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The predictive power of simulation has become embedded in the infrastructure

of modern economies. Computer-aided design is ubiquitous throughout

industry. In aeronautical engineering, built infrastructure and materials

manufacturing, simulations are routinely used to compute the performance of

potential designs before construction. The ability to predict the behaviour of

products is a driver of innovation by reducing the cost barrier to new designs, but

also because radically novel ideas can be piloted with relatively little risk.

Accurate weather forecasting is essential to guide domestic and military flight

paths, and therefore the underpinning simulations are critical enough to have

implications for national security. However, in the pharmaceutical and

biotechnological industries, the application of computer simulations remains

limited by the capabilities of the technology with respect to the complexity of

molecular biology and human physiology. Over the last 30 years, molecular-

modelling tools have gradually gained a degree of acceptance in the

pharmaceutical industry. Drug discovery has begun to benefit from physics-

based simulations. While such simulations have great potential for improved

molecular design, much scepticism remains about their value. The motivations

for such reservations in industry and areas where simulations show promise for

efficiency gains in preclinical research are discussed. In this, the first of two

complementary papers, the scientific and technical progress that needs to be

made to improve the predictive power of biomolecular simulations, and how this

might be achieved, is firstly discussed (Part 1). In Part 2, the status of computer

simulations in pharma is contrasted with aerodynamics modelling and weather

forecasting, and comments are made on the cultural changes needed for

equivalent computational technologies to become integrated into life-science

industries.

1. The physical properties of biomolecules and how this
relates to their function

In biochemistry, the accepted paradigm is that structure

underpins function. Structural biology provides the basis for

our understanding of biological mechanisms, including

diseases caused by mutations and infection, and the design of

potential therapies. The concept of a specific binding pocket

with the correct shape and chemical complementarity to

accommodate a drug (embraced by the ‘lock-and-key

hypothesis’ of biomolecular interactions; Lemieux & Spohr,

1994) is central to rational structure-based design. The Protein

Data Bank contains over 180 000 biomolecular structures

(as of May 2021) determined by X-ray, NMR and electron
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cryo-microscopy (cryo-EM) to atomic resolution (https://

www.rcsb.org; Burley et al., 2021). While this is invaluable for

investigating biomolecular recognition within complexes, it is

often not sufficient to translate the biochemical ‘structure–

function’ concept into a quantitative algorithm for predicting

how strongly a putative drug will bind to its target protein and

whether it would disrupt functional protein–protein inter-

actions. Nevertheless, the observation that pharmaceutical

companies run automated downloads of the PDB, as well as

often performing in-house structure determination using

X-ray crystallography and now increasingly cryo-EM, shows

the value of this structural information to structure-based drug

design.

The relationship between the static structures of interacting

partners and their binding affinities is, however, obscured by

the dynamic nature of biomolecules. Proteins are sufficiently

deformable that they are classified as ‘soft matter’. As a

consequence of this soft mechanics, thermal motion generates

molecular conformations that can differ substantially from the

average structure. This ensemble of conformations is very

difficult to observe experimentally, as are the rearrangements

of water networks that take place during molecular recogni-

tion. Measurements of biomolecular affinities performed using

techniques such as isothermal titration calorimetry (ITC;

Huddler & Zartler, 2017) or microscale thermophoresis

(Jerabek-Willemsen et al., 2014) probe the average interaction

between �1013 biomolecules over timescales of seconds to

minutes under environmental conditions that are frequently

different from those required for experimental structural

studies. Solvent interactions, especially hydrophobic effects,

are central to biomolecular recognition, but remain poorly

understood at the structural level. The balance between

structure and dynamics in biomolecular recognition is

captured by the thermodynamic definition of the free energy

(�G; see Fig. 1), which is directly related to the binding affi-

nity. Additional understanding of the underlying molecular

changes can be obtained by performing ITC at different

temperatures and measuring heat-capacity changes (�Cp).

While �Cp is broadly correlated with the degree of burial of

apolar surfaces on complexation, other factors such as changes

in protein flexibility during induced fit, or salt concentration,

can make a significant contribution (Bergqvist et al., 2004).

The soft mechanics of biomolecules is vital to their function.

It enables them to act as molecular switches and machines.

