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The static structure factor and the undulation dynamics of a solid-supported

membrane stack have previously been calculated by Romanov and Ul’yanov

[Romanov & Ul’yanov (2002). Phys. Rev. E, 66, 061701]. Based on this prior

work, the calculation has been extended to cover the membrane dynamics, i.e.

the intermediate scattering function as a Fourier transform of the van Hove

correlation function of the membrane stack. Fortran code which calculates the

intermediate scattering function for a membrane stack on a solid support is

presented. It allows the static and dynamic scattering functions to be calculated

according to the derivation of Romanov and Ul’yanov. The physical properties

of supported phospholipid bilayers can be examined in this way and the results

can be directly compared with results obtained from grazing-incidence neutron

spin-echo spectroscopy experiments.

1. Introduction

Multilamellar lipid assemblies play many important roles in

living systems. Examples include increasing the volume

concentration of protein complexes [as in mitochondrial

cristae (Fontanesi, 2015) or in the thylakoid stacks in chloro-

plasts (Mustárdy et al., 2008)], providing electrical insulation

(for example in the myelin sheaths around axons; Bean, 2007)

and regulating the structural and permeability properties of

tissue (such as in the stratum corneum of the skin; Iwai et al.,

2012). Multilamellar structures are also used in vitro,

commonly supported by a rigid substrate, to study various

biophysical phenomena such as membrane swelling (Kuklin et

al., 2020), membrane fusion (Pompeo et al., 2005) and inter-

actions between biomembranes and drug molecules (Jaksch et

al., 2015; Mangiapia et al., 2017). Aside from their use as tools

to study naturally occurring membrane stacks, supported

multilamellar assemblies are also finding an increasing

number of practical applications, for example in disease

diagnosis (Sloan et al., 2013), cell sensing (Minner et al., 2014)

and drug delivery (Joo et al., 2013), and have shown potential

as catalytic substrates (Heath et al., 2017) and as tuneable

photonic crystals (Lenhert et al., 2010). Such applications rely

on a comprehensive understanding of the structure and

dynamics of multilamellar systems and the biophysical

processes that underpin them. Further advancement in this

field is therefore inextricably linked to the development of

experimental and theoretical models that describe them.

The collective dynamics of multilamellar membrane struc-

tures are well suited to investigation by scattering methods. In
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techniques such as dynamic light scattering (DLS), neutron

spin-echo spectroscopy (NSE) and X-ray photon correlation

spectroscopy (XPCS), the dynamics of the samples are probed

as a function of both energy (i.e. the timescale of the

dynamics) and momentum transfer. This allows the observed

fluctuations to be characterized according to the length scales

on which they occur. The NSE technique, for example, enables

the investigation of relaxation times between 10 ps and 100 ns

at q-vectors in the region covered by small-angle neutron

scattering (SANS), i.e. between 0.02 and �0.5 Å (Holderer &

Ivanova, 2015); this corresponds approximately to the energy

and length scales of membrane collective undulation modes

(Kelley et al., 2019). The dynamics on smaller time and length

scales (i.e. the motion of individual molecules) can be studied

using inelastic neutron scattering (Rheinstädter et al., 2004).

For dynamics with longer relaxation times and larger length

scales (for example capillary waves along a phase boundary),

XPCS or DLS may be used (Sikharulidze et al., 2002; Sinha et

al., 2014). By employing several complementary techniques on

the same system, a holistic picture of the dispersion relation

may be constructed (Rheinstädter et al., 2006). By combining

XPCS and NSE, surface fluctuations in smectic membranes

have been studied over a broad range of length scales and

timescales to study capillary waves, separating the dynamics in

the normal and in-plane directions (Sikharulidze et al., 2003).

Recently, grazing-incidence neutron spin-echo spectroscopy

(GINSES) has been shown to provide additional information

on the dynamics of supported bilayers on larger length scales

of up to 1 mm. GINSES measurements on a membrane stack

of phospholipid membranes revealed an in-plane oscillatory

mode that had not previously been observed in multilamellar

soft matter (Jaksch et al., 2017). These modes were subse-

quently also observed with grazing-incidence small-angle

neutron scattering (GISANS; Jaksch et al., 2019).

In order to interpret the results from the scattering tech-

niques outlined above, it is necessary to have a sound theor-

etical description of the underlying physical phenomena, as

well as a means of linking this theoretical basis to the

experimental observations. In the case of supported multilayer

systems, the theoretical basis is provided by the work of

Romanov and Ul’yanov, hereafter referred to as the Romanov

model (Romanov & Ul’yanov, 2002). Originally conceived to

characterize the behaviour of supported, liquid-crystalline

smectic films, the Romanov model describes both the fluc-

tuation spectrum, as well as the associated scattering, from a

system of discrete layers adjacent to a solid support. The

results from this comprehensive work have been used to

interpret experimental data concerning the undulation

amplitudes (Khondker et al., 2017) and undulation frequencies

(Brotons et al., 2005) of lipid bilayer systems and also to

validate alternative models describing the dynamics of

supported multilamellar systems (Constantin et al., 2003).

In this work, the rigorous theoretical framework of

Romanov and Ul’yanov has been extended into the time

domain and further developed into the MembraneDyn soft-

ware. The software enables the calculation of both the static

and dynamic structure factors and can be used to interpret

experimental scattering data from supported soft multilayer

systems. We first introduce the mathematical framework

behind the calculations, then briefly discuss the implementa-

tion and finally assess the effects of various input parameters

on the final results and discuss how this information could be

used in practice.

