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The functions of most proteins result from their 3D structures, but determining

their structures experimentally remains a challenge, despite steady advances in

crystallography, NMR and single-particle cryoEM. Computationally predicting

the structure of a protein from its primary sequence has long been a grand

challenge in bioinformatics, intimately connected with understanding protein

chemistry and dynamics. Recent advances in deep learning, combined with the

availability of genomic data for inferring co-evolutionary patterns, provide a

new approach to protein structure prediction that is complementary to

longstanding physics-based approaches. The outstanding performance of

AlphaFold2 in the recent Critical Assessment of protein Structure Prediction

(CASP14) experiment demonstrates the remarkable power of deep learning in

structure prediction. In this perspective, we focus on the key features of

AlphaFold2, including its use of (i) attention mechanisms and Transformers to

capture long-range dependencies, (ii) symmetry principles to facilitate reasoning

over protein structures in three dimensions and (iii) end-to-end differentiability

as a unifying framework for learning from protein data. The rules of protein

folding are ultimately encoded in the physical principles that underpin it; to

conclude, the implications of having a powerful computational model for

structure prediction that does not explicitly rely on those principles are

discussed.

1. Introduction

Determining the 3D structure of a protein from knowledge of

its primary (amino-acid) sequence has been a fundamental

problem in structural biology since Anfinsen’s classic 1961

refolding experiment, in which it was shown that the folded

structure of a protein is encoded in its amino-acid sequence

(with important exceptions; Anfinsen et al., 1961). Last

December, the organizers of the Fourteenth Critical Assess-

ment of Structure Prediction (CASP14) experiment made the

surprising announcement that DeepMind, the London-based

and Google-owned artificial intelligence research group, had

‘solved’ the protein-folding problem (The AlphaFold Team,

2020) using their AlphaFold2 algorithm (Jumper et al., 2021).

Venki Ramakrishnan, past president of the Royal Society and

2009 Nobel Laureate, concluded that ‘[DeepMind’s] work

represents a stunning advance on the protein-folding problem,

a 50-year-old grand challenge in biology’ (The AlphaFold

Team, 2020). As the initial excitement subsides, it is worth

revisiting what it means to have ‘solved’ protein folding and

the extent to which AlphaFold2 has advanced our under-

standing of the physical and chemical principles that govern it.

Predicting the fold of a protein from its primary sequence

represents a series of related problems (Dill & MacCallum,

2012; Dill et al., 2008). One involves elucidating the physical

principles and dynamical processes underlying the conversion
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of a newly synthesized protein chain into a three-dimensional

structure. Given a sufficiently accurate energy model, for

example a general solution of the all-atom Schrödinger

equation, solving protein folding reduces to simulating dyna-

mical equations of the motion of polypeptides in solution until

the lowest free-energy state is reached. Unfortunately, this

calculation is impossible given contemporary computers. In

modern practical simulations, interatomic interactions are

described by approximate energy models, and folding

dynamics are captured by iteratively solving Newton’s dyna-

mical laws of motion (mostly ignoring quantum effects;

Karplus & McCammon, 2002; Karplus & Petsko, 1990). This is

the purview of molecular dynamics, and despite impressive

advances, including the development of specialized computing

hardware (Grossman et al., 2015), de novo folding of proteins

using molecular dynamics remains limited to small proteins

ranging from ten to 80 amino-acid residues (Shaw et al., 2010;

Lindorff-Larsen et al., 2011).

A second question, more aptly termed a paradox, was first

raised in a gedankenexperiment by Levinthal (1968). While

relaxing from an unfolded to a native state, a protein has the

potential to explore a dauntingly large number of conforma-

tions. If this process were random and unbiased, as was

originally assumed, a 100-residue protein would take �1052

years to fold, longer than the current age of the universe

(Karplus, 1997). In practice, most single-domain proteins fold

in milliseconds to seconds. To address this discrepancy,

Levinthal suggested the existence of restricted folding ‘path-

ways’, which were later refined into the modern view of a

funneled energy landscape (Dill & Chan, 1997; Onuchic &

Wolynes, 2004). Many aspects of these landscapes remain

poorly understood, including how proteins avoid kinetic traps

(local minima) and the role that assisted folding (for example

by chaperones) plays in shaping them.

A third question focuses on the practical problem of

structure prediction and the design of algorithms that can

predict the native state from the primary sequence of a protein

given all available data, including the structures of related

proteins or protein folds, homologous protein sequences and

knowledge of polypeptide chemistry and geometry; such

protein structure-prediction algorithms often involve physical

principles, but recent work with machine-learning algorithms

has shown that this need not necessarily be true (AlQuraishi,

2019b). Moreover, solving the prediction task does not auto-

matically advance our understanding of the folding process or

address Levinthal’s paradox: it is most akin to a powerful and

useful new experimental technique for structure determina-

tion.