The mixture of stiff, ordered secondary structure and flexible

disordered loops and hinges in proteins generates a complex

underlying free-energy landscape containing multiple energy

minima separated by energy barriers. In biomolecular

switches, the binding of a specific activator or repressor

perturbs the shape of this free-energy landscape to favour a

new conformation. Allosteric communication, signalling

cascades, cell membrane transporters and molecular motors

all perform their functions by undergoing large conforma-

tional changes in response to the binding of other proteins or

metabolites. It is often difficult to characterize all of the

important states using structural studies of fixed species,

particularly for membrane proteins (see Table 1).

The solvent/lipid membrane environment has an enormous

effect on protein kinetic timescales, as well as on protein

structure and thermodynamics. The ratio of the inertial to

viscous forces (the Reynolds number) for proteins in water is

extremely low, meaning that protein motions are heavily

overdamped. Overcoming multiple free-energy barriers in a

highly viscous environment requires time. Consequently,

proteins explore their conformational states very slowly, with

implications for relevant simulation timescales.
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Figure 1
The changes in free energy (�G) that drive molecular recognition. The equilibrium is biased towards ligand binding when the thermodynamically
favourable interactions (for example electrostatic attraction, hydrogen bonding, burial of hydrophobic groups and van der Waals forces) are larger than
the thermodynamically unfavourable contributions (for example ligand desolvation, reduction in entropy associated with complexation and structural
distortion of the ligand or protein, for example during induced-fit interactions).



2. Physics-based biomolecular simulation for
pharmaceutical design: successes and limitations

Biomolecular simulation provides dynamic information to

better connect static experimental structures to biological

function. These ‘physics-based’ simulations rely on two

fundamental ingredients which both introduce approxima-

tions and caveats into the computer models. The first is the

calculation of conformational energies via a set of empirical

potentials known as the ‘force field’ and the second is

sampling the numerous configurations of a molecular system,

including solute conformations and solvent motions. Not all

sampling methods are suitable to compute physically sound

quantities; currently, molecular dynamics (MD) under defined

temperature and pressure has emerged as the main strategy,

although Monte Carlo-based probabilistic sampling has been

used for coarse-grained modelling (Ouldridge et al., 2011;

Kmiecik et al., 2016) and to improve the efficiency of relative

binding free-energy calculations (Cournia et al., 2017). MD

simulations use Newtonian mechanics to evolve biomolecular

conformations as a function of time, often in full atomic detail,

thereby generating an ensemble of molecular structures that

arises due to thermal fluctuations, as shown in Fig. 2. Water

can be represented explicitly, so the fluctuating water

networks that drive hydrophobic interactions are accounted

for, and charged counterions can be included.

Molecular-dynamics simulations have become almost

routine, and the availability of fast and cheap GPU processing

has made them accessible to researchers who do not have

access to high-performance computing (HPC) facilities. An

overview of the field has been published by the Collaborative

Computational Project for Biomolecular Simulation

(CCPBioSim; Huggins et al., 2019). A comprehensive collec-

tion of accessible reviews of current MD topics, such as

advanced sampling, force-field development and the inclusion

of experimental data (Bonomi & Camilloni, 2019), and expert

articles describing state of the art in computational drug

design (Wade & Salo-Ahen, 2019) are also available.

In principle, MD simulations have the potential to allow us

to observe the binding equilibria between ligands and their

biomolecular targets, to obtain on/off rates and binding affi-

nities, and to predict large-scale protein conformational

changes in response to external stimuli, such as effector or

cofactor binding. In practice, however, the speed of the algo-

rithms and the accuracy of the simulations are both still

sufficiently limited that the calculations are not fully predic-

tive, for the reasons discussed in detail below (Sections 2.1 and

2.2). The opportunities for improving the quantitative

predictions of biomolecular simulation are summarized in

Table 2.

2.1. Conformational sampling is limited by computational
cost

An atomistic MD simulation of a protein is typically

performed over microsecond timescales, which may take

around one month of simulation time depending on the size of

the protein and the computational resources available. The

constraints of the shortest length scale in an atomistic simu-

lation (usually covalent bonds to hydrogen) place a strict

upper limit on the integration time step that can be used to

evolve the dynamic trajectory. The timescale of MD simula-

tions is restricted by the dual constraints of this short time step

and the maximal speed achievable per step. As a time step of

2 fs is common, a typical simulation requires 109 MD cycles.

