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In this paper, several approaches to be used to accelerate algorithms for fitting

an atomic structure into a given 3D density map determined by cryo-EM are

discussed. Rotation and translation of the atomic structure to find similarity

scores are used and implemented with discrete Fourier transforms. Several

rotations can be combined into groups to accelerate processing. The finite

resolution of experimental and simulated maps allows a reduction in the number

of rotations and translations needed in order to estimate similarity-score values.

1. Introduction

The goal of many cryogenic electron microscopy (cryo-EM)

studies is to obtain an atomic model or models corresponding

to the data and the molecular complexes imaged. Independent

of the techniques used to set up data collection (for example

single-particle EM or tilt-series tomography), we obtain sets of

projections of an unknown 3D structure onto a digital 2D

sensor. After much processing of the recorded images, a

reconstruction algorithm provides the user with a 3D density

map. In cryo-EM we image with electrons, so the map

obtained is strictly an electron potential map. However, it is

very similar to an electron-density map that would be obtained

by X-ray crystallography, so we will call it a density map by

analogy and for convenience. Many software packages have

been developed by large teams worldwide to assist with the

processing and reconstruction steps, in which all possible

information about the experiment is used to determine the

best quality density map; see the Collaborative Computational

Project for Electron cryo-Microscopy (CPP-EM; Burnley et

al., 2017).

In favourable cases cryo-EM has produced maps to genuine

atomic resolution (1.2 Å; Nakane et al., 2020; Yip et al., 2020);

however, 3–4 Å is more typical of a high-resolution result, and

more maps in the lower resolution range between 4 and 8 Å

are being published than high-resolution maps.

For higher resolution maps (<3.5 Å) it is possible to derive

or build atomic models directly from the map, as individual

atoms are resolved or the expected features of protein side

chains can be seen and modelled (Emsley & Cowtan, 2004;

Liebschner et al., 2019). The other case is when the 3D map is

at a lower resolution and the features are not rich enough for a

structure to be built directly into the map. Of course, there are

intermediate situations in which some parts of the map are

better than others. In some cases a reliable protein backbone

trace can be defined, but most of the side chains are not

identifiable.
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When an atomic model cannot be built directly into the

experimental map manually, if not automatically, it is possible

to build a model from larger known fragments (Roseman,

2000). In a typical case, domains or parts of the molecules

might have been solved by X-ray crystallography or nuclear

magnetic resonance, or they might be related by homology to

parts of other structures that have already been solved. The

problem to be solved is the docking of these molecular shapes

into the larger map of the entire complex to assemble a model

using 3D molecular-density docking. Ideally, objective and

quantitative computational methods are needed, with provi-

sion for user interaction. At low resolution it may often be

necessary to include some additional information to create an

unambiguous model, such as constraints from chemical cross-

linking or the known effects of mutations.

A complete search of all parameters to locate or dock a

particular search density into a larger target map is compu-

tationally expensive and time-consuming. It is a large six-

dimensional search covering three spatial dimensions and

three orientation parameters.

Docking problems in electron microscopy (EM), i.e.

locating a known density object optimally within a larger 3D

density map, are similar to but different from molecular-

replacement (MR) problems in X-ray crystallography. The

maps produced by cryo-EM techniques are the final results,

and no further atomic model-building steps are used to

improve the maps. EM images contain phase information and

therefore the resultant 3D maps have good-quality phases and

amplitudes in Fourier space. However, in some recent

programs EM maps are improved by sharpening based on

local B-factor estimates computed from comparisons with a

fitted model.

MR is a method to solve the phase problem in X-ray crys-

tallography, which has a lack of experimental phases in stan-

dard diffraction data. In MR, a model or a partial model

located in the crystallographic cell is used to obtain some

partial phases that can then be used to calculate an initial map.

Since the initial map will not have good, if any, phase infor-

mation, the problem is more difficult than EM molecular

docking, and many inventive procedures have been used to

solve such problems (see, for example, Colman & Fehl-

hammer, 1976). MR is routine if a model similar to the crys-

tallized structure is available and is more challenging when

there is not any available model known to be similar to the

structure. A correct fit with even a partial fragment can

provide sufficient phase information to enable, with further

bootstrapping, using more fitting or direct methods, the solu-

tion of the correct high-resolution electron-density map to be

obtained. For a more complete review of MR, see Evans &

McCoy (2008) and references therein. A similarity of our EM

method and MR is the use of correlation and convolution

functions to obtain vectors to locate molecular fragments in a

density map (Read & Schierbeek, 1988).

In this paper, we present a series of algorithm improve-

ments for this intensive computational task of docking two

densities. Our aim is to generate useful solutions fast enough

that docking can be performed interactively by a user on a

high-performance desktop workstation. This will allow them

to explore and guide model building using additional infor-

mation and allow them to test their hypotheses in real time.

