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FoldAffinity alternative workflow
Binding affinity estimation from the T, ops
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Figure S1. Alternative approach to estimate protein-ligand binding
affinities from fluorescence-based melting curves. In the first step, the
data is loaded and preprocessed. The preprocessing includes selecting the
temperature range, smoothening the data and adding information about
the ligand concentration of each capillary/well. The signal versus
temperature plot will be color coded using a base-10 log scale and the
viridis palette. Second, the observed melting temperature (T, . iS
obtained from each melting curve using the maximum (or minimum) of
the first derivative. Third, the equilibrium dissociation constant K, is
estimated from the ligand concentration versus melting temperature
curve. In this particular example, the fitted K, was 11 uM, which is in close
agreement with the K, derived from the isothermal approach (9.1 uM at
64°C, Figure 3 of the Manuscript).
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Figure S2. PknG stability starts decreasing at pH 6.5. Melting temperature T,
versus onset temperature T, .. at different pHs. T .. is calculated as the
temperature where 1 % of the protein is unfolded (using the estimated enthalpy
of unfolding AH_, and melting temperature T ).
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Figure S3. PknG unfolds at lower temperatures with lower pHs. Calculated
fraction unfolded (from the estimated enthalpy of unfolding AH_, and melting
temperature T,) versus temperature at different pHs. The first six leftmost
curves correspond to pH 5, 5, 5.5, 5.5, 6 and 6.

Kd estimation Rel. fitting 95 % CI - 95 % CI - Hot
(1M) error (%) Lower (pM) Upper (pM) region
interval
(s)
0.8 28 0.32 1.28 [0-1]
1.05 22 0.55 1.55 [2-3]
1.02 18 0.63 1.41 [4-5]
0.92 20 0.53 1.32 [6-7]
0.76 21 0.41 1.11 [8-9]
0.71 25 0.33 1.08 [10-11]
0.57 34 0.15 0.99 [12-13]

Table S1. Determination of K, for PknG-AX2017 using different selections for the
“Hot region”. Rel. fitting error (%) is calculated as the quotient between the std.
error and the estimated value of the fitted parameter. 95 % CI - lower and 95 %
Cl - upper represent respectively the lower and upper bounds of the 95 %
confidence interval.



Appendix - Models implemented in the eSPC platform
and their associated equations

MoltenProt

Equilibrium two-state!?

This thermodynamic-based model presupposes that the protein only exists
in the native (folded) or unfolded state and that there is an equilibrium
between these two states given by the unfolding reaction N s U.The
fluorescence signal F(T) is described by the equation
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F(T) = (k,T + bn + (k,T + by) *e

where k,, bpare the slope and intercept of the pre-transition baseline
(native), kyand byare the slope and intercept of the post-transition
(unfolded) baseline, R is the universal gas constant, AHp, is the enthalpy
of unfolding at the melting temperature T, . This model assumes that the
heat capacity ACpof unfolding equals zero. If the user has knowledge

about these value, it can be used to correct later the calculated Gibbs
energy of unfolding at the standard temperature (25°C, 298.15 K) by

using

AG (2)

208.15(AHm, Tm, Cp) = AHp * (1 — 2815K) — C % (dC

p,Component)

where

dC, componentTm) = T —2918.15 K + 298.15 K * In(2815K)  (3)

Empirical two-state?

! Santoro, M. M., & Bolen, D. W. (1988). Unfolding free energy changes determined by the
linear extrapolation method. 1. Unfolding of phenylmethanesulfonyl. alpha.-chymotrypsin
using different denaturants. Biochemistry, 27(21), 8063-8068.

2 Bedouelle, H. (2016). Principles and equations for measuring and interpreting protein
stability: From monomer to tetramer. Biochimie, 121, 29-37.

3 Kotov, V., Bartels, K., Veith, K., Josts, I., Subhramanyam, U. K. T., Glnther, C., ... &
Garcia-Alai, M. M. (2019). High-throughput stability screening for detergent-solubilized
membrane proteins. Scientific reports, 9(1), 1-19.



This model is similar to the Equilibrium two-state, but instead of enthalpy
of unfolding, it uses the descriptive parameter T . to describe the

steepness of the fluorescence curve. The signal is described by the
equation:

F(T)= (k,T + b, + (k,T +by)* AL(1 +A1)™" (4)
where

(T'=T )*In(0.01/0.99)
Tomtm ) (3)

Al = exp(

Onset

Equilibrium three-state*

This model adds the presence of one short-lived protein state: native (N),
intermediate (1) and unfolded (U). The signal is described by the equation:

F(T) = (k,T + b, + k,Al + (k,T + b,) A1 xA2)(1 + A1xA2)""  (6)

where

Al = exp(Z(F - 1)) (7)
and,

A2 = exp(%(,‘%2 — %)) (8)

where k,is the signal slope for the short-lived | state, AH ,and AH ,

are the enthalpy of unfolding at melting temperatures T1 (N s 1) and T2 (I
s U).

Empirical three-state®

This model is similar to the Equilibrium three-state, but instead of

enthalpy of unfolding, it uses the descriptive parameters T . and

4 Mazurenko, S., Kunka, A., Beerens, K., Johnson, C. M., Damborsky, J., & Prokop, Z.
(2017). Exploration of protein unfolding by modelling calorimetry data from reheating.
Scientific reports, 7(1), 1-14.

> Kotov, V., Bartels, K., Veith, K., Josts, I., Subhramanyam, U. K. T., Glnther, C., ... &
Garcia-Alai, M. M. (2019). High-throughput stability screening for detergent-solubilized
membrane proteins. Scientific reports, 9(1), 1-19.



T, ..., to describe the steepness of the fluorescence curve. The signal is
described by the equation:

F(T) = (k,T + b, + kAl + (k,T + b, )A1 *xA2)(1 + Al >|<AZ)_1 (9)
where

T-T,

Al =9Xp(mln(001/099)) (10)

and,

A2 =exp(TT_—T_2Tzln(O.01/O.99)) (11)

onset2

Irreversible two-state®,’

This model assumes that the protein only exists in the native (N) and
unfolded (U) state and that the unfolding reaction is irreversible. The
signal is described by the equation:

F(T) = kyT + by + (knT + bp) *xn(T) (12)

where x,(T)is the fraction of natively folded molecules as a function of
temperature and can be obtained via numerical integration:

Tmax
xn(T) = [ Shrexp(Ft(z —F)*x)  (13)

Tmin

where Tmax and Tminare the start and end temperatures of the
measurement, vis the scan rate in degrees/minutes, E,is the activation
energy of unfolding, T is the temperature where the reaction rate
constant of unfolding equals 1. For simplicity, xpis assumed to be 1 at
Tmin.

6 Mazurenko, S., Kunka, A., Beerens, K., Johnson, C. M., Damborsky, J., & Prokop, Z.
(2017). Exploration of protein unfolding by modelling calorimetry data from reheating.
Scientific reports, 7(1), 1-14.

7 Sanchez-Ruiz, J. M. (1992). Theoretical analysis of Lumry-Eyring models in differential
scanning calorimetry. Biophysical journal, 61(4), 921-935.



FoldAffinity

Step 1. Fitting of the fluorescence signal

Each fluorescence versus temperature curve is fitted with a two-state
folding model where the signal is the sum of the fluorescence of the
folded and unfolded states.