Unfortunately, increasing the number of processors used to

run the simulation can only improve the speed up to a hard

limit. Eventually, the communication time required to convey

information between processors starts to outweigh the

advantage of adding more. For Keap1 (see Fig. 2), a molecular

target for anti-inflammatory and antioxidant drug design

(Cuadrado et al., 2019), it is possible to obtain�330 ns per day

using the GPU version of AMBER18 on a standard RTX2060

Nvidia graphics card (MD simulations of Keap1 contain

around 30 500 atoms when solvated). For comparison, di-

hydrofolate reductase (which contains around 23 000 atoms

when solvated) runs at a speed of 85 ms per day on the

specialized Anton 2 supercomputer architecture (Shaw et al.,

2014). In 2020 the UK HECBioSim consortium performed a

comprehensive benchmarking exercise for popular MD codes

(for example NAMD, AMBER and GROMACS), including

HPC architectures that have not yet been used extensively
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Table 1
Caveats for PDB structural information; the PDB (and increasingly the
EMDB) are essential resources for structural molecular biology.

Protonation states. As most X-ray structures do not resolve hydrogen, the
protonation states of titratable amino-acid residues are generally unknown.
NMR can allow specific protonation states to be assigned, although this is
complex, low-throughput and system-dependent. Metal ions are also
difficult to identify with certainty [X-ray absorption fine structure (XAFS)
or anomalous data collection at specific wavelengths are required]. This has
implications for drug design because the nature of the ion (for example
zinc, manganese or magnesium) matters if the compound binds to it
directly.

Flexible loops. X-ray structures frequently do not resolve the most flexible
regions of biomolecules, such as unstructured protein loops. Side chains or
loops with multiple fixed conformations can also be invisible unless very
high-resolution diffraction data are collected. Highly flexible structures,
such as intrinsically disordered proteins or single-stranded nucleic acids,
will not crystallize at all.

Post-translational modifications. Many proteins are chemically modified
during the course of their function, for example through the addition of
sugars (glycosylation), lipid modifications that target proteins to the
membrane (lipidation; for example farnesylation), phosphorylation and
many others. These modifications can be permanent, such as glycosylation
of the collagen protein, or transient, such as the tagging of proteins for
destruction by ubiquitination. This chemical diversity is often vital to
ensure that proteins follow the correct biochemical pathways or perform
their structural roles, but is difficult to capture through structural
determination.

Environmental conditions. Crystallization conditions are nonphysiological,
and sometimes exceedingly so, with non-natural mutations, extremes of pH,
salt concentration and nonbiological organic additives and even cross-
linkers. For membrane proteins, this is particularly problematic because the
number of factorial conditions screened for initial crystal hits (often 1000
different conditions for soluble proteins) are multiplied by the variety of
detergents and/or lipids that need to be screened. Protein–protein contacts
in the crystal can also potentially distort the shape of a protein or that of a
bound compound, or more likely, lock the protein into a single
conformation from its dynamic conformations in solution. In vivo, proteins
are often organized into functional multi-unit complexes (Robinson et al.,
2007), which may influence their conformations, and which also bury key
surfaces.



for MD, such as ARM (see https://www.hecbiosim.ac.uk/

access-hpc/our-benchmark-results/dirac-arm-benchmarks and

https://www.hecbiosim.ac.uk/access-hpc/our-benchmark-results/

isambard-benchmarks) and IBM Power 9 (see https://

www.hecbiosim.ac.uk/access-hpc/our-benchmark-results/

bede-benchmarks). This exercise highlighted that GPU

versions of GROMACS and AMBER performed partic-

ularly well (see https://www.hecbiosim.ac.uk/access-hpc/

our-benchmark-results/jade2-benchmarks), showing how

the optimization of codes for new computational architectures

such as GPUs can be transformative in

terms of computational speeds.

Biomolecular simulations are

stochastic because atomic motion is

driven by random thermal noise. Minor

perturbations to the starting conditions,

such as swapping around the atomic

speeds at the beginning of the simula-

tion, will result in subtly different

simulation trajectories, and structures,

being sampled from the same phase

space. To account for this inherent

randomness, practioners run ‘repeat’

calculations from arbitrarily different

starting conditions to generate a statis-

tical ensemble. Comparing simulation

trajectories, for example two simula-

tions run with different force fields,

is therefore challenging, because

converged statistical averaging is

needed to detect any discrepancies.