Our second aim is to facilitate low-resolution model

building for another case: where no known candidate homo-

logous structures can be identified for a target map or some

region of the map. We propose that with the speedup in

computation that we are achieving, a full search of a set of

nonredundant molecular fragments from the Protein Data

Bank (https://www.wwpdb.org) could be performed. A similar

strategy is used for molecular replacement in X-ray crystallo-

graphy, for example in MoRDa (an automatic molecular-

replacement pipeline; Vagin & Lebedev, 2015), which is part of

the CCP4 online web services (Winn et al., 2011). Depending

on the resolution and character of the structure in the map, the

fragments will range in size from domains, or subdomain

features, to short peptide-chain fragments of a few amino

acids.

The set of candidate domains from the PDB could contain

hundreds of thousands of potential structures; however, they

may be reduced by removing those with similar features to

generate a nonredundant set. Furthermore, we may select

those with a given taxonomy, from a given organism, with a

given polymer type, with a given enzyme classification etc.

Some experimental maps have clearly defined domain

boundaries, allowing us to split the whole map into smaller

blocks, and will give constraints on the fragment size. There-

fore, the user could select atomic models to fit based on an

appropriate size range. This approach may allow us to limit the

number of candidates to thousands. Fitting these models

requires the rotation and translation of a large set of search

maps in 3D, and is still a computationally intensive task.

However, several approaches discussed in this paper allow us

to reduce processing times.

In Section 2 we discuss how to define the similarity of two

maps. For this purpose, we calculate maps of correlation

coefficients and discrepancies. Without any restrictions these

similarity scores have a simple relation. However, in the case

of noisy data or low signals, extra restrictions can be intro-

duced and the scores are changed. In Section 3 the problem of

fitting a smaller 3D map onto a larger map is reviewed.

Technical details of this problem with a discussion of methods

for optimization are presented in Section 4. Quicker compu-

tation of good estimates of correlation maps can be found by

reducing the sampling level at the inverse transform stage: see

Section 5. Performance numbers for the DockEM program

modified with the use of the proposed ideas and comparison

with the PowerFit program are presented in Section 6.

2. Similarity of vectors for noisy data

Suppose we have two 1D vectors of size n: fi, gi, i = 0, . . . , n� 1.

The similarity of these vectors can be found in several ways.

We use notions of cross-correlation and discrepancy (see

Appendix A). For a normalized signal g, i.e.
Pn�1

i¼0 gi ¼ 0 andPn�1
i¼0 g2

i ¼ 1, and without any restrictions on the level of signal
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g, the normalized correlation and discrepancy coefficients are

defined as

Rfg �

Pn�1

i¼0

figi

Pn�1

i¼0

f 2
i � n�ff 2

� �1=2
; Dfg ¼ 1� R2

fg:

Real data contain noise and errors; therefore, instead of the

exact signal fi we know only some approximations ~ffi such that
~ffi ’ fi. In some cases we know the error values, i.e. "i > 0 such

that jfi �
~ffij < "i. In other cases, we may assume that ~ffi has

some distribution with given parameters.

Similarity scores are independent of the amplitude of a

signal but are sensitive to the signal-to-noise ratio. In the case

of strong signal values of fi small errors "i should not cause any

issues when similarity scores are calculated, since "i/|fi| are

small. This means that the scores found for erroneous data ~ffi

have similar values compared with (unknown) exact values fi.

In the case of low signal, for example fi ’ 0, "i/|fi| becomes

large, so more solutions with the given error are possible and a

higher variability of similarity scores is observed. As a result,

we may find a lot of false matching of two signals. Therefore, it

is reasonable to put some additional restrictions on signal fi.

Suppose a signal is given on a subvolume. To avoid false

peaks for similarity values, we require the signal to be

different from noise. However, as similarity scores do not

change if we vary the mean values, we may obtain false peaks

even when a signal is close to a nonzero constant. Thus, we

need to force the signal to be different from its mean value for

the given subvolume. Therefore, we may threshold the

variance, i.e. set a number �0 > 0 and redefine the correlation

coefficient as

Rfg �

Pn�1

i¼0

figi

Pn�1

i¼0

f 2
i � n�ff 2

� �1=2 if
Pn�1

i¼0

f 2
i � n�ff 2 > �2

0 ,

0 otherwise.

8>>>><
>>>>:

ð1Þ

This means that for low-variance regions of the target map we

set the correlation coefficient to zero.

For the discrepancy we may require the scaling factor � to

be greater than a given number �0. In this case, the minimum

of (6) is attained at the point � = �0, � ¼ �ff if
Pn�1

i¼0 figi < �0.

Therefore,

Dfg �

1�

Pn�1

i¼0

figi

� �2

Pn�1

i¼0

f 2
i � n�ff 2

if
Pn�1

i¼0

figi � �0,

1� �0

2
Pn�1

i¼0

figi � �0

Pn�1

i¼0

f 2
i � n�ff 2

otherwise.

8>>>>>>>>>>><
>>>>>>>>>>>:

ð2Þ

The times taken to calculate D and R similarity scores are

almost the same.