Most machine-learning efforts, including AlphaFold2

(Jumper et al., 2021), have focused on the structure-prediction

problem (Gao et al., 2020). Here too, there exist multiple

subproblems and questions. Is the prediction to be based

purely on a single protein sequence or can an ensemble of

related sequences be used? Are structural templates permis-

sible or is the prediction to be performed ab initio? And,

perhaps most fundamentally, can it be demonstrated that there

exists a single lowest energy conformation and that it has been

successfully identified? The rationale for structure prediction

is based on Anfinsen’s ‘thermodynamic hypothesis’, which

states that in a physiological environment the lowest free-

energy state of a protein is unique, and hence its corre-

sponding 3D structure is also unique (Anfinsen, 1973). If this

state is also in a sufficiently deep energetic well, then it is also

rigid. Decades of experimental work support key aspects of

this hypothesis for many proteins, whose crystallizability ipso

facto demonstrates uniqueness and rigidity, at least under a

given set of crystallization conditions. However, it is also the

case that many proteins permit multiple crystallographic

structures, and nuclear magnetic resonance (NMR) and cryo-

electron microscopy (cryoEM) reveal a landscape of confor-

mationally flexible proteins, including intrinsically disordered

proteins (James & Tawfik, 2003). Moreover, some proteins,

including those involved in viral membrane fusion, are not

always found in their lowest energy states (White et al., 2008).

Improving our understanding of the reliability and applic-

ability of protein structure prediction requires better char-

acterization of the conditions under which any given protein

can reach a unique conformation, if one exists. Current

prediction methods, including AlphaFold2, do not explicitly

model experimental conditions, yet they are trained on

experimentally determined protein structures from the

Protein Data Bank (PDB). Implicitly, then, these methods are

best considered not as predictors of the lowest free-energy

state under physiological conditions, but of the structured

state under experimental conditions in which a protein is

likely to crystallize (this is particularly true given the domi-

nance of crystallographic structures in the PDB).

Multiple approaches have been taken to design algorithms

for protein structure prediction. During the early decades of

the field, the focus was on deciphering physically inspired

maps that yield 3D structures from single protein sequences:

the Rosetta modeling system was conceived within this para-

digm (Rohl et al., 2004). Starting in the early 2010s, with

prevalent high-throughput sequencing and advances in

statistical models of co-variation in the sequences of related

proteins (Cocco et al., 2018), the focus shifted from single-

sequence models to models that exploit information contained

in multiple sequence alignments (MSAs; Wang et al., 2017).

The approach taken by AlphaFold2 also operates on MSAs

but leverages recent advances in neural networks to depart

substantially from earlier models for protein structure

prediction. In this review, we endeavor to explain (in Section

2) what attracted DeepMind to the protein structure-

prediction problem. In Section 3, we provide a perspective on

the AlphaFold2 CASP14 results relative to previous CASP

experiments. In Section 4, we discuss the computational

architecture used by AlphaFold2 and describe four related

features that are central to its success: (i) the attention

mechanism, which captures long-range dependencies in

protein sequence and structure, (ii) the ensemble approach,

specifically the use of MSAs as an input, (iii) the equivariance

principle, which implements the idea of rotational and

translational symmetry, and (iv) end-to-end differentiability,

the glue that makes the entire approach work in a self-
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consistent and data-efficient manner. We conclude in Section 5

with a general discussion about the implications and limita-

tions of AlphaFold2 and the interpretability of machine

learning-based methods more broadly. Throughout our

discussion, we turn to ideas from physics to ground our

intuition.

2. From Go to proteins

The machine-learning algorithms that are the specialty of

DeepMind were first developed to tackle complex games such

as Go and StarCraft2 (Silver et al., 2016; Vinyals et al., 2019).

This is part of a long tradition of using games such as chess or

Jeopardy to test new computational concepts. Three proper-

ties of Go and StarCraft2 made them amenable to machine-

learning methods: the existence of a massive search space, a

clear objective function (metric) for optimization and large

amounts of data. Protein structure prediction shares some of

these properties.

2.1. Massive search space

The state-space complexity of Go (the number of attainable

positions from the starting game configuration) is around 10170

(compared with �1080 atoms in the visible universe; van den

Herik et al., 2007). Prior to the introduction of AlphaGo in

2016 (Silver et al., 2016), the consensus within the expert

community was that a computer agent capable of winning a

game of Go against a top-ranked professional player was at

least a decade away. This was despite previous successes in

chess, first achieved by the IBM Deep Blue system, which

utilized brute-force computation. A brute-force approach to

chess is possible in part due to its relatively modest state-space

(van den Herik et al., 2007), estimated at around 1047 config-

urations. To span the �10123-fold difference in complexity

between the two games, AlphaGo used neural networks and

reinforcement learning, marrying the pattern-recognition

powers of the former with the efficient exploration strategies

of the latter to develop game-playing agents with a more

intuitive style of play than brute-force predecessors. However,

proteins have an even larger theoretical ‘state-space’ than Go

(Levinthal, 1968). Although DeepMind has yet to employ

reinforcement learning in a publicly disclosed version of

AlphaFold, its reliance on the pattern-recognition capabilities

of neural networks was key to tackling the scale of protein

conformation space. Helping matters was the fact that protein

conformation space is not arbitrarily complex but is instead

strongly constrained by biophysically realizable stable

configurations, of which evolution has in turn explored only a

subset. This still vast but more constrained conformation

space represents the natural umwelt for machine learning.

2.2. Well defined objective function

Games provide an ideal environment for training and

assessing learning methods by virtue of having a clear winning

score, which yields an unambiguous objective function.