F(T)=F_, (IF + T+SF)+ U(IU +T*SU) (14)

where F_,. and U are respectively the observed folded and unfolded
fractions, IF and IU are the intercept of the folded and unfolded fractions,
IU and SU are the slope of the folded and unfolded fractions, and

Fobs(K u,obs) =1 / (1 +K u,obs) (15)
U(K u,obs) =K u,obs / (1 +K u,obs) (16)
with
K ops (T) = el A0 [ RT) = b (17)
AGobs (T) = AI_Iobs *(1 = T m’obs+273.15) +
= Cp* (T pops +273.15 = T + T * log(—"L7373)) (18)

where R is the gas constant, AG_, . (T')is the free energy of unfolding, U is
the equilibrium concentration of the unfolded species, F is the equilibrium
concentration of the folded unbound species, FLis the equilibrium
concentration of the folded bound species, Tm_,_is the observed melting
temperature, AH_,_ is the enthalpy of unfolding, and Cpis the heat
capacity at a constant temperature.

Equation 18 is thermodynamically correct only when there is no ligand
involved (K =Ky=U/F). When there is ligand present,

u,obs —

Ku, =U/ (F +FL). In spite of this, Bai et al. and Niebling et al. have



proven that this equation allows later a correct estimation of the
equilibrium dissociation constant.®?®

Step 2. Fitting of the unfolded fraction versus ligand
concentration curve

One binding site

At a fixed temperature, if we assume that the ligand can only bound the
folded state, a one binding site system can be described with the
following reactions.

U+LeF+Le=FL (19)
where U, F, FL and L are respectively the unfolded state, folded state,

bound folded state and ligand. The associated equations and principle of
mass conservation are

Ku = U/F

(20)
K, = (FxL)/FL

(21)
P, = U+F+FL

(22)
L, = L+FL

(23)

where K, and K, are respectively the unfolding and the equilibrium
dissociation constant, P,and L are respectively the total protein and
total ligand concentration.

If we knew Ky and K, FL could be obtained by solving

0=FL>+pFL +q
(24)
p=P,/(Ky + D+L,+K, (25)

8 Bai, N., Roder, H., Dickson, A., & Karanicolas, J. (2019). Isothermal analysis of
ThermoFluor data can readily provide quantitative binding affinities. Scientific reports,
9(1), 1-15.

% Niebling, S., Burastero, O., Blrgi, J., Glnther, C., Defelipe, L. A., Sander, S., ... &
Garcia-Alai, M. (2021). FoldAffinity: binding affinities from nDSF experiments. Scientific
reports, 11(1), 1-17.



And thenU, and F could be calculated to determine the unfolded
fraction (U / (F + FL)). Therefore, at a fixed temperature, the unfolded

fraction versus ligand concentration curve allows to estimate Kyand K.

Two binding sites (microscopic constants)

The system is described by the reactions

U+2Le«F+2L (27)
F+2LeFL+L

(28)
F+2L e«LF+L (29)
FL+L e LFL (30)
LF +L = LFL (31)

where F is the free folded protein, FL and LF are the two possible
protein-ligand complexes and LFL is the protein with two ligands. F, FL, LF
and LFL depend on the Kgs, total ligand concentration L, and free ligand

concentration Lfree in the following way

F =Ky, *Ky,*x(Lo—Le,)/ (Ky, + Ky, +2L, )/ L, (32)
FL=L, *F/K,, (33)
FL=L, *F/K,,  (34)
LFL=L,  *LF /K, (35)

We can obtain the value of Lfree by solving

X3+pX2+qX +r=0 (36)
where

p=Kd’1 +Kd’2 + 2xP,—L,) (37)
q= (P, —L0)>|<(Kd'1 +Kd’2) +Kd,1*Kd’2*(1 + Ky) (38)
r=—L0*Kd11*Kdl2*(1 + Ky) (39)

For simplicity, for now we only provide the option to fit this model using
Ky1=Kg,-



Alternative model - Binding affinity from the observed
melting temperatures?®

If we suppose that the enthalpy (AH ) and entropy (AS) of unfolding do
not change significantly in the vicinity of the melting temperature T, of
the protein, and that given that for all ligand concentrations at the
observed melting temperature we have (for a one binding site system):

L ree
AG(T 1, 0ps) = BH = T 1y 0psAS + RT , opg * In(1 + %) (40)

and for a two binding sites system,

L

ree+K +K
AG(T y,005) = AH = T 1 0AS + RT o *In(1 4 Ly, Lttt

) (41)
and that at the melting temperature of the protein (without ligand)
AH =T,AS (42)

If we approximate the free ligand concentration using the total ligand
concentration we can fit the observed melting temperatures by using

RTmIn(1+L,,,, / K,) )‘1
AH

Tobs = Tm(1 = (43)

if we have one binding site, or

- L. +K, +K 1
T mobs = Tm(1 = AH ™ (RTmIn(1 + Ly, « L —t)))  (44)

in case of two binding sites.

10 Schellman, J. A. (1975). Macromolecular binding. Biopolymers: Original Research on
Biomolecules, 14(5), 999-1018.



ThermoAffinity

The signal is fitted using a simple model where the contribution of the
complex and the unbound protein is given by the following equation:

Signal(K,, L,,P,) =RF1*P(K, L, P,)+ RF2*xPL(K, Ly, P,) (45)
where P and PL are respectively the unbound free protein and the bound
protein. P, and L, are respectively the total protein and ligand

concentration and K is the equilibrium dissociation constant linked to the
chemical equilibrium

P+L-PL, K, = (P*L)/PL (46)
and

RF1 and RF2 are parameters that represent the signal per unit of
concentration.

Using Equation 46 and the fact that the total ligand and protein
concentrations are constant, we can transform the signal to:

(RF2—-RF1)+RF1%*P, (47)

Two binding sites

In the case of the binding sites, the signal can be explained by a linear
combination of the amount of free unbound protein, right-bound complex
(PL), left-bound complex (LP), and double-bound complex (LPL).

Signal(LO,PO,Kd'l,Kdlz,cFactor) =
RF1*P +RF2*PL+RF3*LP +RFA*xLPL (48)

where RF1, RF2, RF3and RF4are parameters to fit that represent the
signal per units of concentration, L,, P,, K;,, K,,and cFactor are

respectively the total protein concentration, total ligand concentration, the
equilibrium dissociation constant 1, the equilibrium dissociation constant
2, and cooperativity factor. The associated chemical equilibria are

P+ 2L «»PL+1L (49)



P+2L «LP+1L (50)
PL +L « LPL (51)
ILP +L «» LPL (52)

with equations

P=K, %K ,*(L,—L)/((Ky, +K,,+2%L)xL)  (53)
PL=(L*P/K,,) (54)
LP = (L*P/K,,)(55)
LPL = LPL__ (56)

Kd,z* cFactor

where L is the free ligand concentration that corresponds to the the only
physical root of the equation

X3+ pX* +gX +r (57)

p= [Kd,1 +Ky,+ (2xP,— L)/ cFactor]*cFactor (58)
q=1I[P, —L0)>|<(Kd,1 +Kd,2) +Kd,1 *Kdlz]*cFactor (59)
r=|[- L, *Kd,l *Kd,z] *cFactor (60)
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Overview
MoltenProt has seven panels (Figure 1). Panels 1-3 contain the necessary
steps to analyze user data.

MoltenProt

£22 1. Load input

$22 2. Fitting
$22 3. Analyze
$22 4. Export
© User guide
@O Tutorial

® About

Figure 1. MoltenProt online tool panels.

1. Load input
1.1. Input file (raw data)
MoltenProt accepts as input two kinds of files:

A) The xlsx file (processed) generated by the Nanotemper Prometheus
machine that has one sheet called 'Overview' with a column called
‘Sample ID' with the names of the samples (Figure 2), and four
sheets called 'Ratio', '330nm’, '350nm' and 'Scattering'. The first
column of the signal sheet ('Ratio', '330nm’, '350nm’', 'Scattering')
should be called 'Time [s]'. The second column should have the
temperature data and all subsequent columns store the
fluorescence data (Figure 3). The order of the fluorescence columns
should match the order of the 'Sample ID' column in the 'Overview'
sheet.