3. Correlation map in 3D

Suppose we have a target map T (a density distribution after

cryo-EM pre-processing and reconstruction). There is also a

smaller search map S (this map is generated from known

atomic structures). Our goal is to position the search map S

onto the target map T in such a way that their common parts

are similar. We also introduce a mask to confine the signal

compared to a fixed region around the search object, reducing

the noise contributed by unmatched parts of the target map

(see Roseman, 2003). Let us consider a 1D case first.

There are vectors Ti, i = 0, . . . , N� 1 and Sj, j = 0, . . . , K� 1.

In general N and K are different. We choose an index q and

consider a subvector Tq of length K of vector T: Tq+j, j = 0, . . . ,

K� 1. The subvector Tq and vector S are of the same length K.

We may find similarity scores for those two vectors as

described in the previous section. For example, the corre-

sponding correlation coefficient is

R
q
TS ¼

PK�1

j¼0

TjþqSj

PK�1

j¼0

T2
jþq � K

1

K

XK�1

j¼0

Tjþq

 !2" #1=2
:

The length of vector S is K and the length of vector T is N;

therefore, there are only P = N � K + 1 common segments

when all elements of vector S and subvector Tq are known.

In principle, the search signal may be defined on multiple

segments. Therefore, it is better to extend the search vector

and define it for all integer indices. At the same time, we may

introduce the mask vector Mj such that Mj = 1 when Sj is

known and Mj = 0 otherwise. Note that Sj = SjMj. We define the

number of known elements as w, i.e. w �
PN�1

i¼0 Mi. The

correlation coefficient can be written as

R
q
TS ¼

PN�1

j¼0

TjþqSjMj

PN�1

j¼0

T2
jþqMj � w

1

w

XN�1

j¼0

TjþqMj

 !2" #1=2
:

If there are two discrete (real-valued) functions fi, gi,

i = �1, . . . , 1 then their cross-correlation is defined as

ðf ? gÞ½j� �
P1

i¼�1 figiþj. We may set the T, S, M vectors to

zero outside i = 0, . . . , N � 1; the correlation coefficient at

point q can then be written as

R
q
TS ¼

ðS ? TÞ½q�

ðM ? T2Þ½q� � 1
w fðM ? TÞ½q�g2

� �1=2
: ð3Þ

In a similar way, we may find R
q
TS and D

q
TS in the case of

erroneous data by using (1) and (2). For instance, if

ðS ? TÞ½q� < �0, then

D
q
TS ¼ 1� �0

2ðS ? TÞ½q� � �0

ðM ? T2Þ½q� � 1
w ðM ? TÞ½q�
� �2 :
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These expressions for similarity values written with the use of

cross-correlation functions are left unchanged if we consider

3D maps.

The main difference from the fast local correlation algo-

rithm introduced for 2D maps (images) in Roseman (2000) is

the use of cross-correlation operations instead of convolu-

tions. While the results are the same in the case of symmetric

maps, they are different for arbitrary-shaped search maps.

Let the target vector T be of length N and the search vector

S be of length K; we then pad them with zeros and make them

periodic with period L. If we use (7) to find the cross-corre-

lation vector ðS ? TÞ½q� then it will have the correct values only

for q = 0, . . . , L � K.

Suppose we are given 3D maps and want to find similarity

scores over some region of interest (ROI). We should expand

the ROI by the size of the search map. We can then use a 3D

DFT (discrete Fourier transform; see Appendix A) for the

target/search maps on the extended ROI and find cross-

correlation with (7).

4. Numerical implementation

Here, we discuss technical details that help us to improve the

performance of the algorithm defined by (3). A key feature of

the procedure is that the correlation coefficient is computed in

a possibly irregular, local area defined by a mask enclosing the

search object.

4.1. Size of maps

Suppose we are given a target map T of size nT
x � nT

y � nT
z .

We also know an atomic model that we aim to fit at some

points of the target map. The atomic model can be given as the

coordinates of atoms in a PDB file. We then simulate the

density distribution corresponding to the given atomic model,

so that we have two equivalent-sized maps, which will allow

the correlation calculation to be performed using FFTs.

An electron potential map is generated using a five-

Gaussian approximation for each atom (see Appendix A). In

this way, we can generate an S map for an arbitrary small voxel

size. For now, we assume that the sampling of the T and S maps

are the same. Suppose that there is a procedure to generate

the mask map M from our search map S.

For given T, S and M maps we apply an algorithm to find the

score values for each point of map T. However, by default we

do not known the orientation of the atomic structure. There-

fore, the algorithm to find score values should sample all

orientations. Of course, the final results should not depend on

the position of the centre of rotation of the atomic structure.

In principle, we may choose any point as a centre of rotation,

as long as the ROI is large enough to accommodate the

rotations. A convenient and intuitive way is to use the centre

of mass of the molecule. However, to keep the rotated maps in

a smaller volume, it is more efficient to use a point close to the

centre of the bounding sphere; see Gärtner (1999) and

Larsson (2008). In this way, the size and the shape of the

corresponding S and M maps can be kept the same indepen-

dent of an initial chosen orientation of the atomic structure.

