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RNA secondary-structure (rSS) assignment is one of the most routine forms of

analysis of RNA 3D structures. However, traditional rSS assignment programs

require full-atomic structures of the individual RNA nucleotides. This prevents

their application to the modeling of RNA structures in which base atoms are

missing. To address this issue, Coarse-grained Secondary Structure of RNA

(CSSR), an algorithm for the assignment of rSS for structures in which

nucleobase atomic positions are incomplete, has been developed. Using CSSR,

an rSS assignment accuracy of �90% is achieved even for RNA structures in

which only one backbone atom per nucleotide is known. Thus, CSSR will be

useful for the analysis of experimentally determined and computationally

predicted RNA 3D structures alike. The source code of CSSR is available at

https://github.com/pylelab/CSSR.

1. Introduction

In order to carry out their biological functions, many RNA

molecules assemble into compact structures by forming

networks of base-paired interactions, known as RNA

secondary structure (rSS). Traditional rSS assignment

programs such as Dissecting the Spatial Structure of RNA

(DSSR; Lu et al., 2015), RNAview (Yang et al., 2003), MC-

Annotate (Gendron et al., 2001), FR3D (Sarver et al., 2007)

and RNApdbee (Zok et al., 2018) require full-atomic struc-

tures in order to specifically identify individual nucleotides of

modeled base pairs. Here, we refer to ‘rSS assignment’ as the

determination of specific base pairings from the 3D coordi-

nates of solved RNA structures or models. The accurate

computational assignment of rSS is particularly important for

monitoring and analyzing specific changes in secondary

structure that occur during simulations of RNA 3D confor-

mational change or folding pathways (Ding et al., 2008). While

there are empirical methods for determining rSS states from

experimental data, such as SHAPE-MaP (Siegfried et al.,

2014) and DMS-MaP (Zubradt et al., 2017), it remains

important to develop orthogonal computational methods for

assigning rSS from full-atomic structures.

One barrier to accurate rSS assignment is that many

experimental and computational RNA 3D structures are

relatively coarse-grained, i.e. there are regions of the structure

that are not known with certainty, or there are regions (or

atoms) that are completely missing. For example, among the

experimentally determined RNA structures deposited in the

PDB, approximately 5.6% of the RNA chains only contain P

atoms. Meanwhile, while there are a few programs such as

FARFAR (Watkins et al., 2020) that sample full-atomic RNA
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structures, many popular RNA structure-prediction programs

(Gherghe et al., 2009; Tan et al., 2006) mainly or solely

represent predicted structures as coarse-grained models. For

example, 3dRNA (Wang et al., 2017) can represent each

nucleotide by six atoms (P, C40 and C10 on the backbone and

C2, C4 and C6 on nucleobases), IsRNA (Zhang & Chen, 2018)

includes five atoms per pyrimidine nucleotide (P, C40 and three

nucleobase atoms) and four atoms per purine nucleotide (P,

C40 and two nucleobase atoms), SimRNA (Rother et al., 2012)

includes three types of atoms (P, C10 and the glycosidic N of

the nucleobase) and NAST (Jonikas et al., 2009) only samples

conformations by monitoring the position of the C30 atoms.

The resulting lack of full-atomic information complicates the

follow-up structural analyses, including rSS assignments.

Previous efforts have been made to assign rSS to reduced

representations of RNA structures. For example, the ClaRNA

server (Waleń et al., 2014) can reconstruct missing atoms

before rSS assignment, as long as at least three base atoms are

present for each nucleotide. It is, however, unable to handle

coarse-grained structures containing two or fewer base atoms,

which is a common case for low-resolution experimental

structures and coarse-grained computational models. Perhaps

the first program that can assign rSS for highly coarse-grained

RNA structures is pdb2ss, which is a submodule of the RNA-

align package (Gong et al., 2019) that is used for tertiary-

structure alignment. The pdb2ss program infers base pairs

according to the distances between backbone atoms. Since it

does not consider orientations between nucleotide pairs, its

assignment accuracy is low, especially when only phosphate

atoms are available, as shown in later sections of this paper.