Protein structure prediction, unusually for many biological

problems, has a similarly well defined objective function in

terms of metrics that describe structural agreement between

predicted and experimental structures. This led to the creation

of a biennial competition (CASP) for assessing computational

methods in a blind fashion. Multiple metrics of success are

used in CASP, each with different tradeoffs, but in combina-

tion they provide a comprehensive assessment of prediction

quality.

2.3. Large amounts of data

AlphaGo was initially trained using recorded human games,

but ultimately it achieved superhuman performance by

learning from machine self-play (Silver et al., 2016). Proteins,

prima facie, present a different challenge from game playing,

as despite the growing number of experimentally resolved

structures there still exist only �175 000 entries in the PDB

(Burley et al., 2019), a proverbial drop in the bucket of

conformation space. It is fortunate that these structures

sufficiently cover fold space to train a program of Alpha-

Fold2’s capabilities, but it does raise questions about the

applicability of the AlphaFold2 approach to other polymers,

most notably RNA. Furthermore, much of the success of

AlphaFold2 rests on large amounts of genomic data, as the

other essential inputs involve sequence alignments of homo-

logous protein families (Gao et al., 2020).

Finally, despite the similarities between protein structure

prediction and Go, there exists a profound difference in the

ultimate objectives. Whereas machine learning is optimized

for predictive performance, analogous to winning a game, the

protein-folding problem encompasses a broad class of funda-

mental scientific questions, including understanding the

physical drivers of folding and deciphering folding dynamics

to resolve Levinthal’s paradox (Dill & MacCallum, 2012).

3. AlphaFold2 at CASP14

Many of the advances in structure prediction over the past two

decades were first demonstrated in CASP experiments, which

run every two years and focus on the prediction of protein

structure. Typically, sequences of recently solved structures

(not yet publicly released) or of structures in the process of

being solved are presented to prediction groups with a three-

week deadline for returning predictions (Kryshtafovych et al.,

2019). Two main categories exist: the more challenging ‘Free

Modeling’ (FM) targets that have no detectable homology to

known protein structures and require ab initio prediction, and

‘Template-Based Modeling’ (TBM) targets that have struc-

tural homologs in the PDB and emphasize predictions that

refine or combine existing structures. Some TBM targets, often

termed ‘Hard TBM’, exhibit minimal or no sequence

homology to their structural templates, making the identifi-

cation of relevant templates difficult. In all cases, CASP

targets are chosen for their ability to stress the capabilities of

modern prediction systems: a recently solved structure from

the PDB chosen at random will on average be easier to predict

than most CASP targets, including TBM targets.
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CASP predictions are assessed using multiple metrics that

quantify different aspects of structural quality, from global

topology to hydrogen bonding. Foremost among these is the

global distance test total score (GDT_TS; Kryshtafovych et al.,

2019), which roughly corresponds to the fraction of protein

residues that are correctly predicted, ranging from 0 to 100,

with 100 being a perfect prediction. Heuristically, a GDT_TS

of 70 corresponds to a correct overall topology, 90 to correct

atomistic details including side-chain conformations, and >95

to predictions within the accuracy of experimentally deter-

mined structures.

After a period of rapid progress in the first few CASP

challenges, characterized by homology modeling and fragment

assembly, progress in protein structure prediction slowed

during the late 2000s and early 2010s. Much of the progress

over the past decade has been driven by two ideas: the

development of co-evolutionary methods (De Juan et al.,

2013) based on statistical physics (Cocco et al., 2018) and the

use of deep-learning techniques for structure prediction.

Starting with CASP12 in 2016, both approaches began to show

significant progress. CASP13 was a watershed moment, with

multiple groups introducing high-performance deep-learning

systems, and in particular the first AlphaFold achieving a

median GDT_TS of 68.5 across all categories and 58.9 for the

FM category (Senior et al., 2020). These results were a

substantial leap forward from the best median GDT_TS at

CASP12 of �40 for the FM category (AlQuraishi, 2019a).

In the most recent CASP14 experiment, AlphaFold2

achieved a median GDT_TS of 92.4 over all categories, a

qualitative leap without historical parallel in CASP. Alpha-

Fold2 correctly predicted atomistic details, including accurate

side-chain conformations, for most targets, and achieved a

median GDT_TS of 87 in the challenging FM category. When

considering only backbone accuracy (i.e. the conformation of

C� atoms), AlphaFold2 achieves a root-mean-square deviation

(r.m.s.d.) of <1 Å for 25% of the cases, <1.6 Å for half of the

cases and <2.5 Å for 75% of the cases. When considering all

side-chain atoms, AlphaFold2 achieves an r.m.s.d. of <1.5 Å

for 25% of the cases, <2.1 Å for half of the cases and <3 Å for

75% of the cases. Despite the single-domain focus of CASP14,

the publicly released version of AlphaFold2 appears capable

of predicting structures of full-length proteins, although inter-

domain arrangement remains a challenge (Fig. 1).

With respect to the �100 targets in CASP14, AlphaFold2

performed poorly on five, with a GDT_TS below 70. Three of

these were components of oligomeric complexes, and two had

structures determined by NMR. Poor performance on an

oligomer may reflect the fact that AlphaFold2 was trained to

predict individual protein structures (a different category

exists for multimeric targets), reflecting the focus of CASP on

predicting the structures of single-domain proteins. The poor

performance of AlphaFold2 on NMR structures is more subtle

to understand. On the one hand, it may be reflective of NMR

structures being less accurate than those derived from X-ray

crystallography. On the other hand, it may result from the

dominance of crystallographic structures in the AlphaFold2

training data; in which case, AlphaFold2 is best understood as a

predictor of structures under common crystallization condi-

tions. Confirming this hypothesis and understanding its basis

may enhance our understanding of experimentally determined

structures.