In principle, the centre of rotation can be anywhere (not

always at a corner of a voxel for S and M maps). However,

keeping the centre at an integer point (an integer number of

pixels for each direction) may help us to implement some

extra procedures to improve performance.

Let maps S, M have size nS
x � nS

y � nS
z (nS

x , nS
y , nS

z are even

numbers) and the centre of rotation be at ðnS
x=2; nS

y=2; nS
z=2Þ.

Suppose the maps are padded with zeros in such a way that no

nonzero values will be outside these maps if they are arbi-

trarily rotated. We may want to find score values within the

box [xs, xe] � [ys, ye] � [zs, ze], where xs, xe, ys, ye, zs, ze are

integer numbers. To find the score values for this ROI, we

need to use the following ROI for T: ½xs � nS
x=2;

xe þ nS
x=2� 1� � ½ys � nS

y=2; yeþnS
y=2� 1� � ½zs � nS

z=2;
ze þ nS

z=2� 1�, which should be inside ½0; nT
x � 1� �

½0; nT
y � 1� � ½0; nT

z � 1�. As the size of Fourier images for T, S

and M should be the same, we need to pad them with zeros.

The least size of the padded maps is ðxe � xs þ nS
xÞ �

ðye � ys þ nS
yÞ � ðze � zs þ nS

zÞ.

There are many libraries providing users with DFT imple-

mentation. The general rule for the time required to perform a

1D DFT is OðN log NÞ, where N is the size of the vector.

However, each implementation may provide different

numbers depending on the computational architecture (CPU/

GPU, memory bandwidth). In Gambron & Thorne (2020) a

performance comparison of most popular FFT libraries is

made. The most critical factor is the domain size. We see that

execution times vary significantly depending on N. When the

prime decomposition of N contains prime numbers larger than

5 the time taken is disproportionately longer, but is otherwise

approximately linear with N log N. Therefore, in some cases it

is better to increase the domain (with zero padding) to achieve

better run times. In any case, keeping the centre of rotation for

S, M maps as close to the centre of the bounding sphere helps

us to reduce the whole size of Fourier maps for T, S and M.

4.2. Rotation and Fourier space

To compute the correlation map we need to perform three

cross-correlations: S ? T, M ? T and M ? T2. Therefore, we

need to perform four forward DFTs, for M, S, T and T2, and

three backward DFTs, for S ? T, M ? T and M ? T2. As maps T

and T2 are fixed, FðTÞ and FðT2Þ can be performed only once

(before any rotations). Thus, for each rotation we need to

perform five DFTs.

The uncertainty principle is valid for the Fourier transform.

The smaller the support of a function g is (i.e. where it has

nonzero values), the more spread out its Fourier transform

FðgÞ. The support of S and M is relatively small with respect to

the extended ROI of T. Thus, we should expect the corre-

sponding Fourier images of S and M to be dense maps. While

finding a 3D DFT of a rotated object can be performed with

lower dimension DFTs of the original (nonrotated) Fourier

map (Paeth, 1990; Larkin et al., 1997), this is a quite time-

consuming operation which at the same time introduces extra
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errors due to interpolation procedures. Therefore, it is faster

to find S and M maps with finer sampling and then perform

remapping with nearest-neighbour or linear interpolation for

given Euler angles onto a map of the same voxel size as the T

map.

4.3. Cubic ROIs and an integer centre of rotation

When we try to fit an atomic model (or some density search

object) to an area of a target map, the general rule is to rotate

the S and M maps while keeping the T map fixed. Search and

mask maps can be found with high accuracy in a relatively

short time; therefore, we may assume that there are almost no

interpolation errors for rotated S and M maps.

Rotating target maps usually introduces interpolation errors;

therefore, the maps of correlation or discrepancy scores may

also be susceptible to these errors. However, we may avoid

any interpolation errors if the centre of rotation is at an

integer point (i.e. the centre of rotation of S, M is at a corner of

one of the voxels of the T map). If we rotate by 90� around a

coordinate axis, then the indices of the new map are integer

numbers, i.e. are also indices of the original map. Therefore,

we may find all possible perfect rotations of T and use multiple

T maps for the same rotated S, M maps. If the ROIs are cubic,

then all rotated maps have the same shape.

In the 2D case there are four such rotations for a square.

The rotations and corresponding matrices are shown in Fig. 1.

If the original map has a pixel with indices (i, j), then with the

rotation matrix

R ¼
0 �1

1 0

� �

the new index is (inew, jnew) = (�j, i). All indices should be from

0 to n � 1. Due to the periodicity of all maps (required to

perform circular discrete correlation with DFT), then inew =

n � j if j > 0 and inew = 0 if j = 0; jnew = i for any i.

In 3D we may use properties of P432 symmetry for a cube.

There are 24 symmetry operations (see Aroyo, 2016). The

corresponding rotation matrices are shown in Fig. 2.