However, replica calculations have the

advantage that each runs concurrently,

so achieving tenfold better sampling

does not require waiting ten times

longer for the simulation to finish,

assuming that sufficient computational

resources are available.

Pharmacological activity is sensitive

to drug-binding kinetics as well as

thermodynamics. Kinetics is relevant to

factors such as clinical indication of the

therapy and the duration of the ther-

apeutic effect. The distinctive roles of

thermodynamics and kinetics in drug

discovery have been explained in a

recent review (Tonge, 2018). In prin-

ciple, on and off rates will be calculable

using atomistic MD simulations when

simulations are fast enough to observe

multiple binding–unbinding events,

simply by observing binding/unbinding

kinetics within the MD trajectories.

However, in practice advanced

sampling methods need to be employed

(Bruce et al., 2018). The binding kinetics

of representative biomolecular inter-

actions, for example the biotin–strept-

avidin interaction, the saquinavir–HIV1

protease interaction and the DOT1L–

aminonucleoside inhibitor interaction,

show that the on rates for ligand binding
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Figure 2
Protein dynamics for (a) a Keap1 Kelch domain–peptide complex (left panel; PDB entry 2flu) and
(b) a Keap1–small-molecule complex (left panel; PDB entry 4iqk); ligand dynamics for the systems
are shown in the right panels and a movie of the Keap1–small-molecule complex is provided as
supporting information. (c) The SARS-CoV-2 nsp13 helicase protein modelled from the SARS-
CoV-1 structure (PDB entry 4jyt) is shown in the left (top view) and right (side view) panels. Each
of the images shows dynamics sampled every 10 ns from 1 ms trajectories. Protein structures are
shown in a cartoon representation, coloured by secondary structure, and the ligands (left and
centre) are shown in liquorice representation, coloured by atom name, and indicated with arrows.
Images were created using VMD. Over femtosecond to picosecond timescales, the main motion is
atomic bond vibrations and local side-chain rearrangements. Over longer (nanosecond to
microsecond) timescales, the protein and ligand undergo large-scale, overdamped, global motions
around a free-energy minimum. Proteins have complex free-energy landscapes containing multiple
minima, which give rise to different conformational states which may be functionally relevant. Over
extended (microsecond to millisecond) timescales, the protein will diffuse between these
conformations. Over even longer timescales, the ligand will repeatedly bind and unbind from the
pocket.



are relatively consistent (in the range 106–108 m�1 s�1) but the

off rate varies with the dissociation constant of the interaction

(koff, 10�6–102 s�1; Kd, 10�14–10�6 M). This implies that to

observe unbinding events simulations of 0.01–100 000 s in

length are required (Copeland, 2016), which are currently

computationally unfeasible. Chemically activated conforma-

tional changes, for example in membrane-bound transporters,

occur over millisecond timescales, and molecular motor

timescales, which often additionally involve negotiating a

complex, crowded cellular environment, can take minutes. The

possible solutions are to either speed up

the calculations or simplify the problem

(see Table 2).

For the foreseeable future, multi-

scale methods and enhanced sampling

will be required, especially for larger

systems such as protein–protein inter-

actions. A robust comparison of current

state-of-the-art methods for calculating

protein–ligand association and dis-

association rates against two well char-

acterized benchmark systems (mutant

T4 lysosyme–ligand and N-HSP90–

inhibitor complexes) showed that

simulations can already usefully predict

relative dissociation rates, but empha-

sized that access to high-quality

experimental data sets is essential for

further methods development and

validation (Nunes-Alves et al., 2020).

Advanced sampling applied to G-

protein coupled receptors has enabled

the complex conformational landscape

to be reconstructed, providing struc-

tures of previously unseen active inter-

mediates and revealing state-dependent

cholesterol hotspots that are potential

allosteric regulatory sites (Lovera et al.,

2019).

2.2. MD force-field parameterization is
crucial for accuracy

The accuracy of an MD simulation

depends critically on the accuracy of the

underlying energy model (force field;

Dauber-Osguthorpe & Hagler, 2019),

because this is how the relative energies

of each molecular conformation are

calculated. Force-field development is

highly challenging because the potential

must be carefully refined by balancing

numerous parameters for every

chemical motif of interest. As yet, no

systematic automated method has

emerged which performs this task

satisfactorily, placing severe limitations

on the reliability of computational predictions for pharma-

ceutical molecular design, especially for molecular-recognition

events. The equilibria that govern binding and unbinding

events in molecular recognition are exquisitely sensitive to

small changes in the underlying free energy (Foloppe &

Hubbard, 2006), since there is an exponential relation

between the association binding constant and the corre-

sponding binding free energy (Fig. 1). A 1 kcal mol�1 free-

energy change results in an almost tenfold change in the

corresponding binding constant (Foloppe & Hubbard, 2006).
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Table 2
Opportunities for improving the predictive power of biomolecular simulations.