To address these issues, we developed CSSR, which is an

automated algorithm for rSS assignment that is applicable to

any RNA PDB structure with one or any combination of the

following ten atom types: the phosphate atom (P), the eight

heavy atoms on the sugar ring (C50, C40, C30, C20, C10, O50, O40

and O30) and the glycosidic N atom of the nucleobase. The rSS

assignment is achieved by computing the agreement of

pseudo-bond lengths, pseudo-bond angles and dihedral angles

formed by constituent atoms between an input structure and

the standard length/angle/dihedral values from statistics of

canonical base pairs in high-resolution RNA structures. The

CSSR program can be used for the ultrafast calculation of

base-pairing energy terms during RNA folding and refinement

simulations (Wang et al., 2017; Rother et al., 2012, Jonikas et

al., 2009) and for generating training labels for low-resolution

experimental structures for machine-learning-based rSS

predictors (Singh et al., 2019).

2. Materials and methods

2.1. CSSR score calculation

For a given input atomic RNA structure, CSSR first iden-

tifies nucleotide pairs that satisfy the following two criteria:

firstly the nucleotide should have at least one of the ten atom

types considered by CSSR and secondly the nucleotide type

should be compatible with canonical base pairing, defined as

Watson–Crick (A:U or C:G) and wobble (G:U) pairs. For each

nucleotide pair i and j that satisfies these criteria, the CSSR

score is calculated to indicate the base-pairing potential:

CSSRði; jÞ ¼
P
�2A

½1� h�ði; jÞ
2
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Here, A = {P, C50, C40, C30, C20, C10, O50, O40, O30, N} is the

set of atom types considered; diha(i, j), disa(i, j) and anga(i, j)

are inter-nucleotide dihedral angles, inter-nucleotide distances

and inter-atomic angles, respectively, between nucleotides i

and j for atom type a as illustrated in Fig. 1; �dih
a , �dis

a and �ang
a

are their expected values, while �dih
a , �dis

a and �ang
a are the

standard deviations for the dihedrals, distances and angles of

their background distribution in experimental structures

(Supplementary Fig. S1). If a certain dihedral/distance/angle

cannot be calculated due to missing atoms, the respective term

for the atom type is ignored for this nucleotide pair. In most

RNA structures a base pair rarely exists as a singleton; instead,

it is more commonly observed within helices, where the base

pair can stack with a neighboring pair (or two neighboring

base pairs) formed by adjacent nucleotides. Therefore, in

CSSR(i, j), distances between i and j, between i + 1 and j � 1,

and between i � 1 and j + 1 are all considered for each atom

type. Meanwhile, the geometry definition of dihaði; jÞ and

angaði; jÞ already considers the coordinates of nucleotides that

are adjacent in the sequence. In (1), each geometry term has

equal weight, because attempts to tune the weights among

different terms did not result in more accurate rSS assign-

ments.

2.2. Post-processing of CSSR scores

Since one nucleotide cannot simultaneously form Watson–

Crick or wobble pairings with two or more nucleotides, it is

necessary to filter CSSR scores to remove conflicting base

pairs. To this end, all nucleotide pairs with CSSR scores �0.5

are listed in descending order of their scores. Here, the CSSR

score cutoff of 0.5 is chosen as it provides a good balance

between precision and recall for almost all atom types (black

dots in Supplementary Fig. S2). Nucleotide pairs are then

iteratively excluded from this list if one or both nucleotides

overlap with any pairs that rank higher on the list. The

remaining pairs in the list will be the final base pairs assigned

by CSSR. This post-processing step does not use dynamic

programming such as that implemented by the Zuker (Zuker

& Stiegler, 1981) or Nussinov (Nussinov & Jacobson, 1980)
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algorithms, and is therefore capable of generating pseudo-

knotted structures, as exemplified by Supplementary Fig. S3.

3. Results and discussion

3.1. Data set

CSSR is benchmarked on 361 nonredundant RNA chains

collected from the PDB. This collection of RNAs was selected

based on the following criteria. Firstly, each chain has 30–700

nucleotides and at least ten intra-chain canonical base pairs

assigned by DSSR (Lu et al., 2015). Secondly, only structures

with resolution better than 4 Å are included so that DSSR

can be used to accurately assign the ground-truth base pairs.

Finally, similar to previous studies (Hanumanthappa et al.,

2020; Singh et al., 2019), any two chains in the data set share

<80% sequence identity, which is the minimal sequence-

identity cutoff by CD-HIT-EST (Huang et al., 2010).