Suppose for a given set of Euler angles defining rotation

matrices we may combine them into a group of 24 matrices

(each matrix is a matrix product of one matrix with one of the

matrices defined in Fig. 2). If we do not combine these rotation

matrices into groups of 24, then to find a correlation map we

need to perform 5 � 24 = 120 DFTs for each 24 rotations.

However, if these matrices are combined then we just need to

perform two forward DFTs for S and M and 3 � 24 = 72

backward DFTs for S ? T, M ? T and M ? T2, i.e. 74 DFTs in

total or 61.7% of 120.

5. Reduction of the output map

5.1. False peaks

If we have errors in the input data, then there is a chance

that a correlation coefficient R
q
TS may have peaks in areas

where values of T are small, since both the numerator and
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Figure 1
2D rotations of a square and the corresponding rotation matrices.

Figure 2
Matrices for 3D orthogonal rotations to relate the different octants to each other.



denominator in (3) are small numbers that are sensitive to

small errors in the T, S and M maps. Therefore, in practical

applications we first estimate the maximum value of

� � ðM ? T2Þ½q� �
1

w
fðM ? TÞ½q�g2

� �1=2

; ð4Þ

for all possible rotations and translations of S, M maps. We

then set �0 in (1) as a percentage of the maximum value of �.

We demonstrate our procedure by fitting an atomic struc-

ture (the intermediate domain, which at 	9 kDa is the smal-

lest of three defined domains in the GroEL subunit) into an

EM map of the GroEL chaperonin complex (EMDB entry

EMD-1997, resolution 7 Å, C7 symmetry; Clare et al., 2012).

The domain was extracted from PDB entry 2c7e (residues

136–191 and 374–409; Ranson et al., 2001). We find the

maximum value of � and then set �0 as 50%, 30%, 10% and

1% of �. For a slice perpendicular to the axis of symmetry we

calculate R
q
TS (see Fig. 3). One may see that for �0 � 0.1�max

the local maximum values of the correlation maps are the

same. On decreasing �0 more peaks start to appear in the

central and outer parts of the map where the target map T is

almost zero. When �0 is about 1% of �max the central part of

the map has higher correlation coeffi-

cient values than the real peaks. By

setting �0 to a correct level we reduce

extra checking of these false peaks as

centres of the chosen atomic structure.

A similar idea can be used in the case

of a discrepancy map when we need to

set the minimum level of � and apply

formula (2).

5.2. Smooth functions

Maps T and S are both smooth

functions, i.e. their neighbouring voxels

should have similar values. Therefore,

the S ? T map is also a smooth function.

In many practical cases M is a set of a

small number of convex or almost

convex shapes, so we may also expect

ðM ? T2Þ and ðM ? TÞ to be smooth

functions.

To avoid false peaks in the R
q
TS map

we set � � �0. As a result, R
q
TS is also a

smooth function of q for these areas.

Thus, to identify areas where R
q
TS has

peaks we may not need to find R
q
TS at

each voxel, especially when we use a

brute-force approach and have to check

many rotation angles. For instance, we

may find the map only at even voxels

when all three indices of a voxel are

even numbers. In this case the size of

the output map is reduced eight times.

Of course, we may try to reduce the

number of voxels for all maps (T, S and

M). However, as some original voxels are skipped this led to

maps that differed from the original ones. Our goal is to have

the same accuracy of the output maps but just find values at a

reduced number of voxels.

5.3. Reduced maps

Suppose we have an N-vector Gk in Fourier space and N =

mK, m and K are integer numbers. We want to find the values

of the corresponding vector g but only at indices q = mn, n = 0,

. . . , K � 1. By the definition of backward DFT we find

gmn ¼
1

ðNÞ
1=2

PN�1

p¼0

Gp exp 2�i
p 
mn

N

� 	
;

gmn ¼
1

ðmKÞ
1=2

Pm�1

s¼0

PK�1

k¼0

GsKþk exp 2�i
ðsK þ kÞ 
mn

mK


 �
:

Taking into account that exp(2�isn) = 1 we obtain

gmn ¼
1

ðmKÞ
1=2

PK�1

k¼0

Pm�1

s¼0

GsKþk

� �
exp 2�i

kn

K

� �
:

If we denote
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Figure 3
Correlation maps obtained for different levels of standard deviation of the signal (50%, 30%, 10%,
1%).



~GGk ¼
1

ðmÞ1=2

Pm�1

s¼0

GsKþk

then

gmn ¼
1

ðKÞ
1=2

PK�1

k¼0

~GGk exp 2�i
kn

K

� �
;

i.e. each mth element of vector g is the backward DFT of

vector ~GG.

Similar formulae are valid for 2D and 3D DFTs. We just

need to add up the values for corresponding slices of a 3D

map, thus reducing the size m times. The procedure is then

continued for rows and columns, so the final volume is reduced

m3 times. This procedure is straightforward in the case of

complex input/output maps.