Improvements to both speed and accuracy are ongoing, and are interdependent. Faster calculations and
better sampling improve the statistical convergence of the simulations, which makes the assessment of the
underlying energy models more reliable.

Hardware and algorithm speed. Improvements to the mathematical structure of the algorithms used to
propagate the dynamics, such as optimization on bespoke hardware, can massively accelerate progress,
as has been demonstrated by Shaw et al. (2014). Continuous improvement in computing hardware has
brought the sampling capability of MD simulations and variants into a regime which is now relevant to a
range of molecular-design questions in drug discovery (De Vivo et al., 2016). Improved MPI
parallelization, and porting of simulation codes such as AMBER and GROMACS to GPUs, have
already brought massive improvements in speed to the user community. Changes to algorithms that
enable better exploitation of larger (for example, towards exascale) parallel resources could also be
hugely beneficial in the future.

Improving sampling efficiency. The simulation community has created a wealth of tools to accelerate
conformational sampling (for an accessible review, see Lazim et al., 2020). Replica exchange MD, for
example, uses elevated temperatures to push biomolecules over the conformational barriers that trap
simulations in local minima. Techniques such as metadynamics use biasing potentials to prohibit
molecules exploring conformations that have already been adequately sampled. Alternatively, adaptive
MD exploits successive MD trajectories where their starting configurations depend on the previous
exploration of conformational space (Lovera et al., 2019).

Simplified models. Major efforts are directed to provide less computationally intensive models, such as
coarse-grained simulations, Gaussian/elastic network models and Brownian dynamics simulations.
Coarse-grained simulations require fewer particles (Kmiecik et al., 2016), can use a longer integration
time step and have proven to be particularly successful for studying membrane proteins, including their
interactions with ligands (Souza et al., 2020; for a review of MD simulations of lipid–protein interactions,
see Muller et al., 2019). Gaussian/elastic network models have shown the relationship between structure
and dynamics, and how this can be used to understand how functional protein conformational changes
occur (Tobi & Bahar, 2005), including allosteric interactions (McLeish et al., 2015). Brownian dynamics
(Huber & McCammon, 2019) has been used in conjunction with atomistic methods to predict binding
and unbinding kinetics (Jagger et al., 2018) and to investigate molecular crowding (McGuffee & Elcock,
2010). To achieve this improved efficiency, all of these simplified methods need to impose
conformational restrictions on the flexibility of the protein. Such simplifications involve tradeoffs with
respect to atomistic accuracy. Improved theoretical understanding of the mechanics of proteins and
their large-scale conformational changes, and of the role of hydration, could potentially lead to
fundamentally new models capable of exploring a wider diversity of protein conformations relevant to
function, and may be essential to further our understanding of large macromolecular complexes.

Improving accuracy. Atomistic and coarse-grained simulations rely on empirically derived parameters
chosen to capture essential chemical details in protein interactions, without the need to explicitly
represent electronic structure. Force-field improvement requires continued efforts and access to high-
quality experimental information for validation. In pharma, a big issue is the development of accurate
force fields for diverse chemical compounds. The capability to perform simulations of small proteins for
multiple microseconds now provides statistically converged trajectories, which will allow force-field
deficiencies to be distinguished from sampling limitations; for example the folding free energy of Trp
cage mutants (Piana et al., 2020). Despite continued improvements, it is likely that general-purpose
atomistic force fields will be inadequate for describing certain classes of biomolecular interactions, such
as those involving unusually high levels of electronic polarization. Polarizable force fields go beyond
conventional fixed-charged models in treatment of local electrostatic interactions, and for example have
been shown to improve descriptions of ion permeation through membrane-bound protein ion channels
(Jing et al., 2019). Hybrid quantum-mechanical/molecular-mechanical (QM/MM) calculations, in which
a specific region (for example a substrate-binding site) represented at the QM level is embedded within
a larger classical system, have also been used to study polarization effects (Beierlein et al., 2011),
including a systematic study of the polarization of ligands by protein targets (Willow et al., 2020). As
conventional classical force fields are not able to represent rearrangements of covalent bonds, studying
enzyme-catalysed reactions requires either quantum mechanics or specialist methods [for example
multi-configurational reactive MD (Yamashita et al., 2012) or the empirical valence-bond model (EVB;
Kamerlin & Warshel, 2011)].



