) Rotatable SVD plot, with clusters selected
manually by clicking and dragging to either add (+ Shift key) or subtract (+ Ctrl key) rendered in yellow. (c) Rotatable hkl space for viewing the
amplitudes and unit cell of a cluster, which can also be rendered per data set, which is good for identifying mis-indexing results. (d) View of all C� atoms,
including those selected in (b) rendered in yellow.



analysis with PanDDA. Owing to the small number of data

sets, this was divided into only two major clusters: A (101 data

sets) and B (98 data sets) (Figs. 2a–2c). Clustering was easily

carried out in reciprocal space with no need to separate on C�

positions, as this produced similar results. Fig. 2(a) shows that

for a significant number of data sets, the deviations from the

average of all members of the multi-data set show no net

positive correlation with other data sets, which is coloured in

blue on the diagram. Data sets which do not correlate well

with one another are separated into separate clusters, which is

why Figs. 2(b) and 2(c) have a reduced proportion of blue

(zero) entries in the diagram. The properties of the two clus-

ters are shown in Table 2.

Data sets were separated manually in cluster4x according

to the SVD output (Fig. 2d). In real space, the two clusters

showed a shifting of the four-helix bundle as a rigid unit, while

part of the N-terminus (residues 1857–1859) and the longer

loop (residues 1893–1908) forming the crystal contacts

remained anchored against their neighbours (Fig. 2e). As

changes in the internal motions of the protein will be

accompanied by adjustment of the unit-cell dimensions to

compensate, this will then also be correlated with adjustments

in the reciprocal-lattice amplitudes (with the unusual excep-

tion of the protein expanding and contracting in a similar

manner to that of the unit cell). In this case, the largest change

in the unit cell was correlated with a decrease in the length of

the a axis from 82.5 Å in cluster A to 82.1 Å in cluster B

(Fig. 2f). Although the a axis length in cluster A is greater

than in cluster B, there is still a significant overlap between the

two groups, showing that the partition in reciprocal space

cannot be established by unit-cell dimension alone. The use of

the GUI to generate these plots is demonstrated in Fig. 3.
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Figure 4
(a) Newly identified hits for JMJD2DA showing PanDDA maps as displayed in Fig. 2 labelled with the data-set name and the cluster of which it was a
member. (b) Left, x377, cluster A from the unpartitioned PanDDA analysis, present but not easily interpretable; right, x377, cluster A density using pre-
clustering, now easily identifiable as the ligand. (a) and (b) were rendered in Coot (Emsley et al., 2010). (c) Total signal from the PanDDA event map,
plotted for all data sets shared between the unpartitioned (blue) and pre-clustered (orange) points, ordered by the pre-clustered total signal. All lines are
drawn as visual guides to show the change in signal per data set.



JMJD2DA is a larger protein and separated in reciprocal

space into three clusters, A (70 data sets), B (43 data sets) and

C (108 data sets), associated with small unit-cell shifts (Table 3)

and corresponding real-space changes. Again, separation of

the clusters manually was straightforward in reciprocal space

and the C� differences were not consulted. However, it is clear

from the overlay of all structures that there is no substantial

variation in C�-atom positions and these variations are small.

The enrichment of hits was equally distributed between the

clusters. Nevertheless, although they exhibited only small

variations of C� positions, running PanDDA on the clusters

separately did identify nine new hits (three additional hits

from cluster A, four from cluster B and two from cluster C;

Figs. 4a and 4b). One hit from cluster A (x377) was registered

in the unpartitioned analysis, but was not sufficiently defined

without pre-clustering to be certain of the presence of the

ligand (Fig. 4b).

False negatives can be identified as those which are not

shared with the published ligands in the original PanDDA

study. In JMJD2DA, there were false negatives in both the

unpartitioned and pre-clustered analyses: two common to

both and four unique to each of the unpartitioned and pre-

clustered analyses. The unpartitioned run therefore also

missed ligands that had been previously reported. This was

owing to the modification of the min_build_datasets

parameter. In general, the total signal is either roughly iden-

tical or significantly improved by cluster4x (Fig. 4c). The

average increase of 9.2% is owing to a 16% increase in

volume, which is balanced by a reduction of 5.3% in the mean

Z-value.

BRD1A is a four-helix bundle protein and the only one of

the fragment-screen multi-data sets which showed a clear

ordered separation of crystal morphologies according to

crystal number, presumably collected chronologically (Fig. 5a).