5.4. Real and complex DFTs

We usually have real-valued T, S and M maps, so in many

software libraries more compact data storage can be used to

store the corresponding complex maps FðTÞ, FðSÞ and FðMÞ

in Fourier space. If gn, n = 0, . . . , N� 1 is a real-valued vector,

then for the corresponding Gk vector in Fourier space we

obtain

GN�k ¼
1

ðNÞ
1=2

PN�1

n¼0

gn exp �2�i
ðN � kÞn

N


 �

¼
1

ðNÞ1=2

PN�1

n¼0

gn exp 2�i
kn

N

� �
;

GN�k ¼
1

ðNÞ
1=2

PN�1

n¼0

gn cos 2�
kn

N

� �
þ i sin 2�

kn

N

� �
 �
;

Gk ¼
1

ðNÞ
1=2

PN�1

n¼0

gn cos 2�
kn

N

� �
� i sin 2�

kn

N

� �
 �
;

so GN�k ¼ Gk, Gk is the complex conjugate of Gk. Therefore,

we may need to store almost half of vector G. This leads to

more processing if we want to reduce the output maps.

However, we may work with complex maps (both for input

and output maps). There are several ways to combine real

maps into complex maps.

(i) S and M form a complex map (S, M). Instead of real

maps T and T2, we create complex maps (T, 0), (T2, 0).

Then, ðS;MÞ ? ðT; 0Þ ¼ ðS ? T;M ? TÞ, ðS;MÞ ? ðT2; 0Þ =

ðS ? T2;M ? T2Þ. This approach requires us to double the

storage size to store FðT; 0Þ, FðT2; 0Þ and we obtain an

additional output map ðS ? T2Þ which is not used to find score

values.

(ii) We use (T, T2) and (S, 0), (M, 0). Therefore,

ðT;T2Þ ? ðS; 0Þ ¼ ðT ? S;T2 ? SÞ, ðT;T2Þ ? ðM; 0Þ = ðT ?M;
T2 ?MÞ.

(iii) If several maps T are given, i.e. 12 pairs of 24 pre-

rotated T, then (T1, T2), ðT2
1 ;T2

2 Þ are cross-correlated with

(S, 0) and (M, 0).

Finding FðS; 0Þ and FðM; 0Þ with the use of DFT for a

complex map takes twice the time needed for the real-valued

version of DFT for FðSÞ and FðMÞ. However, we may just use

FðSÞ and FðMÞ maps created in a compact form and double

their sizes with the horizontal flipping of corresponding rows,

therefore (depending on the given CPU/GPU architecture

and the libraries available) this operation should not take a lot

of time. The processing time for backward DFTs should be

roughly proportional to the number of backward DFTs

multiplied by the factor 1/m3.

DFT algorithms are used to find convolution or cross-

correlation maps in a faster way when the corresponding

elements of maps in Fourier space are processed in some way,

for example multiplied. There is usually no need to access

neighbouring elements in Fourier space. As a result, storage

schemes for data in Fourier space may be organized in such a

way as to achieve the highest throughput. This may lead to the

neighbouring elements in memory not being the neighbouring

elements for the data in Fourier space. Therefore, the data-

reduction process in Fourier space may not be straightforward

as is described above and may depend on a particular imple-

mentation of a DFT algorithm.

Assuming (i) that finding a DFT for a complex map (A, B)

takes twice the time and space compared with a DFT for a

real-valued map A or B, (ii) that there is no time wasted in

reducing the output map in Fourier space and (iii) that the

time to process the reduced map is 1/m3 of the original time,

then we obtain theoretical times and storage requirements to

process NG (NG is an even number) maps T (see Table 1).

Therefore, we can estimate the time required to find the

correlation maps for NG rotations:

TReal ¼ TðT1;T2Þ
’ 2þ

3NG

m3
; TðS;MÞ ¼ TðT;T2Þ ’ 2þ

4NG

m3
:

For example, for a DockEM implementation (Windows

machine, six-core Intel Core i7-3930K CPU, Intel’s perfor-

mance IPP and MKL libraries) the time to process NG = 24

rotations and provide a reduced output map (m = 2) should be

approximately 2 + [(3 � 24)/23] = 11 compared with the m = 1

case of 74, i.e. 15%. However, in practice it was only possible

to achieve 50% due to the extra time needed to process the

Fourier images of original maps in order to obtain Fourier

images of the reduced maps. Nevertheless, the combined

performance improvement when 24 rotations are combined
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Table 1
Storage requirements and number of DFTs to find correlation maps for
NG rotations.

One single single storage unit is the size of FðTÞ; one DFT is the time to
calculate FðTÞ.

Option

Storage for
FðTÞ, FðT2Þ;
FðT; 0Þ, FðT2; 0Þ

Storage for
FðSÞ, FðMÞ;
FðS; 0Þ, FðM; 0Þ

No. of
forward
DFTs

No. of
backward
DFTs

Real 2NG 2 2 3NG

(S, M) 4NG 2 2 4NG

(T, T2) 2NG 4 4 4NG

(T1, T2) 2NG 4 4 3NG



into one group was about three times compared with a general

case of single rotation with a full-size output map.