Consequently, very small errors in the calculated binding

potential energies (and the accompanying free energies) result

in exponentially magnified errors in the binding constants,

i.e. unreliable predictions of ligand–target affinities. Thus,

somewhat quantitative binding-affinity predictions would

require force fields that are accurate to at least 0.5 kcal mol�1.

Unfortunately, the complexity and diversity of intermolecular

interactions has made such accuracy elusive. This issue has

plagued binding-affinity calculations (Mikulskis et al., 2014),

especially when confronted with the vast diversity of small

molecules investigated for drug discovery. There is no

fundamental obstacle to the derivation of a force field

covering the vast array of chemistries encountered in phar-

maceutical discovery, apart from the tremendous determina-

tion and effort required. This is being tackled by some

research groups, with incremental but steady progress

(Vanommeslaeghe & MacKerell, 2015; Harder et al., 2016;

Hagler, 2019; Piana et al., 2020). Alongside improved config-

urational sampling, this provides a stronger foundation for

molecular simulations to contribute to pharmaceutical

research.

2.3. Current applications of biosimulation in pharma

Many small molecules are difficult, time-consuming or

resource-intensive to make synthetically. Simulations capable

of predicting biomolecular binding free energies reduce the

number of compounds that need to be synthesized and tested

in the laboratory, improving the efficiency of the drug-

discovery pipeline. Free-energy perturbation (FEP) has begun

to be used by pharma to predict the relative binding free

energies of congeneric compounds (Jorgensen, 2009; Wang et

al., 2015; Schindler et al., 2020). Most commonly, FEP calcu-

lations morph one ligand (or interacting residue in the binding

site) into another using a series of small alchemical changes

(Michel et al., 2010). This can be computationally expensive

because the perturbation must be applied slowly to obtain

adequate sampling. FEP is successful as a theory since it is

based on a sound statistical-mechanical treatment, can be

implemented computationally and is adapted to the medicinal

chemistry practice of introducing stepwise modifications to

lead compounds during optimization. FEP considers local

perturbations resulting from small chemical changes to the

ligand or its binding pocket. This reduces the computational

complexity of the calculations, because it does not need to

either predict the relative affinity of chemically diverse ligands

or identify de novo binding modes/sites, or sample large-scale

conformational rearrangements of the protein. Moreover, by

focusing on a single chemical scaffold, researchers can tune

their parameterization to achieve the accuracy necessary,

without the need to provide a general solution for the whole of

chemical space. In addition, FEP can be used to select muta-

tions to engineer protein stability (Duan et al., 2020; Ford &

Babaoglu, 2017); such stabilized proteins are sought for more

robust assays, increased chances of crystallization or more

stable therapeutic biologics.

Simulations in drug discovery go well beyond FEP calcu-

lations. MD simulations have been used to identify binding

hotspots on protein surfaces via so-called co-solvent simula-

tions (Ghanakota & Carlson, 2016), in which a protein is

simulated in the presence of selected small solutes present at

high concentrations in aqueous solution; it can identify protein

surface patches with a propensity to bind organic fragments

(in competition with water), or highlight the type of chemical

group displacing water efficiently in a particular pocket. Since

the surface of a protein is dynamic, some pockets open only

transiently and may not be observed in an X-ray structure, and

for this reason have been dubbed ‘cryptic pockets’ (Vajda et

al., 2018). Even a small cryptic pocket may be of interest if it

can be reached from a nearby larger binding site, in particular

when targeting shallow protein sites involved in protein–

protein interactions. Cryptic pockets may be revealed by

standard MD (Martinez-Rosell et al., 2020) or enhanced

sampling methods (Oleinikovas et al., 2016). The same

approaches may also reveal allosteric pockets, and allosteric

modulation of proteins (through long-range changes in

structure or dynamics; Motlagh et al., 2014), which have been a

focus of the pharmaceutical industry in recent years (Durrant

& McCammon, 2011). MD simulations in explicit solvent can

also be used to observe the conformational flexibility of

compounds in their unbound state (Foloppe & Chen, 2016) to

approach the energetic and entropic contributions of

compound conformational focusing upon binding to a

biomolecule. The prediction of compound permeation across

lipid membranes, which is a physicochemical property vital to

both drug uptake, distribution and toxicity, is yet another

promising application of simulations (Awoonor-Williams &

Rowley, 2016).