There is also a strong correlation, as expected, between

reciprocal-space variation and real-space variation (Fig. 5b).

The separation was less clear-cut in reciprocal space alone, and

so a broad separation into three larger groups was carried out

using amplitude differences followed by C� differences to

produce a finer slicing of clusters. The tree showing subclus-

tering outcomes is shown in Fig. 5(c). These separated into

eight distinct clusters from 302 data sets, summarized in

Table 4, of which four fell below the default parameter for the

minimum number of data sets required to trigger statistical

characterization in PanDDA (40) and two fell below the

number chosen in this analysis (20). Only one group exceeded

the threshold recommended for statistical characterization

(60).

One of the clusters of 11 data sets yielded considerably

higher R factors (Rwork = 27.3%, Rfree = 31.4%) compared with

the average (Rwork = 20.1%, Rfree = 23.7%) and exhibited a

considerable rotation of the protein, along with the largest

expansion of the a axis by 0.6 Å over the average. Although

this brought the average a axis within 0.1% of that for the b
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Figure 5
Multi-data set BRD1A. (a) Matrix plot showing the relationships between data sets in reciprocal space using the same colour scheme as in Fig. 2(a). (b)
Matrix plot showing relationships in real space between C� positions. (c, d) PanDDA maps displayed as in Fig. 2. (c) Tree showing the generation of
subclusters from all data sets. Selections for subclusters were chosen through inspection of the SVD plots. A subselection of data sets contributes to each
matrix plot, and of these a subset is highlighted in yellow, either denoting the final members of clusters A–H or, if a non-terminal cluster, the subselection
displayed in the downstream matrix plots. Clusters A and B were split along reciprocal amplitude differences, and clusters C–H were further split along
C� differences. (d) Newly identified hit from x165. (e) Newly identified hit from x324. (d) and (e) were rendered in Coot (Emsley et al., 2010).



axis and therefore ran the risk of mis-indexing during data

reduction, no mis-indexing was detected in reflection amplti-

dues from individual data sets. Exclusion of these 11 data sets

identified from cluster4x increased the average total signal, as

calculated above, by 1.4% and produced one extra event to

analyse after running PanDDA (87 instead of 86 potential

hits). No hits were originally found in these 11 data sets. The

second small cluster, a set of ten sequential data sets which

appeared to vary similarly to one another and distinctly

differently to the rest of the data sets, had no elevation in R

factor (Rwork = 19.0%, Rfree = 22.6%) but also did not harbour

any hits in the original analysis or in a forced PanDDA

analysis. Overall, for BRD1A the small number of data sets

collected and the wide variability in the protein meant that

most of the clusters dropped below the threshold for statistical

characterization. However, one clean additional hit was

detected in a cluster of 25 data sets (Fig. 5c) and another in the

largest cluster of 63 data sets (Fig. 5d). No hits found in the

unpartitioned analysis were missing from the pre-clustered

analysis.

4. Conclusions

In this paper, cluster4x has been applied to drug screens;

however, it could be applied to other types of experiment as a

separate, unbiased method to validate the presence of a

concerted change in signal in the amplitudes as a function of

another dimension, such as in time-resolved experiments or

those involving static laser-induced or temperature-induced

changes.

In all four test cases, pre-clustering was instrumental in

identifying new hits and clarifying previous hits, but this was

most marked in the highly heterogenous multi-data set

PTP1B, which also benefited from a larger number of starting

structures, which allowed greater subdivision into clusters. Of

the three smaller and more homogenous multi-data sets, the

reduction in the number of data sets entering the statistical

characterization is a drawback. However, analysing more

homogenous clusters of data sets is also a way to enhance the

signal to noise in the statistical characterization, and this

remains a balancing act. As a result, for more homogenous

multi-data sets with clusters which often drop below 60

members, the recommendation would be to run both an

unpartitioned and a pre-clustered analysis to capture all fringe

hits. Nevertheless, treating all these multi-data sets with pre-

clustering did reveal additional hits which otherwise fell below

the Z-map threshold. Analysis of most multi-data sets would

therefore benefit from pre-clustering, if only to be certain that

all possible putative hits are being found, despite any residual

heterogeneity.