AlphaFold2 is almost certain to impact experimental

structural determination in other ways, for example by

extending the applicability of molecular replacement as a

means of tackling crystallographic phasing (McCoy et al.,

2021). As structural biology continues its shift towards protein

complexes and macromolecular machines, particularly with

the rapid growth in single-particle cryoEM, accurate in silico

models of individual monomers may prove to be a valuable

source of information on domains. Looking further ahead to in

situ structural biology, i.e. the analyses of molecular structures

in their cellular milieu, the field is expected to continue to

evolve from determining the atomic details of individual

proteins to the conformations of multi-component molecular

machines, a task in which computational methods are playing

increasingly important roles.

4. The AlphaFold2 architecture

In models based on multiple sequence alignments (MSAs), up

to and including the first version of AlphaFold (Senior et al.,

2020), summary statistics on inter-residue correlations were

extracted from MSAs and used to model residue co-evolution

(Cocco et al., 2018). This serves as a source of information on

spatial contacts, including contacts that are distant along the

primary sequence and which play a critical role in determining

3D folds. The most advanced realizations of this approach

employ residual neural networks, commonly used for image

recognition, as pattern recognizers that transform the
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Figure 1
AlphaFold2 prediction of the full-length chain of human EGFR (UniProt
ID: P00533) color coded by model confidence (dark blue, highly
confident; dark orange, very low confidence). Individual domains are
confidently predicted, but inter-domain arrangement is not, as evidenced
by long unstructured linkers with very low model confidence.



co-evolutionary signal in MSAs into ‘distograms’: matrices

that encode the probability that any pair of residues will be

found at a specific distance in space (Senior et al., 2020).

Inherently, such predictions are over-determined and self-

inconsistent (too many distances are predicted, and they can

be in disagreement with each other or not physically plausible)

and physics-based engines are therefore necessary to resolve

inconsistencies and generate realizable 3D structures (some

exceptions exist; AlQuraishi, 2019b; Ingraham, Riesselman et

al., 2019). The resulting fusion of statistical MSA-based

approaches with machine-learning elements and classic

physics-based methods represented a critical advance in

structure prediction and paved the way for the deep-learning

approaches used by AlphaFold.

AlphaFold2 departs from previous work on MSA-based

structure prediction in several ways, firstly by starting with raw

MSAs as inputs rather than summarized statistics, and

secondly by predicting the final 3D structure rather than

distograms as output (Jumper et al., 2021). Two principal

modules in AlphaFold2 were used to achieve this: (i) a neural

network ‘trunk’ that uses attention mechanisms, described

below, to iteratively generate a generalized version of a

distogram and (ii) a structure module that converts this

generalized distogram into an initial 3D structure and then

uses attention to iteratively refine the structure and place side-

chain atoms. The two modules are optimized jointly from one

end to another (hence ‘end-to-end’ differentiable), an approach

central to many of the recent successes in machine learning.

The attention mechanism is a key feature of the AlphaFold2

architecture. At its core, attention enables neural networks to

guide information flow by explicitly choosing (and learning

how to choose) which aspects of the input must interact with

other aspects of the input. Attention mechanisms were first

developed in the natural language-processing field (Cho et al.,

2014) to enable machine-translation systems to attend to the

most relevant parts of a sentence at each stage of a translation

task. Originally, attention was implemented as a component

within architectures such as recurrent neural networks, but the

most recent incarnation of the approach, so-called Transfor-

mers, have attention as the primary component of the learning

system (Vaswani et al., 2017). In a Transformer, every input

token, for example a word in a sentence or a residue in a

protein, can attend to every other input token. This is

performed through the exchange of neural activation patterns,

which typically comprise the intermediate outputs of neurons

in a neural network. Three types of neural activation patterns

are found in Transformers: keys, queries and values. In every

layer of the network, each token generates a key–query–value

triplet. Keys are meant to capture aspects of the semantic

identity of the token, queries are meant to capture the types of

tokens that the (sending) token cares about, and values are

meant to capture the information that each token needs to

transmit. None of these semantics are imposed on the

network; they are merely intended usage patterns, and

Transformers learn how best to implement key–query–value

triplets based on training data. Once the keys, queries and

values are generated, the query of each token is compared

with the key of every other token to determine how much and

what information, captured in the values, flows from one token

to another. This process is then repeated across multiple layers

to enable more complex information-flow patterns. Addi-

tionally, in most Transformers, each token generates multiple

key–query–value triplets.

The AlphaFold2 trunk consists of two intertwined Trans-

formers, one operating on the raw MSA, iteratively trans-

forming it into abstract dependencies between residue

positions and protein sequences, and another operating on

homologous structural templates, iteratively transforming

them into abstract dependencies between residue positions

(i.e. a generalized distogram). If no structural templates are

available, AlphaFold2 starts with a blank slate. The two

Transformers are not independent, but update each other

through specialized information channels. The structure

module employs a different form of Transformer. Unlike the

trunk Transformers, which are only designed to encode

residue chain positions, the structure Transformer geo-

metrically encodes residues in 3D space as a cloud of oriented

reference frames, using a spatial attention mechanism that

reasons over continuous Euclidean coordinates in a manner

that respects the invariance of the shapes of proteins to

rotations and translations. In the next sections, we discuss how

these architectural features may explain the success of

AlphaFold2 and point to future developments.