6. Run times

The DockEM code considers all possible 3D rotations without

any restrictions. There are several approaches (to be discussed

in other papers) to generate an optimal number of rotations

for a given angular resolution. Suppose that there is a set of

rotations, and for any other possible rotation we try to find the

nearest rotation from the given set. The maximum possible

angular distance for any possible rotation is the angular

resolution of the given set of rotations. As the best perfor-

mance is achieved for rotations that are combined into groups,

for each near rotation we also have other 23 rotations. Table 2

shows the number of rotation groups for a given angular

resolution.

To illustrate a couple of use cases, we used the EMD-1997

map of GroEL (7 Å resolution, C7 symmetry, sampled at

2.02 Å per pixel) and the atomic structure from PDB entry

2c7e mentioned before (the intermediate domain, which is the

smallest and the most difficult to fit), and ran the code on a

ten-core processor (Intel Core i9-7900X, 3.30 GHz). Searches

were run at 7 Å resolution. In the first example we used a

target map region size of 70 pixels, corresponding to a full

search of the whole molecule. The size of the mask defining

the search object was 283. The angular resolution was set to 3�,

i.e. we need 19 382 groups of 24 rotations. It took 1707 s

(28.5 min). We can estimate this time using Table 3. For a 243

mask and a 643 target we obtain 1.44 min for 1000 groups, so

19.382 � 1.44 = 27.9 min.

DockEM is one of many algorithms for atomic fitting. A list

of most the popular methods can be found in Villa & Lasker

(2014). A full comparison with other methods will be

performed in future papers, as many factors related to

performance, quality of fitting, resolution range and choice of

orientations need to be taken into account. PowerFit (van

Zundert & Bonvin, 2015) is one of several programs based on

similar ideas to DockEM. Here, we provide performance

numbers to compare these programs. In van Zundert &

Bonvin (2015) for a 1283 problem (the combined size of the

target and search maps) a fine (4.71�) rotational search was

performed on an Intel Core i7-3632QM CPU (four cores,

2.20 GHz frequency). The authors used 70 728 pre-calculated

orientations. It took them 6 h 23 min or 383/70.728 = 5.41 min

for 1000 orientations. According to Table 3, for a 1283 problem

(e.g. a 963 target map and 323 search map) we obtain 3.84 min

for 1000 groups of 24 rotations (or 0.16 min per 1000 rota-

tions) on an Intel Core i9-7900X (ten cores, 3.30 GHz). As

different CPUs were used, we assume that PowerFit run times

are inversely proportional to the number of cores and the

CPU frequency, so on an Intel Core i9-7900X CPU we would

expect PowerFit to process 1000 rotations in 5.41 � 2.2 � 4/

(3.3� 10) = 1.44 min. This means that DockEM performs 1.44/

0.16 = 9 times faster than PowerFit.

The current version of the code can be used for interactive

fitting. Suppose that we have roughly positioned the rotation

centre of the search object within a 16-pixel cube, and the size

of the search object can also be placed in a 16-pixel cube. We

then use a 323 region of the target map to obtain correct score

values with the 163 volume. If the angular resolution is 4�, then

according to Table 2 we need to use 7568 groups of rotations.

It took us 9.3 s. For a coarser angular fitting the processing

time is within the range 3–4 s.

7. Conclusions

Fitting an atomic structure into a medium- or low-resolution

map may require several processing steps.

The approach used depends on the research question and

the data available. For example, there may be models or

known atomic structures of fragments or domains for your

structure in the PDB, or you may have a homology model. The

problem is essentially then a 3D puzzle to assemble the known

fragments into the 3D density map.

In another case, there may be no identifiable sequence

homology with any solved structure. A search of selected

candidates from the PDB could then be performed. Filters on

criteria such as mass or secondary-structure composition could

be applied to reduce the number of domain structures to

search with.

EM density maps have some finite resolution which allows

us to estimate the smoothness of maps for similarity scores. To

avoid false peaks of similarity values we may put some

restrictions on the level of signal. This helps to save time in

checking some positions and orientations of the atomic

structure and ill-defined, or solvent, regions of the target map.

Smoothness of the given and simulated maps allows us to skip

some neighbouring orientations as well as to avoid finding

score values at all points of the original map.

Positioning the centre of rotation of a given atomic struc-

ture at specific points enables us to combine several (up to 24)

rotations in one group, which increases performance.

Combining several real maps into complex maps may also be

an efficient approach but depends on particular data-storage

schemes and software libraries, which will dictate how effi-

ciently a map-reduction algorithm can be implemented.

We have shown that we can obtain significant improvement

in the efficiency and speed of the correlation searches without
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Table 2
Angular resolution as a function of number of rotation groups.

Angle (�) 16 12 10 9 8 6 4 3 2

Groups 109 257 439 598 871 2125 7568 19382 87718

Table 3
Time (in minutes) to process 1000 groups of rotations.

Columns, target size; rows, source size.