Pressure is now mounting to identify ligands disrupting the

function of SARS-CoV-2 (Riva et al., 2020). Although corona-

viruses have large genomes by the standard of RNA viruses,

we are limited to a targeting a small number of structural,

nonstructural and putative open reading frame proteins in

the coronavirus genome with small-molecule inhibitors. The

widespread economic and social devastation caused by the

SARS-CoV-2 pandemic necessitates an understanding of

these protein structures for inhibitor design and discovery as

quickly as possible. When a virus is of such global significance,

lower quality crystals may still provide an acceptable basis

to perform a drug screen in a timely fashion. cluster4x has

already been instrumental in identifying an existing drug,

2-methyl-1-tetralone, which covalently binds to the active site

of the main protease (Günther et al., 2020) and other

compounds which have passed at least phase I trials (Günther

et al., unpublished work). These successes show how crucial it

is to minimize losses of potential hits owing to heterogeneity in

crystal systems used in X-ray crystallography drug or fragment

screens, and cluster4x is well placed to address many of the

problems caused by crystal-to-crystal fluctuations.

One may argue that some of the main benefits of cluster4x

are the drill-down interactive methods provided by the

graphical user interface and the opportunity for researchers to

explore and understand the peculiarities of their crystals.

cluster4x is provided as a submodule within the Vagabond

software suite (https://vagabond.hginn.co.uk). It is written in

C++ and published under the GPLv3 software licence.
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Brandaõ-Neto, J., Carbery, A., Davison, G., Dias, A., Downes, T. D.,
Dunnett, L., Fairhead, M., Firth, J. D., Jones, S. P., Keely, A.,
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Huschmann, F., Glöckner, S., Weiss, M., Mueller, U., Klebe, G. &
Heine, A. (2016). Structure, 24, 1398–1409.

Whitman, H. (2018). Rutgers Res. Rev. 3(1).
Winn, M. D., Ballard, C. C., Cowtan, K. D., Dodson, E. J., Emsley, P.,

Evans, P. R., Keegan, R. M., Krissinel, E. B., Leslie, A. G. W.,
McCoy, A., McNicholas, S. J., Murshudov, G. N., Pannu, N. S.,
Potterton, E. A., Powell, H. R., Read, R. J., Vagin, A. & Wilson,
K. S. (2011). Acta Cryst. D67, 235–242.

Wollenhaupt, J., Metz, A., Barthel, T., Lima, G. M. A., Heine, A.,
Mueller, U., Klebe, G. S. M. & Weiss, M. (2020). Structure, 28, 694–
706.

research papers

1144 Ginn � Pre-clustering data sets using cluster4x Acta Cryst. (2020). D76, 1134–1144

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=di5038&bbid=BB24
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=di5038&bbid=BB24
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=di5038&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=di5038&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=di5038&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=di5038&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=di5038&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=di5038&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=di5038&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=di5038&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=di5038&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=di5038&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=di5038&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=di5038&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=di5038&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=di5038&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=di5038&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=di5038&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=di5038&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=di5038&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=di5038&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=di5038&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=di5038&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=di5038&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=di5038&bbid=BB14
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=di5038&bbid=BB14
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=di5038&bbid=BB14
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=di5038&bbid=BB15
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=di5038&bbid=BB15
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=di5038&bbid=BB15
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=di5038&bbid=BB16
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=di5038&bbid=BB16
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=di5038&bbid=BB16
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=di5038&bbid=BB16
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=di5038&bbid=BB17
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=di5038&bbid=BB17
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=di5038&bbid=BB17
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=di5038&bbid=BB17
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=di5038&bbid=BB18
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=di5038&bbid=BB18
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=di5038&bbid=BB18
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=di5038&bbid=BB18
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=di5038&bbid=BB19
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=di5038&bbid=BB19
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=di5038&bbid=BB19
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=di5038&bbid=BB20
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=di5038&bbid=BB20
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=di5038&bbid=BB20
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=di5038&bbid=BB20
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=di5038&bbid=BB20
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=di5038&bbid=BB20
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=di5038&bbid=BB20
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=di5038&bbid=BB20
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=di5038&bbid=BB20
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=di5038&bbid=BB20
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=di5038&bbid=BB21
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=di5038&bbid=BB21
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=di5038&bbid=BB21
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=di5038&bbid=BB21
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=di5038&bbid=BB22
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=di5038&bbid=BB23
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=di5038&bbid=BB23
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=di5038&bbid=BB23
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=di5038&bbid=BB23
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=di5038&bbid=BB23
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=di5038&bbid=BB24
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=di5038&bbid=BB24
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=di5038&bbid=BB24