[

Sample ID

Al GuHCI 0.05 M
A2 GuHC| 0.52 M
'A3 GuHCI1 M

A4 GUuHCI 1.47 M
/A5 GUHCI 1.95 M
A6 GUHCI| 2.38 M
'A7 GuHCI 2.5 M
A8 GUHCI 2.61 M
I1A9 GUHCI 2.73 M
IA10 GuHCI 2.85 M
/All GuHCI 2.97 M
Al2 GuHCI 3.09 M
'B1 GuHCI 3.21 M
-B2 GUuHCI 3.33 M
'B3 GUHCI 3.45 M
B4 GuHCI 3.56 M
B5 GuHCI 3.68 M
'B6 GUHCI 4.25 M
'B7 GuHCI 4.82 M
1B8 GUHCI 5.39 M

Figure 2. Example of the ‘SamplelD’ column in the ‘Overview’ sheet required by
MoltenProt to load the Nanotemper spreadsheet input file.

X B c | D
- I Y 1 2

2] Sample ID Al

2 |Time [s] Temperature [°C] Fluorescence [counts] Fluorescence [counts]
e 7.0 25.000 0.940 0.934
= 24.3 25.054 0.939 0.935
e 33.3 25.108 0.943 0.933
] 40.6 25.162 0.939 0.936
e 46.8 25.215 0.942 0.933
e 52.5 25.269 0.941 0.933
o 57.4 25.323 0.942 0.934
= 62.1 25.377 0.941 0.934
= 66.7 25.431 0.942 0.934
= 71.0 25.485 0.940 0.933

Figure 3. Example of the ‘Ratio’ sheet required by MoltenProt to load the
Nanotemper spreadsheet input file.

B) The xlIs file generated by the ThermoFluor Assay in a qPCR machine.
One sheet called 'RFU' where the first row has the sample positions
(header), the first column has the temperature data and all
subsequent columns store the fluorescence data (Figure 4).



8 [ ¢ | o | € | F | 6 | H |

A0l AD2 AO03 AD4 A0S A0D6 A07

5 64.79 501.82 398.53 61.91 73.26 129.38 38.53
i 6 63.14 513.32 416.32 63.13 7241 130.21 4043
i 7 61.52 522.98 437.17 64.34 7221 131.14 42.45
| 8 59.75 529.89 459.98 64.97 72.52 131.29 42.69
-9 57.78 535.95 483.14 65.89 72.30 131.90 43.18
i 10 55.73 540.72 504.85 67.40 71.83 131.75 42.82
| 11 54.00 54515 527.02 68.86 71.27 131.86 42.98
| 12 52.82 549.80 549.27 70.20 71.55 131.55 42.65
| 13 52.14 554.45 570.59 70.37 72.86 131.79 42.15
| 14 51.42 558.53 589.62 7041 74.39 13250 41.38

Figure 4. Example of the ‘RFU’ sheet required by MoltenProt to load
ThermoFluor data.

1.2. Normalization

There are 3 available options to normalize each fluorescence-based
melting curve.

a. Divide by initial value: Divide by the median value of the signal
corresponding to the first two degrees of temperature.

b. Max-min normalization: Transform the signal by applying

Signal — min(Signal)
max(Signal)—min(Signal)

NormalizedSignal(Signal) = Equation 1

c. Area normalization: Divide the signal by the area under the curve
(calculated using the trapezoidal rule).

1.3. Median filter (smoothing)

The median filter consists of calculating the median value of a
temperature rolling window.

1.4. Savitzky-Golay (SG) window size

This parameter, in degrees Celsius, is used to calculate the number of
data points to apply the Savitzky-Golay filter corresponding to a
polynomial of degree 4 before computing the first or second derivative as
implemented in Scipy (scipy.signal.savgol filter — SciPy v1.6.1 Reference
Guide). For the second derivative, we add 5 degrees to the selected SG
temperature window size.




The number of data points is obtained by computing

oddDataP oints(SavitzkyGolayWindowSize) = ceil(3ZkyGolayWindowSizey ;5 o > 4 1

deltaT emperature

Equation 2

where SavitzkyGolayWindowSize is the SG parameter fixed by the user,
ceil(x) returns the smallest integer isuch that i >= x, and

deltaT emperature corresponds to the average number of data points in
one degree of temperature.

1.5. Melting temperature (T ) estimation using the first derivative

A non-model approach to estimate the melting temperature involves
estimating the maximum or the minimum of the first derivative,
depending on the way the signal changes with the temperature. In
MoltenProt, the Tm values are estimated as follows. First, the median
value of the first derivative in the interval
[min(temperature) + 6; min(temperature) + 11] and
[max(temperature) — 11; max(temperature) — 6] is calculated. Then, we
obtain the mean of those two median values and add it (if it positive), or
subtract it (if it is negative), to the first derivative in the interval
[min(temperature) + 6; max(temperature) — 6]. This is done to shift the
derivative baseline. Last, if the absolute value of the minimum (of the
derivative) is higher than the absolute value of the maximum, we use the
minimum to estimate the Tm. Otherwise, we use the maximum. If many
curves are present, we always use the same option.

2. Fitting
2.1. Model selection

The models from the online version of MolteProt are based on the desktop
application developed by Kotov et al. (Kotov et al., 2021). All of them
assume that the fluorescence signal can be expressed as the sum of the
signal from different protein states where the dependence of the signal to
the temperature is given by a linear function. The difference in the models
lies in establishing which are the possible protein states and how to
calculate their concentration (Figure 5).



Equilibrium two-state / Empirical two-state:

Folded : Unfolded

Equilibrium three-state / Empirical three-state:

Folded —

———— Short-lived intermediate ———— Unfolded

Irreversible two-state
Folded » Unfolded

Figure 5. Five unfolding models have been implemented in the online version of
MoltenProt. The different protein states are Folded, Unfolded, Short-lived
intermediate, and the reaction(s) may be reversible or irreversible.

Equilibrium two-state'?

This thermodynamic-based model presupposes that the protein only exists
in the native (folded) or unfolded state and that there is an equilibrium
between these two states given by the unfolding reaction N s U.The
fluorescence signal F(T) is described by the equation

>
£
T
4

F(T)=(k,T +bn+ (k,T +by)*xe

where k,, bpare the slope and intercept of the pre-transition baseline
(native), kyand byare the slope and intercept of the post-transition
(unfolded) baseline, R is the universal gas constant, AH,, is the enthalpy
of unfolding at the melting temperature T,,. This model assumes that the
heat capacity ACpof unfolding equals zero. If the user has knowledge
about these values, it can be used to correct later the calculated Gibbs
energy of unfolding at the standard temperature (25°C, 298.15 K) by
using

AGg 15(AH m, T, Cp) = AH py (1 — 29815K) — C 4 (dC

298.15 p,Component) (2)

where

dCP,COmponent(Tm) =T, —298.15K + 298.15 K x* ln(_298T115K) (3)

! Santoro, M. M., & Bolen, D. W. (1988). Unfolding free energy changes determined by the
linear extrapolation method. 1. Unfolding of phenylmethanesulfonyl. alpha.-chymotrypsin
using different denaturants. Biochemistry, 27(21), 8063-8068.

2 Bedouelle, H. (2016). Principles and equations for measuring and interpreting protein
stability: From monomer to tetramer. Biochimie, 121, 29-37.