4.1. Inductive priors: locality versus long-range dependency

To understand what motivated the use of Transformers in

AlphaFold2, it is helpful to consider the types of inductive

biases that neural network architectures impose and how they

coincide with our understanding of protein biophysics. Some

of the main difficulties in protein modeling stem from the

substantial role that long-range dependencies play in folding,

as amino acids far apart in the protein chain can often be close

in the folded structure. Such long-range dependencies are

ubiquitous in biology, appearing in transcriptional networks

and networks of neurons, and, as suggested by some physicists,

might be a consequence of evolutionary optimization for

criticality (Mora & Bialek, 2011). In critical phenomena,

correlation length diverges, i.e. events at different length scales

make equally important contributions. For example, the

distinction between liquid and gas phases disappears at criti-

cality. This contrasts with most familiar situations in physics,

where events on different spatial and temporal scales

decouple. Much of our description of macroscopic systems is

possible because large-scale phenomena are decoupled from

the microscopic details: hydrodynamics accurately describes

the motion of fluids without specifying the dynamics of every

molecule in the fluid.

A major challenge in machine learning of proteins, and

many other natural phenomena, is to develop architectures

capable of capturing long-range dependencies. This too is a

problem with roots in physics. The crux of the problem is that

the study of long-range dependencies scales very poorly from

a computational standpoint, as a system of n all-correlated

particles necessitates n2 computations just to capture pairwise
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(second-order) effects. One workaround involves the principle

of locality, which is central to convolutional neural networks

and much of 20th-century physics, particularly the formulation

of field theories (Mehta et al., 2019). Locality requires that

events can only be directly influenced by their immediate

neighborhood. For example, in Maxwell’s theory of electro-

magnetism, the interactions governing electromagnetic fields

are local. Einstein’s theory of relativity enforces locality by

imposing the speed of light as the maximal speed for signal

propagation (and thus avoiding instantaneous action at a

distance). In computer-vision tasks, features are often local,

and convolutional networks naturally capture this relation-

ship. Prior to AlphaFold2, almost all protein structure-

prediction methods were based on convolutional networks, a

carryover from treating contact maps and distograms as 2D

images (Gao et al., 2020). Despite their expediency, convolu-

tional networks may be suboptimal for protein structure

prediction due to their inability to capture long-range

dependencies. Remedial solutions, such as the use of dilated

convolutions in the first AlphaFold (Senior et al., 2020),

ameliorated the problem, but the fundamental limitation was

not addressed.

Transformers, on the other hand, have a different inductive

bias: all interactions within their receptive field, irrespective of

distance, are a priori treated as equally important. Only after

training do Transformers learn which length scales are the

most relevant (Vaswani et al., 2017). In its sequence-based

representations (the Transformers in the trunk), AlphaFold2

does not alter this prior. For the structure module, AlphaFold2

is biased toward spatially local interactions, consistent with the

nature of structure refinement, which primarily involves

resolving steric clashes and improving the accuracy of

secondary structures. Recent Transformer-based models of

protein sequence other than AlphaFold2 have demonstrated

substantial improvements in modeling sequence–function

relationships, adding further evidence of the suitability of their

inductive prior (Rives et al., 2021; Rao et al., 2021).

4.2. Sequence ensembles and evolution-based models

The ensemble view of proteins, in which sets of homologous

proteins are considered in lieu of individual sequences,

emerged from the empirical observation that the precise

amino-acid sequence of a protein is not always necessary to

determine its 3D structure. Indeed, many amino-acid substi-

tutions lead to proteins with similar structures, and the

combinatorics of these substitutions suggest the plausibility of

a function that maps sequence ensembles (families of homo-

logous proteins) to single structures (Cocco et al., 2018). One

instantiation of this idea assumes that correlated mutations

between residues reflect their physical interaction in 3D space.

Inspired by methods from statistical physics (Potts models),

this intuition can be formalized by describing a sequence

ensemble with a probability distribution that matches the

observed pairwise frequencies of coupled residue mutations

while being maximally entropic (Cocco et al., 2018; Mora &

Bialek, 2011). In principle, the information contained in Potts

models enables the reconstruction of protein structure by

converting probabilistic pairwise couplings into coarse-

grained binary contacts or finer-grained distance separations,

which can then be fed as geometric constraints to a traditional

folding engine. As discussed above, this was a key premise of

many machine-learning methods prior to AlphaFold2 (Senior

et al., 2020).

AlphaFold2 re-examines the ensemble-based formulation

by doing away with Potts models and other pre-defined

statistical summaries. Instead, it relies on learnable primitives,

specifically those captured by the Transformer, to directly

extract information from raw pre-aligned sequence ensembles.