3.2. Overall performance of CSSR on experimental 3D
structures

As shown in Fig. 2, using C40, C30 or P atoms only, the rSS

assigned by CSSR achieves an agreement of 0.919, 0.900 and

0.863, respectively, in terms of F1-score (see Section S1 for

the definition) relative to the ground-truth assignment. These

levels of agreements are 13%, 21% and 138% higher than

those achieved by pdb2ss, which is the only existing rSS

assignment program for coarse-grained RNA structures.

Similar conclusions can be reached based on the Matthews

correlation coefficient (MCC) instead of F1-score (Table 1).

To put this into perspective, sequence-based rSS prediction by

RNAstructure (Reuter & Mathews, 2010) using only thermo-

dynamic parameters achieves an F1-score of 0.644 on this data

set, indicating that accurate assignment of rSS for this data set

is not trivial. In this comparison, among the programs included

in the RNAstructure package for rSS prediction, the Probable-

Pair program is chosen due to its slightly higher F1-score

compared with those from other programs, including

ProbKnot (F1-score = 0.636), Fold (F1-score = 0.610) and

CycleFold (F1-score = 0.408).

Notably, using only three atoms per nucleotide (P, C40 and

C10), CSSR achieves a high agreement (F1-score = 0.944) with

ground-truth assignment, which is derived by DSSR (Lu et al.,

2015) using the full-atomic RNA structures. This F1-score is

almost the same as that achieved by CSSR using a full-atomic

structure (F1-score = 0.948) and is comparable to the agree-

ments among full-atomic rSS assignment programs (F1-score

= 0.965 for DSSR versus RNAView; F1-score = 0.942 for DSSR

versus MC-Annotate; Table 1). These data suggest that three

backbone atoms are sufficient to accurately define the local

geometry of an RNA structure.
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Figure 1
Illustration of the geometry terms [dihedral angle dihP(i, j) (a), distance disP(i, j) (b) and angle angP(i, j) (c)] included in CSSR score calculation for
nucleotide pair i and j in an input RNA structure with only a P atom. Each ‘P’ in the upper panels represents the P atom of a single nucleotide; a solid
black bar connecting two P atoms means the two nucleotides are adjacent nucleotides in the same strand. The lower panels are the background
distribution of these geometry terms among experimental RNA structures. Distributions for Watson–Crick (WC) and G:U wobble (g/u) base pairs are
shown in light and dark gray, respectively, while the mean and standard deviation of the distributions are listed within the parentheses in the legend. The
distribution of geometry terms for other atom types are shown in Supplementary Fig. S1. Here, P[i], P[i+1] and P[i-1] refer to the P atoms of nucleotide i
and those of the previous and subsequent nucleotide along the sequence.



It is more challenging to use

the P atom than any other atom

for rSS assignment by either

CSSR or pdb2ss. This is because

the interatomic distance in a

canonical base pair is farthest for

the P atom compared with all

other atom types (Supplementary

Fig. S1). Consequently, the

distances, dihedrals and angles

calculated using P atoms have the

largest variations (Supplemen-

tary Fig. S1), which makes rSS

assignment challenging. We

tested whether rSS assignment

for the P atom can be improved

by combining CSSR and RNA-

structure through weighted aver-

aging of their assignment/

prediction scores, as these two

programs are based on comple-

tely different principles. As

shown in Table 1, this strategy

only leads to a minor improve-

ment of 2% in F1-score under

optimal weights of 0.8 and 0.2 for

CSSR and RNAstructure, respec-

tively, while the F1-score for

other atom types show little to

no improvement. Moreover, the

inclusion of RNAstructure signif-

icantly slows down CSSR: for

example, CSSR itself only needs

0.05 s for Lactococcus group II

intron (PDB entry 5g2x chain A;

692 nucleotides) but needs 18 s to

include RNAstructure. Therefore,

in this work, we use CSSR

without RNAstructure as the

default rSS assignment, although

CSSR + RNAstructure is offered

as an optional feature in the

CSSR standalone program.