The ability to examine the dynamic structure of a protein

via plain MD should not be underestimated. Visualizing side-

chain rearrangements in a targeted site or the dynamics of

nearby loop conformations can provide mechanistic insight

that is invaluable for drug development, for example in the

analysis of antivirals against influenza (Amaro et al., 2009).

Indeed, simulations have been likened to a ‘computational

microscope’ (Dror et al., 2012). While simulations have begun

to contribute to molecular design in the pharmaceutical and

biotechnology industries, other engineering fields, such as

aerospace, have benefitted more rapidly from the adoption of

computational tools. The developments needed to bring more

computational tools into pharma are summarized in Table 3.

3. The future potential of biomolecular simulation for
pharma

All molecular recognition in biology fundamentally involves

chemical complementarity, molecular flexibility and the

surrounding solvent environment. Physics-based simulations,

such as MD, are uniquely able to capture the details of this

physical chemistry because these models are built up from a

physical understanding of molecular interactions and

mechanics. They have the capability to capture both atomistic

details and global conformational changes. Other (very useful)

computational chemistry approaches include docking using

empirically derived scoring functions, quantitative structure–

topical reviews

Acta Cryst. (2021). D77, 1348–1356 Tom Edwards et al. � Biomolecular simulation in the pharmaceutical industry 1353



activity relationship analyses and quantum-mechanical calcu-

lations. However, these approaches are unable to represent

the full complexity of binding phenomena in aqueous solvent,

because when used in isolation these methods are unable to

account for dynamics or hydration of the compounds and the

protein. Therefore, it is essential that drug-discovery teams

learn how to harness the growing power of physics-based

simulations. In addition to drug-design applications, this

should provide much-needed theoretical insights into mole-

cular recognition. An essential addi-

tional development must be the

improvement of the potentials (‘force

fields’) used to propagate the simula-

tions. As argued above, much of the

groundwork for this is being laid, and

progress towards those objectives is

achievable in the foreseeable future.

However, cultural shifts will also be

required alongside technical improve-

ments.

The time taken to obtain results is an

important criterion because of the fast

pace of industrial drug-discovery

projects. The rapid response of the

biomolecular simulation community to

the COVID-19 pandemic shows that

MD is now fast enough to provide

insightful results as the situation

evolves. MD simulations combined with

cryo-EM have identified a linoleic acid

binding site in the SARS-CoV-2 spike

glycoprotein, which offers a new target

site for drug design (Toelzer et al., 2020);

simulations of emerging mutations in

the receptor-binding site of the spike

protein have provided molecular-level

insights into the associated changes in

transmissibility (Luan et al., 2021) and

MD studies of spike-protein glycoforms

have shown how much of the surface is

shielded by glycans, with implications

for antibody recognition and design

(Grant et al., 2020).

As biomedical interventions become

more sophisticated, for example using

antibody–drug conjugates, smart drug-

delivery vehicles, theranostics or other

biologics, fundamentally new types of

computational models to optimize

design will be needed. Computer

models constructed to complement

experimental studies help researchers to

visualize the different components of

their experimental procedures, which

can assist in identifying variables that

need to be controlled. The success of

the AlphaFold neural network in

predicting protein structures (Senior et al., 2020) has gener-

ated much interest in applying artificial intelligence to phar-

maceutical design (Schneider et al., 2020); however, past

experience also suggests that overenthusiasm for nascent tools

can lead to disappointment (Jordan, 2018). Engineering

capabilities have been enhanced by computer models

throughout industry, and in Part 2 we will discuss how devel-

opments in computer hardware, software and methods for

standardization and validation have enabled aerodynamics

topical reviews

1354 Tom Edwards et al. � Biomolecular simulation in the pharmaceutical industry Acta Cryst. (2021). D77, 1348–1356

Table 3
Developments that may encourage the adoption of biomolecular simulations by industry.