This builds on prior work showing that Transformers can learn

semantic representations of protein sequences (Rives et al.,

2021; Alley et al., 2019) and reconstruct partially masked

protein sequences, in effect inducing a Potts model of their

own (Rao et al., 2020). Transformer variants have also been

introduced to handle more complex objects than simple

sequential text, such as the inherently two-dimensional MSAs

(Rao et al., 2021; one dimension corresponds to alignment

sequence length and the other to alignment depth).

AlphaFold2 remains an ensemble-based prediction method,

predicting structures from families of related proteins instead

of individual sequences. This may make it insensitive to

sequence-specific structural changes that arise from mutations

and suggests that it may not be effective when proteins have

few homologues or are human-designed. This expectation

comports with the behavior of co-evolution-based methods,

and reflects the fact that such models do not learn a physical

sequence-to-structure mapping function. However, Alpha-

Fold2 did capture the general fold of Orf8 from SARS-CoV-2

with a GDT_TS of 87 based on only a few dozen sequences.

Thus, it is possible that AlphaFold2 is capable of utilizing

shallow MSAs.

4.3. Equivariance and the structure module

Algorithms that reason over protein structure face the

challenge that molecules do not have a unique orientation: the

same protein rotated even slightly is an entirely different

object computationally, despite being identical when in solu-

tion. AlphaFold2 accounts for this degeneracy by utilizing a

3D rotationally and translationally equivariant Transformer in

its structure module, a construction rooted in symmetry

principles from physics. This is known as an SE(3)-equivariant

architecture (where SE stands for Special Euclidean).

Symmetries are central to physics because physical laws

must obey them, and in many cases this imposes remarkably

strong constraints on models. For example, the special theory

of relativity put symmetry principles first, thereby dictating the

allowed forms of dynamical equations. With the development

of quantum mechanics, group theory, the mathematical

framework accounting for symmetries, has played a central

role, particularly in the development of the Standard Model of

particle physics (Gross, 1996). Crystallographic point groups

also capture the set of symmetries in crystals and play an

essential role in experimental structure determination. Neural
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network architectures that model the natural world must also

obey the symmetries of the phenomena that they are modeling

(Bronstein et al., 2021). Convolutional neural networks,

commonly used for image-recognition tasks, obey the prin-

ciple of translational equivariance; accordingly, translating an

input in space before feeding it to a neural network is

equivalent to feeding it unaltered and translating the output.

The principle is yet more general and applies to intermediate

network layers, establishing a commutative relationship

between translations and neural network operations (Bron-

stein et al., 2021). The difference between invariance (do not

care) and equivariance (keep track) can be understood in

terms of how proteins are represented to neural networks and

how they are operated on. A matrix encoding all pairwise

distances between protein atoms is an invariant representation

because the absolute position and orientation of a protein in

3D space is lost; it therefore only permits invariant reasoning

by a neural network. On the other hand, the raw 3D coordi-

nates of a protein are neither invariant nor equivariant, but

they permit a neural network to reason equivariantly because

the absolute position and orientation of the protein are

retained. Equivariance is actually achieved when the neural

network generates (geometric) outputs that are translated and

rotated in precisely the same way as the input representation

of the protein.

Until recently, equivariance in neural networks was limited

to translations in Euclidean space, but generalizing to

molecular systems requires a more general approach to

symmetries. Inspired by mathematical methods from physics,

specifically group theory, representation theory and differ-

ential geometry, multiple machine-learning groups, starting in

the mid-2010s and accelerating in the last two years, began

generalizing neural network equivariance beyond translations

and Euclidean spaces (Bronstein et al., 2021; Cohen et al.,

2019). Initial efforts focused on discrete rotations and trans-

lations in two dimensions (for example 90� rotations; Cohen &

Welling, 2016), which quickly advanced to continuous 2D

transformations using harmonic functions (Worrall et al.,

2017). However, generalizing to three dimensions poses

serious challenges, both computational and mathematical.

Most early attempts reformulated the convolutional opera-

tions of neural networks as weighted mixtures of spherical

harmonics (Thomas et al., 2018; Weiler et al., 2018), functions

familiar from the mathematical formulation of the fast rota-

tion function for molecular replacement (Crowther, 1972).

Although elegant, these approaches are computationally

expensive and may limit the expressivity of neural networks.

Subsequent efforts have begun to diverge, with some aiming

for greater expressivity at higher computational cost by

pursuing group-theoretic constructions, particularly Lie

algebras (Finzi et al., 2020). Another subset has focused on

computational efficiency and pursued graph-theoretic

constructions, which are familiar to computer scientists, based

on embedding equivariant geometrical information within the

edges of graph neural networks or the query–key–value

triplets of Transformers (Ingraham, Garg et al., 2019; Satorras

et al., 2021). Outside of the AlphaFold2 structure module, no

method involving thousands to tens of thousands of atoms

(the scale of a protein) has as yet meaningfully leveraged

equivariance.

The AlphaFold2 approach merges equivariance with

attention using an SE(3)-equivariant Transformer. [Indepen-

dently of AlphaFold2, a type of SE(3)-equivariant Trans-

former has been described in the literature (Fuchs et al., 2020,

2021), but this construction is currently too computationally

expensive for protein-scale tasks]. Unlike the trunk Trans-

former, which attends over residues along the protein chain in

an abstract 1D coordinate system, the structure Transformer

attends over residues in 3D space, accounting for their

continuous coordinates in an equivariant manner. Structures

are refined in Cartesian space through multiple iterations,

updating the backbone, resolving steric clashes and placing

side-chain atoms, all in an end-to-end differentiable manner

(more on this property later). Unlike most previous methods,

in which refinement is accomplished using physics-based

methods, refinement in AlphaFold2 is entirely geometrical.