While CSSR assigns both

Watson–Crick base pairs (A:U

and G:C) and wobble base pairs

(G:U), the accuracies of Watson–

Crick pair assignments are

consistently higher than those for

wobble pairs for all atomic types

(Supplementary Table S3). This

is probably due to the much

smaller number of wobble base

pairs available in experimental

structures that can be used to

train CSSR (Supplementary Fig.

S1). Similarly, due to limited
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Figure 2
Average F1-score of rSS assignment by CSSR (black), CSSR + RNAstructure (dark gray), pdb2ss (light
gray) and RNAstructure (white) for different atom types. ‘All’ means using all atoms for CSSR or sequence-
based prediction without atomic coordinates for RNAstructure. The values within the bars are the average
and standard error of mean (SEM) of per-target F1-scores. The error bars show the SEM values. F1-scores
for other atom types are shown in Supplementary Tables S1 and S2.

Table 1
Average F1-score (average MCC) obtained by CSSR, pdb2ss, RNAstructure, CSSR + RNAstructure,
RNAView and MC-Annotate for 361 benchmark RNAs.

Different columns represent different atom types. ‘All’ means using all atoms for CSSR and RNAView and using
only sequence without atomic coordinates for RNAstructure. The value for pdb2ss is NA (not applicable) in this
column because it can only perform single atom-based rSS assignment.

Method All
C10, C40, P
atoms C40 atom C10 atom C30 atom P atom

CSSR 0.948 (0.949) 0.944 (0.945) 0.919 (0.920) 0.916 (0.917) 0.900 (0.901) 0.863 (0.864)
pdb2ss NA NA 0.816 (0.822) NA 0.744 (0.758) 0.362 (0.412)
RNAstructure 0.644 (0.648) NA NA NA NA NA
CSSR + RNAstructure 0.947 (0.948) 0.941 (0.942) 0.921 (0.922) 0.917 (0.919) 0.910 (0.911) 0.884 (0.886)
RNAView 0.965 (0.966) NA NA NA NA NA
MC-Annotate 0.942 (0.944) NA NA NA NA NA

Figure 3
(a) Average F1-score of rSS assignment for predicted 3D structures. The error bars show the SEM values.
The ground-truth rSS assignment was obtained by running DSSR for the full-atomic native structures. The
F1-scores for other atom types are shown in Supplementary Tables S4 and S5. (b, c) The rSS assignment
F1-score versus the quality of 3D structure models in terms of TM-scoreRNA (b) or r.m.s.d. (c), where the
glycine riboswitch is indicated by an arrow.



training structures, the current CSSR method cannot assign

Hoogsteen/sugar edge base pairs, which are even rarer than

wobble base pairs. As more and more experimental RNA

structures are determined, it is likely that a future version of

CSSR retrained on more structures could improve the

assignment accuracies for these non-Watson–Crick base pairs.

3.3. Performance of CSSR on predicted RNA structure
models

We further examined the ability of CSSR to assign rSS to

computationally predicted structures, which is one of the

important motivations for developing CSSR. To this end, we

collected all 21 modeling targets from a recent community-

wide RNA puzzle challenge (Magnus et al., 2020), which is

publicly available from https://github.com/mmagnus/RNA-

Puzzles-Standardized-Submissions. This data set includes 15

monomeric RNAs, five RNA dimers and one RNA octamer.

The modeling targets range from 41 to 188 nucleotides. Each

target has up to 107 predicted structure models, among which

the structure model with the best TM-scoreRNA is selected for

rSS assignment analysis. Here, TM-scoreRNA is a sequence-

length-independent metric previously developed to quantify

the overall similarity between two RNA 3D structures (Gong

et al., 2019). TM-scoreRNA ranges between 0 and 1, with higher

TM-scoreRNA corresponding to higher similarity. As shown in

Fig. 3(a), even when using predicted 3D structure models as

input, CSSR still achieves very high rSS assignment agreement

with the native rSS (average F1-score = 0.926 for full-atomic

models and F1-score = 0.916, 0.916 or 0.887 using C40, C30 or P

atoms only). This level of agreement between native rSS and

the rSS assignment for predicted structure models is similar to

that achieved by existing full-atomic rSS assignment programs

(average F1-score = 0.934, 0.931, 0.925 and 0.901 for DSSR,

ClaRNA, RNAView and MC-Annotate, respectively; Supple-

mentary Table S4). This suggests the usefulness of CSSR even

for low-resolution 3D structure models.