Standards validation and software reliability. Industry has more confidence in computational tools when
there is standardization, consensus on best practice and error quantification. For experimental drug
development, for the foreseeable future, computational tools provide a route to speeding up the initial
discovery stage rather than truncating the process and providing a direct route from in silico design to
clinical evaluation. Therefore, the current priorities relate to barriers to entry, robustness and
effectiveness of the software for a diverse user group. Currently, there is not a clear standout docking
and simulation pipeline that is able to achieve all of these objectives across the full range of molecular
targets. Whilst improving docking algorithms and scoring functions has many challenges, rapid progress
in the tests of MD force fields could be possible now that statistical convergence is sufficient for
comparison with experimental data. However, this requires the experimental and simulation
communities to work together to generate the experimental data sets that are needed to validate the
models. The Drug Design Data Resource Grand Challenge aims to ‘test and advance the state of the art
in protein-ligand modelling by holding community-wide, blinded, prediction challenges’ (Gaieb et al.,
2019). These competitions inspire communities to define objective criteria for assessing the performance
of computational predictions, and reveal the most promising approaches. This has the potential to assist
industry in making informed choices about the computational tools that will provide the greatest
benefits to their research programs. Community-supported, standardized software repositories and data
sets for validating simulations could therefore be highly beneficial, because new methods could be
benchmarked for reliability, ease of use, speed and accuracy at the time of publication.

Ease of use of software. In academia, a successful methodology often emerges as a result of numerous
incremental improvements and adjustments contributed by multiple research teams. This results in a
myriad of complementary tools that may perform much the same function, but using slightly different
assumptions or parameters. For industry, the effort required to assess performance is then prohibitive.
Moreover, poor reliability of software installations, which can involve complex inter-dependencies on
external tools, licencing obstacles, limited documentation and sustainability issues (for example
outdated software libraries) also discourages industry uptake of new computational tools from
academic groups.

Error quantification. Reduced computational costs and development of automated workflows has now
enabled simulators to explore how errors in stochastic trajectories can be quantified (Grossfield et al.,
2018). In one approach aimed at drug design, multiple instances of a simulation with different starting
conditions were performed, and the error was calculated from the ensemble distribution (Bhati et al.,
2018). The propagation of errors across different computational regimes is also important in multi-scale
simulations, and will need careful assessment when such schemes are used to model biomolecular
complexes.

Multi-scale and integrative modelling. The revolution in molecular biology generated by electron cryo-
microscopy and electon cryo-tomography is generating structural information for ever-larger
biomolecular complexes. These experiments are revealing that biomolecular structure is highly
organized across all length scales and why the cellular context of biomolecules is important to their
function and consequently for their pharmacological responses (Robinson et al., 2007). Minimal coarse-
grained models have been used to simulate super-macromolecular structures such as the cytoskeleton,
whole genomes and protein compartments (Hafner et al., 2019). They are increasingly used for
integrative biology, in which simulations incorporating experimental restraints are performed at
multiple resolutions, so that disparate sources of experimental information can be combined into a
consensus model (Koukos & Bonvin, 2020). One challenge for biomolecular simulation is our lack of
understanding of the multiple variables in biological systems, and the implications for the accuracy
required for molecular-level calculations. Coarse-grained simulations that explore the next length scale
up will provide better understanding of the sensitivity of biological mechanisms to specific atomistic
details, providing guidance on accuracy requirements.

Cultural issues. It takes time for novel methods to be accepted, especially if that requires a shift in mindset.
Pre-clinical discovery proceeds primarily by wet-laboratory trial and error, with high attrition rates
being the norm. Theoretical predictions can frequently appear futile when confronted with the
complexities of chemistry and biology. Thus, the notion that MD simulations may offer respectable, or
even operational, science still faces prejudice ranging from scepticism to hostility (Merz, 2010; Mikulskis
et al., 2014; Lowe, 2019). Well documented credible exemplars are essential to educate and convince.
Such studies have started to surface, and several pharma companies are investing in a computational
infrastructure intended for physics-based molecular simulations. Raising awareness about the scientific
foundations of molecular simulations, and the inclusion of computational chemists in decision making,
may encourage the wider integration of computational modelling with experimental planning by
pharma.



and weather modelling to become embedded in the research

culture in these fields. Quantitative biomolecular simulations

promise equivalent benefits and may not be far behind.
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