The ability to reason directly in 3D suggests that Alpha-

Fold2 can extract patterns and dependencies between multiple

entities and distinct scales of geometrical organization in

protein structure, unlike 2D representations (for example

distograms), which are inherently biased towards pairs of

protein regions. Based on this, it stands to reason that SE(3)-

equivariant Transformers may be useful for other problems in

protein biology and molecular sciences, including quaternary

complexes, protein–protein interactions and protein–ligand

docking. The initial work that introduced the Transformer

architecture appeared in 2017 (Vaswani et al., 2017), with the

first serious forays into SE(3)-equivariant architectures

appearing in 2018 (Thomas et al., 2018; Weiler et al., 2018).

Since then the field has flourished, with new conceptual

innovations and improved computational implementations

appearing at a rapid pace. Given this rapidity, it is reasonable

to expect that better, faster and more efficient instantiations of

AlphaFold2 and its generalizations are just around the corner.

4.4. End-to-end differentiability and the principle of
unification

In supervised machine learning, the aim is to learn a

mathematical map from inputs to outputs (for example

protein sequence to structure). Learning is achieved by

changing the parameters of the map in a way that minimizes

the deviations between the known ground truth, for example

experimentally resolved structures, and predicted outputs. If

the functions comprising the map are all differentiable (in the

mathematical sense), optimization can be performed by

iteratively evaluating the map and following its local gradient.

This end-to-end differentiability condition greatly simplifies

learning by enabling all parameters to be adjusted jointly

instead of relying on a patchwork of disconnected steps, each

of which is optimized independently (LeCun et al., 2015).

Only a few machine-learning methods for protein structure

prediction, including recent work by one of us (AlQuraishi,

2019b), are end-to-end differentiable and therefore amenable
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to joint optimization. The paradigm for most existing methods

is to take as input co-evolutionary maps derived from MSAs

and predict inter-residue pairwise distances as output (the

aforementioned distogram). The generation of 3D protein

structure relies on a separate, non-machine-learned step. This

approach is appealing as it reduces structure prediction to a

simple 2D problem, both in input and output, and leverages

machinery developed for computer-vision tasks. However, it

prevents joint optimization of all components of the structure-

prediction pipeline, and often results in self-inconsistent

predictions. For example, predicted pairwise distances may not

fulfill the triangle inequality. To resolve such inconsistencies,

physics-based folding engines such as Rosetta incorporate

predicted distances as soft constraints to generate the final 3D

structure. AlphaFold2 changes this paradigm by being end-to-

end differentiable, jointly optimizing all model components,

including generation of the 3D structure, and thereby guar-

anteeing self-consistency. (The one exception is its use of

MSAs, which are constructed outside of AlphaFold2 and used

as inputs.)

Unlike symmetries such as SE(3) equivariance or allowable

bond geometries, areas in which chemistry and physics offer

useful prior knowledge and intuition, end-to-end differentia-

bility is generally regarded as a computer-science concept

distinct from physical principles. However, the capacity

of end-to-end models to provide a unified mathematical

formulation for optimization is reminiscent of the role that

unification has played in the development of physics. The

canonical example is Maxwell’s formulation of the funda-

mental equations of electromagnetism. Until Maxwell’s work,

electricity, magnetism and light were considered to be separate

phenomena with distinct mathematical descriptions. Their

unification not only afforded a more accurate theory, but

provided a unified mathematical framework in which the three

phenomena interact with and constrain each other. By

analogy, end-to-end differentiability allows different model

components to constrain and interact with each other in a way

that is convenient from a practical perspective and may reflect

fundamental physical constraints in protein structure predic-

tion. In the case of AlphaFold2, loss functions defined at

the level of 3D structure propagate error through SE(3)-

equivariant networks to refine the position of atoms in

Cartesian space, which then further propagate error through

2D distogram-like objects implicitly encoding inter-residue

distances. At each stage, different types of geometric infor-

mation are used to represent the same object, and by virtue of

end-to-end differentiability, they all constrain and reinforce

one another, making the process more data-efficient.

Crucially, these distinct stages make different computational

and representational trade-offs; for example, distogram-like

objects are by construction invariant to rotations and trans-

lations, making them computationally efficient, but are limited

in their ability to represent the coordination of multiple atoms

in distributed parts of the protein. On the other hand, the

structure module in AlphaFold2 is explicitly engineered to

behave equivariantly, but can readily represent interactions

between multiple atoms distributed along the protein chain.

5. Interpretability in machine-learned protein models

Reflecting on the crystallographic structure of myoglobin, the

pioneers of structural biology conveyed a sense of disap-

pointment at the first-ever protein structure; Kendrew and

coworkers, commenting on their own discovery, proclaimed

that

perhaps the most remarkable features of the molecule

[myoglobin] are its complexity and its lack of symmetry. The

arrangement seems to be almost totally lacking in the kind of

regularities which one instinctively anticipates.