Empirical two-state?

This model is similar to the Equilibrium two-state, but instead of enthalpy
of unfolding, it uses the descriptive parameter T . to describe the

steepness of the fluorescence curve. The signal is described by the
equation:
F(T) = (k,T + b, + (k,T +by)* A1)(1 +A1)™" (4)

where

(r=T )*In(0.01/0.99)
TOnset_Tm

Al = exp( ) (5)

Equilibrium three-state*

This model adds the presence of one short-lived protein state: native (N),
intermediate (I) and unfolded (U). The signal is described by the equation:

F(T) = (k,T + by + k,Al + (k,T + b,) *xA1 xA2)(1 + A1xA2)""  (6)
where
Al = exp(%(%1 - 2)) (7)
and,
A2 =exp(ZgA(E -1  (8)

where k, is the signal slope for the short-lived | state, AH_,and AH_,
are the enthalpy of unfolding at melting temperatures T1 (N s 1) and T2 (I
s U).

3 Kotov, V., Bartels, K., Veith, K., Josts, I., Subhramanyam, U. K. T., Glnther, C., ... &
Garcia-Alai, M. M. (2019). High-throughput stability screening for detergent-solubilized
membrane proteins. Scientific reports, 9(1), 1-19.

4 Mazurenko, S., Kunka, A., Beerens, K., Johnson, C. M., Damborsky, J., & Prokop, Z.
(2017). Exploration of protein unfolding by modelling calorimetry data from reheating.
Scientific reports, 7(1), 1-14.



Empirical three-state®

This model is similar to the Equilibrium three-state, but instead of
enthalpy of unfolding, it uses the descriptive parameters T . and
T, cor» to describe the steepness of the fluorescence curve. The signal is
described by the equation:

F(T) = (k,T + b, + k,A1l + (k, T + b, )A1 xA2)(1 + Al xA2)7" (9)

where

Al =exp(TT;T_1Tlln(O.01/O.99)) (10)

Onsetl

and,

A2 =exp(TT_—T_2T21n(O.01/O.99)) (11)

onset2

Irreversible two-state®,’

This model assumes that the protein only exists in the native (N) and
unfolded (U) state and that the unfolding reaction is irreversible. The
signal is described by the equation:

F(T) = kyT + by + (knT + bp) *xn(T) (12)

where x,(T)is the fraction of natively folded molecules as a function of
temperature and can be obtained via numerical integration:

Tmax
xa(T) = [ 5 rexp(5(z = 3)xxn)  (13)

Tmin

where Tmax and Tminare the start and end temperatures of the
measurement, vis the scan rate in degrees/minutes, E,is the activation

> Kotov, V., Bartels, K., Veith, K., Josts, I., Subhramanyam, U. K. T., Glnther, C., ... &
Garcia-Alai, M. M. (2019). High-throughput stability screening for detergent-solubilized
membrane proteins. Scientific reports, 9(1), 1-19.

6 Mazurenko, S., Kunka, A., Beerens, K., Johnson, C. M., Damborsky, J., & Prokop, Z.
(2017). Exploration of protein unfolding by modelling calorimetry data from reheating.
Scientific reports, 7(1), 1-14.

7 Sanchez-Ruiz, J. M. (1992). Theoretical analysis of Lumry-Eyring models in differential
scanning calorimetry. Biophysical journal, 61(4), 921-935.



energy of unfolding, Tfis the temperature where the reaction rate

constant of unfolding equals 1. For simplicity, x,is assumed to be 1 at
Tmin.

2.2. Temperature range for baseline estimation

All models require the parameters k, , by, kpand b,. The initial values
of these parameters are estimated by fitting the equation of a line to the
first or last n-degrees (selected by the user).

2.3. Curve fitting

Each curve is fitted individually using the Levenberg Marquardt (damped
least-squares) algorithm as implemented in the curve_fit function from the
Scipy package. The initial estimates of k, , by, knand bpare used to
provide fitting boundaries (£ 40 % of the initial values). For the other
parameters, the fitting boundaries are described in the following Table.

Parameter Lower bound Upper bound

T, T, T, Lowest temperature in Highest temperature in
data + 6 degrees data - 6 degrees

T_onset, T_onsetl, Lowest temperature in Highest temperature in

T onset2 data + 1 degrees data - 11 degrees

dHm, dHm1, dHm?2 2.5 kcal/mol 750 kcal/mol

Ki le-3 le3

2.4. Fitting errors

The standard deviation of all fitted parameters is computed using the
square root of diagonal values from the fit parameter covariance matrix
reported by scipy.curve_fit function. These values are an approximation
(underestimation) of the real errors.

2.5. Fitting residuals

The residuals of the fitting are normalized by dividing them by the
standard error.

3. Analyze
3.1. Baseline separation factor
This value is useful to compare the height of the unfolding transition for

the equilibrium or empirical two-state unfolding models and is calculated
as



BS(S,ku, T, bu, kn,by) = 1 - ¥ (14)

where S is the standard error of the estimation.
3.2. Protein stability score

After fitting a model, a protein stability score is provided which can be
used to sort the conditions.

Model Score
Equilibrium two-state AG of unfolding at 298.15 K

Empirical two-state distance((T m; TOnset), (0;0))
Equilibrium AG of unfolding at 298.15 K
three-state
(AG of reaction N s I + AG of reaction I s U)
Empirical two-state distance((T ;T 5,.0¢1) (0; 0)) +
distance((T, ,; T ;) ..1n), (0; 0))

Irreversible two-state —log(k. _ (298.15 K))

irrev
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Overview

FoldAffinity has 9 panels (Figure 1). Panels 1-3 contain the necessary steps
to analyze user data using the isothermal approach. The Panel Tm fitting
can be used to estimate binding affinities directly from the observed
melting temperatures. The Simulate data Panel can be used before doing
an experiment to analyze the expected change in the signal depending on
the binding affinity and the protein and ligand concentrations.

FoldAffinity

222 1. Load input

s22 2. Fit fluorescence

222 3. Fit fraction unfolded
222 4. Export results

222 Tm fitting

222 Simulate data

@ User guide

O Tutorial

® About

Figure 1. FoldAffinity online tool panels.

1. Load input
1.1. Input file (raw data)
FoldAffinity accepts as input two kind of files:

A) The xIsx file (processed) generated by the Nanotemper Prometheus
machine that has one sheet called 'Overview' with a column called
‘Sample ID' with the names of the samples (ligand concentration)
(Figure 2), and four sheets called 'Ratio', '330nm’', '350nm' and
‘Scattering'. The first column of the signal sheet (‘Ratio’', '330nm’,



‘350nm’, 'Scattering') should be called 'Time [s]'. The second column
should have the temperature data and all subsequent columns store
the fluorescence data (Figure 3). The order of the fluorescence
columns should match the order of the 'Sample ID' column in the
'Overview' sheet.

[

Sample ID

Al GuHCI 0.05 M
A2 GuHCI 0.52 M
JA3 GuHCI 1 M

‘A4 GUuHCI 1.47 M
/A5 GUHCI 1.95 M
1A6 GUHCI 2.38 M
'A7 GuHCI 2.5 M
1A8 GuHCI 2.61 M
1A9 GUHCI 2.73 M
JIA10 GuHCI 2.85 M
All GuHCI 2.97 M
Al12 GuHCI 3.09 M
'B1 GuHCI 3.21 M
'B2 GUHCI 3.33 M
'B3 GUHCI 3.45 M
1B4 GUHCI 3.56 M
'B5 GuHCI 3.68 M
iB6 GUHCI 4.25 M
'B7 GUHCI 4.82 M
1B8 GUHCI 5.39 M

Figure 2. Example of the ‘SamplelD’ column in the ‘Overview’ sheet required by
FoldAffinity to load the Nanotemper spreadsheet input file.