Perhaps surprisingly, the rSS assignment accuracy has little

correlation with the correctness of the global topology (TM-

scoreRNA and r.m.s.d.) of the input 3D structure model, with

Pearson correlation coefficients (PCCs) of �0.016 and 0.111,

respectively (Figs. 3b and 3c). This is largely because RNA

models with low global 3D structure quality can still have a

high degree of rSS agreement with the native structure. As a
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Figure 4
3D structure and rSS of a glycine riboswitch. (a) The RNA puzzle structure model (the first 24 and last 12 nucleotides are in blue; the middle 48
nucleotides are in orange) superimposed on the experimental structure (gray) as a whole chain. (b) The blue and orange parts of the structure model
separately superimposed on the experimental structure with r.m.s.ds of 10.6 and 3.8 Å, respectively. (c) Schematic of rSS. Base pairs that are in the
experimental 3D structure but not in the 3D structure model are shown by magenta dashed lines. The base pair that is in the structure model but not in
the experimental 3D structure is shown by a red dotted line. Base pairs common to experimental and computational 3D structures are shown by black
solid lines. (d) Sequence, rSS of the experimental structure (from DSSR) and rSS of the structure model, where assignments by DSSR and by CSSR are
identical. The colors of the sequences correspond to the colors of the corresponding structure models in (a) and (b). Nucleotides with different base
pairing in the experimental and computational 3D structures are shaded.



case study, we examined the glycine riboswitch from RNA

puzzle problem 3. The structure model has a TM-scoreRNA of

0.336 and an r.m.s.d. of 18.3 Å relative to the experimental

structure (PDB entry 3owi chain A; Fig. 4a). The main reason

for the dissimilarity between the experimental and computa-

tionally determined structures is that the placement of the first

24 and last 12 nucleotides (blue in Figs. 4a and 4b) was

incorrect in the computational model, although the remaining

48 nucleotides adopted the correct topology (orange in Figs. 4a

and 4b). Despite an inaccurate 3D structure model, the rSS

was largely modeled correctly (Figs. 4c and 4d), with only

three missing base pairs and one incorrectly included base pair

in the 3D model. Since the top RNA puzzle algorithms

(Biesiada et al., 2016; Watkins et al., 2020; Wang et al., 2017;

Xu et al., 2014) introduce strong rSS restraints during the

conformation-sampling simulation, the resulting RNA 3D

structure models, including that analyzed in Fig. 4, usually

preserve a high degree of rSS consistency with the native

structure. Nonetheless, our case study exemplifies the diffi-

culty of modeling non-base-paired interactions to derive a

correct 3D model from the rSS.
3.4. Performance of CSSR on low-resolution experimental
RNA structures

We further tested CSSR on 16 low-resolution RNA

experimental structures for which high-resolution full-atomic

structures of the same RNAs are also available. All low-

resolution structures contained only P atoms. On average,

CSSR achieves an F1-score of 0.884 to the ground-truth rSS

assigned by DSSR to the high-resolution structure (Supple-

mentary Table S6). This is much higher than that achieved by

pdb2ss (F1-score = 0.495) and sequence-based rSS prediction

by RNAstructure (F1-score = 0.697). These data confirm the

applicability of CSSR to low-resolution experimental data.

4. Conclusion

We developed CSSR, a new rSS assignment algorithm for

detecting base pairs in RNA 3D structures. To our knowledge,

CSSR is the one of only two algorithms available for rSS

assignment in RNA 3D structures with missing atoms, and the

only algorithm with 90% rSS assignment accuracy. The high

accuracy of CSSR and its robustness, regardless of the input

structure quality, makes CSSR a useful tool for modeling the

base pairing within both experimental and computationally

determined RNA structures. Moreover, the base-pairing score

of CSSR (1) is easy to calculate and differentiable, making

it easy to incorporate into RNA 3D structure-simulation

programs (Wang et al., 2017; Rother et al., 2012; Jonikas et al.,

2009) as an energy term. The current version of CSSR focuses

on the assignment of canonical base pairs. A natural extension

would be the assignment of non-canonical base pairs. Work

along this line is in progress.
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