(Kendrew et al., 1958). Prior to the broad availability of

protein structures, it was anticipated that proteins would

display simple and explicit regularities. Max Perutz attempted

to build such simple models (Perutz, 1947), but Jacques

Monod, an advocate of symmetry in biology, expected to find

regularities in protein complexes rather than single proteins (a

view that has proven to be largely correct; Monod, 1978).

Physicists too expressed disappointment, with Richard

Feynman declaring that

one of the great triumphs in recent times (since 1960), was at last

to discover the exact spatial atomic arrangement of certain

proteins . . . One of the sad aspects of this discovery is that we

cannot see anything from the pattern; we do not understand why

it works the way it does. Of course, that is the next problem to be

attacked.

(Feynman et al., 1964). Concerns about the ‘interpretability’ of

protein structures therefore have a long history.

The success of machine learning in structure prediction

again raises the question of whether it will be possible to

obtain biophysical insight into the process of protein folding

or whether prediction engines will simply serve as powerful

black-box algorithms. The question of interpretability is not

unique to structure prediction. Machine learning has also

transformed natural language processing, yielding models

such as GPT-3 that are capable of generating flowing prose

and semantically coherent arguments (Brown et al., 2020), but

have yielded few improvements in our understanding of

linguistic structures and their representation in the human

mind. Will machine-learned protein models be any different?

The first and more pessimistic view posits that protein

folding is inherently a complex system that is irreducible to

general principles or insights by its very nature. In this view, it

does not matter whether protein folds are inferred by machine

learning or long-time-scale molecular-dynamics simulations

capable of faithfully recapitulating folding pathways. Each

fold is a unique result of innumerable interactions of all of the

atoms in a protein, far too complex for formulation of the

generalized abstraction that we commonly equate with

‘understanding.’ We note however that this view is already

being challenged by useful heuristics that operate at the level

of solved structures, such as describing folds in terms of

recurrent motifs (for example �-helices and �-sheets) and our

understanding of the role that hydrophobic interactions play

in globular packing (Shakhnovich, 1997).

feature articles

Acta Cryst. (2021). D77, 982–991 Nazim Bouatta et al. � Protein structure prediction by AlphaFold2 989



The second and more optimistic view posits that we will be

able to interpret the emergent mathematical entities embo-

died in deep neural networks, including Transformers. While

physical theories, unlike machine-learned models, greatly

constrain the mathematical space of possible models, physi-

cists must still associate mathematical entities with physical

ones. A similar challenge exists in machine learning: we posit

that it may be possible to translate machine perception to

human perception and derive interpretable insights about

sequence–structure associations and the nature of globular

folds. Doing so would likely require better tools for probing

the structure and parameterization of neural networks,

perhaps permitting some degree of automation. Such efforts

remain exceedingly rare in machine learning, but recent work

on computer-vision systems has yielded promising early

results (Cammarata et al., 2020). Moreover, detailed and

formal mathematical models for protein biophysics already

exist (Brini et al., 2020) and represent a natural framework for

rigorous analyses of machine-learned models and structures. It

is very likely that the future will incorporate aspects of both of

the two extremes outlined above. Many fields of biomedicine

will be advanced simply by having genome-scale structural

information. Others, including protein design, may require

deeper insight.

We end by drawing on historical parallels in physics.

Quantum mechanics engendered heated debate that continues

today (famously captured by the disputes between Einstein

and Bohr) because it lacks an intuitive representation of the

world despite its unprecedented empirical success. For

example, the classical notion of a particle trajectory, which is

so useful in most circumstances, simply does not make sense

in the quantum realm (Laloë, 2001). To many physicists,

quantum mechanics remains a mathematical formalism for

predicting the probabilities that certain events can occur, and

attempts to go beyond this into interpretations of reality are

metaphysical distractions. This attitude is captured by David

Mermin’s motto ‘shut up and calculate!’ (Mermin, 1989) and

Stephen Hawking’s remark that ‘all I am concerned with is

that the theory should predict the results of measurements’

(Hawking & Penrose, 2010). However, for some physicists,

including Einstein, Schrödinger and most recently Penrose, it

is necessary to replace, extend or re-interpret quantum

mechanics to provide a satisfactory account of the physical

world. No obvious consensus exists on what counts as ‘satis-

factory’ in these efforts, but interpretability should not be

dismissed as a purely philosophical concern since it often leads

to the reformulation of fundamental scientific theories. Recall

that Newton was criticized by contemporaries such as Leibniz

for not providing a causal explanation for gravity, with its

‘action at a distance’, and Einstein, while working on special

and general relativity, was deeply influenced by Leibniz’s and

Mach’s criticism of Newtonian mechanics. He specifically

sought to put gravity on a more solid physical foundation by

avoiding action at a distance. How we perceive the role and

value of machine learning depends on our expectations. For

Hawking, predictive power might be all that we need; for

Einstein, new mathematical and conceptual tools may yield

new understanding from neural networks. Physical under-

standing may also take time to develop. In the case of

quantum mechanics, John Bell revisited the Bohr–Einstein

debate almost forty years later, establishing the inequalities

that bear his name and distinguish between classical and

quantum behaviors (Bell, 2004; Aspect, 2016). This insight

helped to enable many subsequent technological advances,

including quantum computers (Nielsen & Chuang, 2010).

Future versions of such quantum computers, with their ability

to simulate quantum-chemical systems, may in turn shed light

on the protein-folding problem.
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