B lcopilay

13

2 [Time [s]

7.0
24.3
33.3
40.6
46.8
52.5
57.4
62.1
66.7
71.0

C

1
Sample ID Al
Temperature [°C] Fluorescence [counts]
25.000 0.940
25.054 0.939
25.108 0.943
25.162 0.939
25.215 0.942
25.269 0.941
25.323 0.942
25.377 0.941
25.431 0.942
25.485 0.940

Fluorescence [counts]
0.934
0.935
0.933
0.936
0.933
0.933
0.934
0.934
0.934
0.933

Figure 3. Example of the ‘Ratio’ sheet required by FoldAffinity to load the
Nanotemper spreadsheet input file.

B) The xlIs file generated by the ThermoFluor Assay in a qPCR machine.
One sheet called 'RFU' where the first row has the sample positions

eader), the first column has the temperature data and all

subsequent columns store the fluorescence data (Figure 4).

(h



r. B G D E F G H

A0l AD2 AO03 AD4 A0S AD6 A07
5 64.79 501.82 398.53 6191 73.26 129.38 38.53
| 6 63.14 513.32 416.32 63.13 7241 130.21 4043
| 7 61.52 522.98 437.17 64.34 72.21 131.14 42.45
i 8 59.75 529.89 459.98 64.97 7252 131.29 42.69
-9 57.78 535.95 483.14 65.89 72.30 131.90 43.18
| 10 55.73 540.72 504.85 67.40 71.83 131.75 42.82
| 11 54.00 54515 527.02 68.86 71.27 131.86 4298
| 12 52.82 549.80 549.27 70.20 71.55 131.55 42.65
| 13 52.14 554.45 570.59 70.37 72.86 131.79 42.15
| 14 51.42 558.53 589.62 7041 74.39 13250 41.38

Figure 4. Example of the ‘RFU’ sheet required by FoldAffinity to load
ThermoFluor data.

1.2. Median filter (smoothing)

The median filter consists of calculating the median value of a
temperature rolling window.

1.3. Melting temperature (Tm) estimation using the first
derivative

A non-model approach to estimate the melting temperature involves
estimating the maximum or the minimum of the first derivative,
depending on the way the signal changes with the temperature. In
FoldAffinity, the Tm values are estimated as follows. First, the median
value of the first derivative in the interval
[min(temperature) + 6; min(temperature) + 11]and

[max(temperature) — 11; max(temperature) — 6] is calculated. Then, we
obtain the mean of those two median values and add it (if it positive), or
subtract it (if it is negative), to the first derivative in the interval
[min(temperature) + 6; max(temperature) — 6]. This is done to shift the
derivative baseline. Last, if the absolute value of the minimum (of the
derivative) is higher than the absolute value of the maximum, we use the
minimum to estimate the Tm. Otherwise, we use the maximum. If many
curves are present, we always use the same option.

To compute the derivative we use the Savitzky-Golay function as
implemented in numpy (scipy.signal.savgol_filter — SciPy v1.6.1 Reference
Guide) with a polynomial degree 4 and window size of 10 degrees.




2. Fit fluorescence
2.1. Model

Each fluorescence versus temperature curve is fitted with a two-state
folding model where the signal is the sum of the fluorescence of the
folded and unfolded states.

F(T)=F_ (IF + T*SF)+U(IU +T=*SU) (1)

where F_,. and U are respectively the observed folded and unfolded

fractions, IF and IU are the intercept of the folded and unfolded fractions,
IU and SU are the slope of the folded and unfolded fractions, and

F obs (K
UK

u,obs) =1/ (1 +K u,obs) (2)
) =K e/ L+K ) (3)

u,obs u,obs

with

K (T) = e(_AGobs/RT) = U _ (4)

u,obs F+FL

AG,, (T) =AH o *(1 —

T m,obs+273~15) +

+273.15 = T + T * log(—r775)) (5)

m,obs

where R is the gas constant, AG , . (T)is the free energy of unfolding, U is
the equilibrium concentration of the unfolded species, F is the equilibrium
concentration of the folded unbound species, FLis the equilibrium
concentration of the folded bound species, T'm , is the observed melting
temperature, AH , _is the enthalpy of unfolding, and Cjis the heat
capacity at a constant temperature.

Equation 18 is thermodynamically correct only when there is no ligand
involved (Ku,obs =K, =U/F). When there is ligand present,

Ku, . =U/(F +FL). In spite of this, Bai et al. and Niebling et al. have



proven that this equation allows latter a correct estimation of the
equilibrium dissociation constant.?

2.2. Curve fitting

Once the data is loaded in FoldAffinity, the first and last 10 degrees of
each fluorescence melting curve is fitted using the equation of a line to
obtain initial values of InterceptF olded , SlopeF olded ,
InterceptUnfolded and SlopeUnfolded parameters. Then, each curve is
fitted individually using the Levenberg Marquardt (damped least-squares)
algorithm to estimate AH T, .ns@nd Cp. These values can be used

directly or the whole data can be fitted again to force shared values of the
slope parameters and / or C, value.

obs '’

2.3. Fitting errors
The standard deviation of all fitted parameters is computed using the
square root of diagonal values from the fit parameter covariance matrix

reported by scipy.curve_fit function. These values are an approximation
(underestimation) of the real errors.

3. Fit unfolded fraction

3.1. Models

The models implemented in FoldAffinity are based on the coupling
between ligand binding and protein folding and require that the ligand is
completely soluble at all the measured concentrations and temperatures.
One binding site

At a fixed temperature, if we assume that the ligand can only bound the
folded state, a one binding site system can be described with the

following reactions.

U+LeF+LeFL (6)

! Bai, N., Roder, H., Dickson, A., & Karanicolas, J. (2019). Isothermal analysis of
ThermoFluor data can readily provide quantitative binding affinities. Scientific reports,
9(1), 1-15.

2 Niebling, S., Burastero, O., Blrgi, J., Glnther, C., Defelipe, L. A., Sander, S., ... &
Garcia-Alai, M. (2021). FoldAffinity: binding affinities from nDSF experiments. Scientific
reports, 11(1), 1-17.



where U, F, FL and L are respectively the unfolded state, folded state,
bound folded state and ligand. The associated equations and principle of
mass conservation are

Ky =U/F (7)
K, = (F+L)/FL  (8)
P, = U+F+FL (9
L, = L+FL (10)

0

where K, and K, are respectively the unfolding and the equilibrium
dissociation constant, P,and L are respectively the total protein and
total ligand concentration.

If we knew Ky, and K, FL could be obtained by solving

0=FL*+pFL+q (11)
p=P,/(Ky + D+L,+K, (12)
q=P,L,/(Ky + 1) (13)

And thenU, and F could be calculated to determine the unfolded
fraction (U /(F + FL)). Therefore, at a fixed temperature, the unfolded
fraction versus ligand concentration curve allows to estimate Kyand K.