32 64 96 128 160 192 224 256

16 0.13 0.89 3.14 6.04 9.96 20.43 18.49 18.60
24 0.22 1.44 3.84 6.50 13.32 19.56 23.36 23.25
32 0.47 1.58 3.69 8.62 12.41 22.82 30.37 32.27
48 0.90 3.14 6.12 9.88 20.53 33.44 43.58 48.66



losing accuracy. These can be used to implement real-time

interactive programs or tools that will be useful for

researchers. In addition, we are optimistic that we can apply

these techniques to interpret lower resolution cryo-EM maps

(which are not suitable for other model-building methods) by

identifying and positioning matching fragments from the PDB.

APPENDIX A
A1. Correlation coefficient and discrepancy

Let there be two vectors of size n: fi, gi, i = 0, . . . , n� 1. The

correlation coefficient is defined as

Rfg �

Pn�1

i¼0

ðfi �
�ff Þðgi � �ggÞ

Pn�1

i¼0

ðfi �
�ff Þ2


 �1=2 Pn�1

i¼0

ðgi � �ggÞ2

 �1=2

; ð5Þ

where �ff and �gg are the mean values for the vectors, i.e.
�ff � 1

n

Pn�1
i¼0 fi. For a given arbitrary vector ~ggi, we may define

vector gi such that

gi �

~ggi �
1
n

Pn�1

k¼0

~ggk

Pn�1

p¼0

~ggp �
1
n

Pn�1

k¼0

~ggk

� �2
" #1=2

:

In this case �gg ¼ 0 and
Pn�1

i¼0 g2
i ¼ 1, and the original formula

(5) can be rewritten as

Rfg �

Pn�1

i¼0

figi

Pn�1

i¼0

f 2
i � n�ff 2

� �1=2
:

The correlation coefficient has a range [�1, 1]. If fi = gi then

Rfg = 1, and in the case of fi = �gi, Rfg = �1.

We allow a signal to be scaled and translated by constant

values. For constants � and � a discrepancy is defined as

d
��
fg �

Pn�1

i¼0

jfi � �gi � �j
2:

We try to vary the parameters �, � so the discrepancy attains

its minimal value. The smaller the value of the discrepancy is,

the more similar the vectors f and g are.

If, as above, we assume �gg ¼ 0,
Pn�1

i¼0 g2
i ¼ 1, then

d
��
fg ¼ �

2 � 2�
Pn�1

i¼0

figi þ n�2 � 2�n�ff þ
Pn�1

i¼0

f 2
i ð6Þ

is a quadratic function of � and �. To find its minimum, we

need to solve @
@� d

��
fg ¼ 0, @

@� d
��
fg ¼ 0. The optimal values are

� ¼
Pn�1

i¼0 figi and � ¼ �ff and the minimum value of d
��
fg is

dfg ¼
Pn�1

i¼0

f 2
i � n�ff 2 �

Pn�1

i¼0

figi

� �2

:

The discrepancy value is a non-negative number. It is better to

normalize it so the range is [0, 1], as

Dfg �
dfgPn�1

i¼0

f 2
i � n�ff 2

:

If no restrictions are put on the values of � and �, then the

correlation coefficient and the normalized discrepancy have a

simple relation:

Dfg ¼ 1� R2
fg:

A2. Discrete Fourier transform

Let gn, n = 0, . . . , N � 1 be complex numbers. The discrete

Fourier transform (DFT) provides us with the vector Gk, k = 0,

. . . , N � 1 according to the formula

Gk �
1

ðNÞ
1=2

PN�1

n¼0

gn exp �2�i
kn

N

� �
;

gn ¼
1

ðNÞ1=2

PN�1

k¼0

Gk exp 2�i
kn

N

� �
;

where i = (�1)1/2. For brevity, this forward DFT can be written

as G ¼ FðgÞ. The inverse DFT can be written as g ¼ F�1
ðGÞ.

In the case of periodic signals, i.e. when gn+N = gn for any n,

we may use the important property of the DFT

Fff ? gg ¼ Fff g 
 Ffgg; ð7Þ

where f is the complex conjugate of f.

A3. Atomic scattering factors

According to Bai (2003), for a spherical radial density

model the density distribution can be written as

�ðrÞ ¼
1

2�2r

R1
0

f ðqÞ sinðqrÞq dq;

where f(q) is an atomic scattering factor. In the range of

scattering vectors q < 25 Å�1 the atomic scattering factors can

be approximated by a sum of Gaussian functions,

f ðqÞ ¼
P4

i¼1

ai exp �bi

q

4�

� 	2

 �

þ c;

where the coefficients ai, bi, i = 1, . . . , 4 and c can be found in

Ibers & Hamilton (1974). Using the above formula and with

either tabulated B factors from a PDB file or a known reso-

lution for the density distribution, the process of finding the

density distribution for the whole molecule is fast and

straightforward.
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University Electronic Press.

Liebschner, D., Afonine, P. V., Baker, M. L., Bunkóczi, G., Chen,
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