Two binding sites (microscopic constants)

The system is described by the reactions

U+2LeF+2L (14)
F+2Le»FL+L (15)
F+2L »LF+L (16)
FL+L e« LFL (17)
LF +L = LFL (18)

where F is the free folded protein, FL and LF are the two possible
protein-ligand complexes and LFL is the protein with two ligands. F, FL, LF
and LFL depend on the Kds, total ligand concentration L, and free ligand

concentration Lfree in the following way
F = Kd,l *Kd,Z * (LO - Lfree) / (Kd,l + Kd,Z + 2Lfree) /Lfree (19)
FL=L, ,*F/K,, (20)

free



FL=L, *F/K,, (21)

free

LFL=L, *LF/K,, (22)

free

We can obtain the value of Lfree by solving

X3+pX2+qX +r=0 (23)
where

p=KO,,1+Kd’2 + 2%xP,—L,) (24)
q= (PO_LO)*(Kd,1+Kd,2) +Kd'1*Kd’2*(1 + Ky) (25)
r=—LO*Kd,1*Kd,2*(1 + Ky) (26)

For simplicity, for now we only provide the option to fit this model using
Kg1=Kg,-

3.2. Curve fitting

The unfolded fraction versus ligand concentration curve is fitted using the
Levenberg Marquardt (damped least-squares) algorithm to estimate K,

(or K,;;, K;,) and Ky at the chosen temperature.

3.3. Fitting errors

Explained in section 2.3.

4. Alternative Tm fitting: Binding affinity from the
observed melting temperatures

4.1 Model

If we suppose that the enthalpy (AH ) and entropy (AS) of unfolding do
not change significantly in the vicinity of the melting temperature T, of
the protein, and that given that for all ligand concentrations at the
observed melting temperature we have (for a one binding site system):

L
AG(T 1, ops) = AH — T, 0pAS + RT, ops ¥ In(1 + ) (27)

and for a two binding sites system,



L ree+K, +K'
AG(T p, 00s) = AH = T 0, AS + RT, oo % In(1 + Ly, + Le—td—d2 Kd‘l;};ﬂ =
(28)

and that at the melting temperature of the protein (without ligand)
AH = T,AS (29)

If we approximate the free ligand concentration using the total ligand
concentration we can fit the observed melting temperatures by using

RTnIn(14L, /K ) !
Tm,Obs =Tm(1l - - AHf <) (30)

if we have one binding site, or

- L, ,+K,,+K
Tobs = Tm(1 = AH ™ (RTmin(L + Ly, * 5—5—02)))  (31)

in case of two binding sites.
4.2. Curve fitting

The observed melting temperature calculated from the first derivative as
a function of the total ligand concentration is fitted using the Levenberg
Marquardt (damped least-squares) algorithm to estimate AHand K, (or

K,. Kyo).

da’
4.3. Fitting errors

Explained in section 2.3.

Packages

FoldAffinity is possible thanks to:

R language: R Core Team (2020). R: A language and environment for
statistical computing. R Foundation for Statistical Computing, Vienna,
Austria. URL https://www.R-project.org/.

R package shiny:  Winston Chang, Joe Cheng, JJ Allaire, Yihui Xie and
Jonathan McPherson (2020). shiny: Web Application Framework for R. R
package version 1.4.0.2. https://CRAN.R-project.org/package=shiny




R package viridis: Simon Garnier (2018). viridis: Default Color Maps from
‘matplotlib’. R package version 0.5.1.
https://CRAN.R-project.org/package=viridis

R package tidyverse: Wickham et al., (2019). Welcome to the tidyverse.
Journal of Open Source Software, 4(43), 1686,
https://doi.org/10.21105/j0ss.01686

R package pracma: Hans W. Borchers (2019). pracma: Practical Numerical
Math Functions. R package version 2.2.9.
https://CRAN.R-project.org/package=pracma

R package shinydashboard: Winston Chang and Barbara Borges Ribeiro
(2018). shinydashboard: Create Dashboards with 'Shiny'. R package
version 0.7.1. https://CRAN.R-project.org/package=shinydashboard

R package ggplot2: H. Wickham. ggplot2: Elegant Graphics for Data
Analysis. Springer-Verlag New York, 2016.

R package xIsx: Adrian Dragulescu and Cole Arendt (2020). xlsx: Read,
Write, Format Excel 2007 and Excel 97/2000/XP/2003 Files. R package
version 0.6.3. https://CRAN.R-project.org/package=xlsx

R package reshape2: Hadley Wickham (2007). Reshaping Data with the
reshape Package. Journal of Statistical Software, 21(12), 1-20. URL
http://www.jstatsoft.org/v21/i12/.

R package tippy: John Coene (2018). tippy: Add Tooltips to 'R markdown'
Documents or 'Shiny' Apps. R package version 0.0.1.
https://CRAN.R-project.org/package=tippy

R package shinyalert: Pretty Popup Messages (Modals) in 'Shiny'. R
package version 1.1. https://CRAN.R-project.org/package=shinyalert

R package plotly: C. Sievert. Interactive Web-Based Data Visualization
with R, plotly, and shiny. Chapman and Hall/CRC Florida, 2020.

R package tableHTML: Theo Boutaris, Clemens Zauchner and Dana Jomar
(2019). tableHTML: A Tool to Create HTML Tables. R package version 2.0.0.
https://CRAN.R-project.org/package=tableHTML




R package rhandsontable: Jonathan Owen (2018). rhandsontable:
Interface to the 'Handsontable.js' Library. R package version 0.3.7.
https://CRAN.R-project.org/package=rhandsontable

R package remotes: Jim Hester, Gabor Csardi, Hadley Wickham, Winston
Chang, Martin Morgan and Dan Tenenbaum (2020). remotes: R Package
Installation from Remote Repositories, Including 'GitHub'. R package
version 2.1.1. https://CRAN.R-project.org/package=remotes

R package devtools: Hadley Wickham, Jim Hester and Winston Chang
(2020). devtools: Tools to Make Developing R Packages Easier. R package
version 2.3.0. https://CRAN.R-project.org/package=devtools

R package shinyjs: Dean Attali (2020). shinyjs: Easily Improve the User
Experience of Your Shiny Apps in Seconds. R package version 1.1.
https://CRAN.R-project.org/package=shinyjs

R package data.table: Matt Dowle and Arun Srinivasan (2019).
data.table: Extension of data.frame. R package version 1.12.8.
https://CRAN.R-project.org/package=data.table

R package reticulate: Kevin Ushey, JJ Allaire and Yuan Tang (2020).
reticulate: Interface to 'Python'. R package version 1.16.
https://CRAN.R-project.org/package=reticulate

R package shinycssloaders: Andras Sali and Dean Attali (2020).
shinycssloaders: Add CSS Loading Animations to ‘'shiny' Outputs. R
package version 0.3. https://CRAN.R-project.org/package=shinycssloaders

Python3.7 language: Van Rossum, G., & Drake, F. L. (2009). Python 3
Reference Manual. Scotts Valley, CA: CreateSpace.

Python package numpy: Travis E, Oliphant. A guide to NumPy, USA: Trelgol
Publishing, (2006). Stéfan van der Walt, S. Chris Colbert, and Gaél
Varoquaux. The NumPy Array: A Structure for Efficient Numerical
Computation, Computing in Science & Engineering, 13, 22-30 (2011),
DOI:10.1109/MCSE.2011.37

Python package pandas: Wes McKinney. Data Structures for Statistical
Computing in Python, Proceedings of the 9th Python in Science
Conference, 51-56 (2010)

Python package scipy: Pauli Virtanen, Ralf Gommers, Travis E. Oliphant,
Matt Haberland, Tyler Reddy, David Cournapeau, Evgeni Burovski, Pearu



Peterson, Warren Weckesser, Jonathan Bright, Stéfan J. van der Walt,
Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew
R. J. Nelson, Eric Jones, Robert Kern, Eric Larson, CJ Carey, ilhan Polat, Yu
Feng, Eric W. Moore, Jake VanderPlas, Denis Laxalde, Josef Perktold, Robert
Cimrman, lan Henriksen, E.A. Quintero, Charles R Harris, Anne M.
Archibald, Antonio H. Ribeiro, Fabian Pedregosa, Paul van Mulbregt, and
SciPy 1.0 Contributors. (2020) SciPy 1.0: Fundamental Algorithms for
Scientific Computing in Python. Nature Methods, 17(3), 261-272.

Python package xlIrd: https://xlrd.readthedocs.io/en/latest/index.html

Python package natsort: https://natsort.readthedocs.io/en/master/




eSPC, an Online Data
Analysis Platform for
Molecular Biophysics

ThermoAffinity 1.0 User
Documentation

July 2021



Table of Contents

1. Load input
1.1. Input file (raw data)
1.2. Normalization
1.3. Median filter (smoothing)
1.4. Hot and cold region selection
2. Fitting
2.1 Model
2.2 Initial estimates and boundaries of the parameters
2.3 Curve fitting
2.4 Fitting errors



Overview

ThermoAffinity has seven panels (Figure 1). Panels 1-2 contain the
necessary steps to analyze user data. The Simulate data Panel can be
used before doing an experiment to analyze the expected change in the
signal depending on the binding affinity and the protein and ligand

concentrations.
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222 1. Load input

£ 2. Fitting

22 3. Export results
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Figure 1. ThermoAffinity online tool panels.

1. Load input
1.1. Input file (raw data)

ThermoAffinity accepts as input the spreadsheet generated by
NanoTemper Technologies. This file contains one sheet called ‘RawData’
where the first column has different cells with the following labels:
‘Capillary Position:’, ‘Ligand:’, ‘Ligand Concentration:’, and ‘Time [s]'.
Then, the second column stores the associated information: ‘1’, ‘ligand
description’, ‘5000’, and ‘Raw Fluorescence [counts]’ (Figure 2). The next
capillary information is going to be read from columns 4 and 5, then from
columns 7 and 8, etc.



Project Title:
Comment:
Project File Path:
Analysis-Set Name:
Exported from:|MST Traces (Raw Data Inspection)
Exported on: 2020-09-14 15:25:28.999
Merge-Set Name: | Merge-Set Name:
Run Name: | Run Name:
Jate of M ement: 2020.09-14 14:36:24.037 Date of M £:2020-09-14 14:37:19.254
Capillary Type:|Unspecified container/capillary type Capillary Type:|Unspecified container/capillary type
Caplilary Positlion:1 Caplilary Position:2
Ligand:liqand descrption . .. ... | Ligand:/ligand description |
Jgand Concentration: 5000 Ligand Concentration:[2500
Target: Target Target:Target
TargetConcentration:|n/a :nfa
MST-Power: Medium MST-Power: Medium
Excitation-Power: 1% Excitation-Power:|1%
Excitation type: [ Excitation type:| [Free
Thermostat Setpoint:/40.0°C Thermostat Setpoint:|40.0°C
— . Included
Time [s] Raw Fluorescence [counts]) Time [s] Raw Fluorescence [counts]
5.5141544342041 9992.29296875 -5.5141544342041 11974.638671875
5.43963861465454  |9980.5830078125 -5.43963861465454  [11978.1728515625
5.36512327194214  |9981.939453125 -5.36512327194214  |11981.4521484375
5.29060745239258 |10053.0146484375 -5.20060745239258  [11955.068359375

Figure 2. Example of the spreadsheet required to load the MST experiment
result into ThermoAffinity.

ThermoAffinity can also load a file with no header and two columns
separated by spaces, comma, or semicolon. The first column has
information about the ligand concentration and the second about the
signal value.

1.2. Normalization

The signal of each curve is divided by the mean value of the signal before
the T-jump (time <= 0).

1.3. Median filter (smoothing)

The median filter consists of calculating the median value of a
temperature rolling window.

1.4. Hot and cold region selection

The thermophoretic signal of the hot (F,,) and cold (F.) regions are
averaged to get the Fnormvalues (Iﬁ ).
Cold



2. Fitting

2.1 Model

The models implemented in ThermoAffinity are useful for all cases where
a signal can be described by a linear combination of the unbound protein
and complex. This can be Fnorm=F, ./ F (thermophoresis shift) or
the initial fluorescence.

hot cold

The signal is fitted using a simple model where the contribution of the
complex and the unbound protein is given by the following equation:
Signal(K;, L,,P,) =RF1*P(K, L,,P,)+RF2xPL(K,L,,P,) (1)
where P and PL are respectively the unbound free protein and the bound
protein. P, and L, are respectively the total protein and ligand
concentration and K is the equilibrium dissociation constant linked to the
chemical equilibrium
P+LoPL, K, = (P*xL)/PL (2)

and

RF1 and RF2 are parameters that represent the signal per unit of
concentration.

Using Equation 46 and the fact that the total ligand and protein
concentrations are constant, we can transform the signal to:

Signal(Ky, Lo, Po) = 0.5 ((Kg+ Py +Lg) —/(Kg+Py+Lg)* —4xPyLg)) *
(RF2 —RF1)+RF1%P,  (3)

Two binding sites

In the case of the binding sites, the signal can be explained by a linear
combination of the amount of free unbound protein, right-bound complex
(PL), left-bound complex (LP), and double-bound complex (LPL).

Signal(LO,PO,Kdll,Kdlz,cFactor) =
RF1*xP + RF2*xPL+ RF3*«LP + RF4xLPL (4)

where RF1, RF2, RF3and RF4are parameters to fit that represent the

signal per units of concentration, L,, P, Kd,l' Kdlzand cFactor are



respectively the total protein concentration, total ligand concentration, the
equilibrium dissociation constant 1, the equilibrium dissociation constant
2, and cooperativity factor. The associated chemical equilibria are

P+2L «PL+L (5)
P+2L«»LP+L (6)
PL+L e LPL (7)
LP+L =« LPL (8)

with equations

P =K, *K,,*(Ly—L) /((Ky, +Ky, +2%L)xL)  (9)

PL=(L*P/K,,) (10)
LP = (L*P/K,,) (11)
LPL = —LPL __ (12)

Kd,2 * cFactor

where L is the free ligand concentration that corresponds to the the only
physical root of the equation

X +px*+gX +r (13

p= [Kd’1 + Kd'2 + (2 *P —LO) /| cFactor] xcFactor (14)
q=1I[P, —L0)>|<(KO,,1 +Kd,2) +K,, *Kdlz]*cFactor (15)
r= [_LO*Kd,l*Kd,Z]*CFaCtor (16)

Due to the number of parameters, we have simplified this model to some
alternatives.

For parameters RF1, RF2, RF3and RF4, we have

a) RF2=RF3=RF1+AF & RF4 =RF1 + 2AF
b) RF1 =RF2& RF4 =RF3 =RF1+AF

For K Kd,Z and cFactor,

dl’

a) Kd,1=Kd,2& cFactor = 1
b) Kd1=Kd12& cFactor # 1
c) Kd1¢Kd,2& cFactor = 1



2.2 Initial estimates and boundaries of the parameters

To improve the convergence of the fitting procedure, initial estimates and
boundaries are estimated as follows.

Parameter Initial value

min(signal) . . . _ . . . max(signal)
RF2 P, if maxLigSignal <= minLigSignal else — P,
RF1 maxtsignal) if maxLigSignal <= minLigSignal else Mdnd)

0

0
Ky Ky1,Kqy, median( LigConcVec)

*maxLigSignal and minLigSignal are respectively the signal of the

position with the highest and Ilowest ligand (binding partner)
concentration. LigConcVecis the vector containing the ligand
concentrations.

Paramet Lower bound Upper bound

er

RF2, RF1 min(RF1, ., RF2, .)*0.7 if max(RF1, ., RF2, .)*1.4if
min(RF1, .,RF2, ) > 0else max(RF1, .., RF2, ) > 0else
min(RF 1Init’RF21nit) x1.4 max(RF 1Init’RF21nit) *0.7

Kd min(LigConcV ec) * 1.5 max(LigConcVec) /1.5

Ke1:Kg>, min(LigConcVec) * 3 max(LigConcVec) / 3

2.3 Curve fitting

The Fnorm (or initial fluorescence) versus ligand concentration is fitted
using the Levenberg Marquardt algorithm. In all cases, the units of RF1
and RF2 are [ 1/ uM].

2.4 Fitting errors
The standard deviation of all fitted parameters is computed using the

square root of diagonal values from the fit parameter covariance matrix
(using the R programming language package minpack.Im).



Packages

ThermoAffinity is possible thanks to:

R language: R Core Team (2020). R: A language and environment for
statistical computing. R Foundation for Statistical Computing, Vienna,
Austria. URL https://www.R-project.org/.

R package shiny:  Winston Chang, Joe Cheng, JJ Allaire, Yihui Xie and
Jonathan McPherson (2020). shiny: Web Application Framework for R. R
package version 1.4.0.2. https://CRAN.R-project.org/package=shiny

R package viridis: Simon Garnier (2018). viridis: Default Color Maps from
'matplotlib'. R package version 0.5.1.
https://CRAN.R-project.org/package=viridis

R package tidyverse: Wickham et al., (2019). Welcome to the tidyverse.
Journal of Open Source Software, 4(43), 1686,
https://doi.org/10.21105/j0ss.01686

R package pracma: Hans W. Borchers (2019). pracma: Practical Numerical
Math Functions. R package version 2.2.9.
https://CRAN.R-project.org/package=pracma

R package shinydashboard: Winston Chang and Barbara Borges Ribeiro
(2018). shinydashboard: Create Dashboards with 'Shiny'. R package
version 0.7.1. https://CRAN.R-project.org/package=shinydashboard

R package ggplot2: H. Wickham. ggplot2: Elegant Graphics for Data
Analysis. Springer-Verlag New York, 2016.

R package xlIsx: Adrian Dragulescu and Cole Arendt (2020). xIsx: Read,
Write, Format Excel 2007 and Excel 97/2000/XP/2003 Files. R package
version 0.6.3. https://CRAN.R-project.org/package=xlsx

R package reshape2: Hadley Wickham (2007). Reshaping Data with the
reshape Package. Journal of Statistical Software, 21(12), 1-20. URL
http://www.jstatsoft.org/v21/i12/.

R package tippy: John Coene (2018). tippy: Add Tooltips to 'R markdown'
Documents or '‘Shiny' Apps. R package version 0.0.1.
https://CRAN.R-project.org/package=tippy




R package shinyalert: Pretty Popup Messages (Modals) in 'Shiny'. R
package version 1.1. https://CRAN.R-project.org/package=shinyalert

R package plotly: C. Sievert. Interactive Web-Based Data Visualization
with R, plotly, and shiny. Chapman and Hall/CRC Florida, 2020.

R package tableHTML: Theo Boutaris, Clemens Zauchner and Dana Jomar
(2019). tableHTML: A Tool to Create HTML Tables. R package version 2.0.0.
https://CRAN.R-project.org/package=tableHTML

R package rhandsontable: Jonathan Owen (2018). rhandsontable:
Interface to the 'Handsontable.js' Library. R package version 0.3.7.
https://CRAN.R-project.org/package=rhandsontable

R package remotes: Jim Hester, Gabor Csardi, Hadley Wickham, Winston
Chang, Martin Morgan and Dan Tenenbaum (2020). remotes: R Package
Installation from Remote Repositories, Including 'GitHub'. R package
version 2.1.1. https://CRAN.R-project.org/package=remotes

R package devtools: Hadley Wickham, Jim Hester and Winston Chang
(2020). devtools: Tools to Make Developing R Packages Easier. R package
version 2.3.0. https://CRAN.R-project.org/package=devtools

R package shinyjs: Dean Attali (2020). shinyjs: Easily Improve the User
Experience of Your Shiny Apps in Seconds. R package version 1.1.
https://CRAN.R-project.org/package=shinyjs

R package data.table: Matt Dowle and Arun Srinivasan (2019).
data.table: Extension of data.frame. R package version 1.12.8.
https://CRAN.R-project.org/package=data.table

R package reticulate: Kevin Ushey, JJ Allaire and Yuan Tang (2020).
reticulate: Interface to ‘'Python'. R package version 1.16.
https://CRAN.R-project.org/package=reticulate

R package shinycssloaders: Andras Sali and Dean Attali (2020).
shinycssloaders: Add CSS Loading Animations to ‘'shiny' Outputs. R
package version 0.3. https://CRAN.R-project.org/package=shinycssloaders

R package nistools: Florent Baty, Christian Ritz, Sandrine Charles, Martin
Brutsche, Jean-Pierre Flandrois, Marie-Laure Delignette-Muller (2015). A
Toolbox for Nonlinear Regression in R: The Package nlstools. Journal of
Statistical Software, 66(5), 1-21. URL http://www.jstatsoft.org/v66/i05/




R package minpack.Im: Timur V. Elzhov, Katharine M. Mullen,
Andrej-Nikolai Spiess and Ben Bolker (2016). minpack.Im: R Interface to
the Levenberg-Marquardt Nonlinear Least-Squares Algorithm Found in
MINPACK, Plus Support for Bounds. R package version 1.2-1.
https://CRAN.R-project.org/package=minpack.lm

R package broom: David Robinson, Alex Hayes and Simon Couch (2020).
broom: Convert Statistical Objects into Tidy Tibbles. R package version
0.7.1. https://CRAN.R-project.org/package=broom

Python3.7 language: Van Rossum, G., & Drake, F. L. (2009). Python 3
Reference Manual. Scotts Valley, CA: CreateSpace.

Python package numpy: Travis E, Oliphant. A guide to NumPy, USA: Trelgol
Publishing, (2006). Stéfan van der Walt, S. Chris Colbert, and Gaél
Varoquaux. The NumPy Array: A Structure for Efficient Numerical
Computation, Computing in Science & Engineering, 13, 22-30 (2011),
DOI:10.1109/MCSE.2011.37

Python package pandas: Wes McKinney. Data Structures for Statistical
Computing in Python, Proceedings of the 9th Python in Science
Conference, 51-56 (2010)

Python package scipy: Pauli Virtanen, Ralf Gommers, Travis E. Oliphant,
Matt Haberland, Tyler Reddy, David Cournapeau, Evgeni Burovski, Pearu
Peterson, Warren Weckesser, Jonathan Bright, Stéfan J. van der Walt,
Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew
R. J. Nelson, Eric Jones, Robert Kern, Eric Larson, CJ Carey, ilhan Polat, Yu
Feng, Eric W. Moore, Jake VanderPlas, Denis Laxalde, Josef Perktold, Robert
Cimrman, lan Henriksen, E.A. Quintero, Charles R Harris, Anne M.
Archibald, Antonio H. Ribeiro, Fabian Pedregosa, Paul van Mulbregt, and
SciPy 1.0 Contributors. (2020) SciPy 1.0: Fundamental Algorithms for
Scientific Computing in Python. Nature Methods, 17(3), 261-272.

Python package xlIrd: https://xlrd.readthedocs.io/en/latest/index.html

Python package natsort: https://natsort.readthedocs.io/en/master/