2. Theory

2.1. The Romanov model

A full description of the Romanov model can be found

elsewhere (Romanov & Ul’yanov, 2002); however, it is useful

to reiterate the main points here. The formulation is based on

a system of N discrete parallel layers equally spaced by a

distance dlayer, with a free energy given by the surface integral,

F ¼
1

2

R
S

dr?

�
B

dlayer

PN�2

n¼1

ðunþ1 � unÞ
2
þ u2

N�1

� �

þ dK
PN�1

n¼1

ð�?unÞ
2
þ �ðr?u1Þ

2

�
; ð1Þ

where un is the (scalar) z-displacement (orthogonal to the

substrate) of layer n at point r? in the xy plane, B and K are

the layer compression and elastic constants, respectively, � is

the surface tension, and the integral is a surface integral.

In this geometry, layer N corresponds to the fixed substrate

(i.e. uN = 0) and layer 1 is the free surface. Under the

assumption that the motion of layer n arises only due to the

elastic force,�d�1(�F/�un), and the viscous force, �3�?(@un/@t)
(where �3 is the layer sliding viscosity), a set of equations can

be constructed defining the motion of each layer. If one

additionally assumes that the extent of the layers is infinite in

the directions parallel to the substrate, and that the motion is

governed by plane waves of the form

unðq?; !Þ exp½iðq? � r? � !tÞ�; ð2Þ

a 2D Fourier transformation yields a set of linear homo-

geneous equations that can be solved to give the eigenmodes

of the system (i.e. the eigenfrequencies !ðlÞ� and layer

displacement amplitudes uðlÞn for each mode l). In the original

work, these equations are solved analytically in the limiting

cases of q2
? � B=�d and q2

? � B=�d using Chebyshev poly-

nomials. In this work, the roots are found numerically for all

values of q?. The eigenmodes for a system of four layers and

nine layers (in addition to the immobile substrate) are shown

in Fig. 1.

The spatial correlation functions are obtained via the free-

energy expression in equation (1). This can reformulated in

Fourier representation as

F ¼
1

2

R dq?

ð2�Þ2
PN�1

n;m¼1

unðq?ÞMnmunð�q?Þ; ð3Þ

where Mnm are the matrix elements of the tridiagonal matrix

research papers

1250 Dominic W. Hayward et al. 	 MembraneDyn Acta Cryst. (2022). D78, 1249–1258
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y ¼
�Kd2

layerq
4
? � 2B

2B
; ð5Þ

� ¼
dlayer�q2

?

B
: ð6Þ

Note that equation (4) arises directly from the underlying

set of linear homogenous equations describing the motion of

the layers. To a first approximation, each layer interacts only

with the layers above and below, giving rise to the tridiagon-

ality when written in matrix form. The spatial layer displace-

ment correlation function is then given by

hunðrÞumð0Þi ¼
kBT

ð2�Þ2
R

dq?ðM̂M
�1
Þnm exp½iðq? � r?Þ�: ð7Þ

In the original work, the correlation functions are again

solved using Chebyshev polynomials. Finally, the expected

scattering intensity is determined by calculating the atom

positions tagged by their X-ray (electrons) or neutron (nuclei)

scattering lengths (i.e. the scattering length density convolved

with its inverse). This is equivalent to calculating the Patterson

function for the membrane stack

IðQÞ ’ h�ðQÞ�ð�QÞi:

The scattered intensity is therefore given by

h�ðQÞ�ð�QÞi ¼ 2��2
s j�MðQzÞj

2
ð8aÞ



PN

n;m¼1

exp½�iQzðn�mÞdlayer� ð8bÞ


 exp �
Q2

z

2
hu2

nðr? ¼ 0Þi þ hu2
mðr? ¼ 0Þi

� �� �

ð8cÞ


 GnmðQ?;QzÞ; ð8dÞ

where �s is the area density of molecules in the layers and �M

is the Fourier transform of the scattering length density (SLD)

of the molecules along the z axis. Note that although they

share the same physical units and indeed are both referred to

by the same symbol in the original model, the two quantities Q

and q are distinct and should not be confused. The lower-case

q is the wavevector associated with the plane waves intro-

duced in equation (2) and forms the variable of integration in

equation (3). The upper-case Q is the scattering vector, which

is an experimental variable. In the formulation above, equa-

tion (8a) gives the contribution from the scattering length

density contrast, equation (8b) gives the contribution from the

layer–layer distance, equation (8c) gives the contribution from

the mean-squared displacement and equation (8d) gives the

layer displacement correlation function,

GnmðQ?;QzÞ ¼
R�
0

dr? r?J0ðQ?r?Þ exp½Q2
zhunðr?Þumð0Þi�; ð9Þ

where � is the spatial extent of the film surface. Details of how

these equations have been implemented and extended into the

time domain are provided in the supporting information.

3. Results

Due to the large number of experimental variables that are

present in the model, it is instructive to examine the effects

of each in turn. In this way, it is possible to build up a

comprehensive picture of how each parameter affects the
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Figure 1
Comparison of the undulation amplitudes and eigenfrequencies !l for different layers n, modes l and total layers N for a given q?. The wavelengths in (a)
and (b) are normalized such that !l = N � 1 = 1; the undulation amplitudes are likewise normalized to the largest amplitude in l = N � 1. The colours are
not significant other than to distinguish neighbouring layers.



dynamics of supported lamellar systems. To aid the inter-

pretation, a selection of the simulated intermediate scattering

functions were also fitted using a simple exponential model

with an oscillating component of the form

Sfit ¼ Aþ ð1� AÞ expð��	Þ þ B cosð�	 þ �Þ; ð10Þ

where A is the magnitude of the plateau, B is the amplitude of

the oscillation, � is the decay constant, � is the relative

frequency of the oscillation and � is the phase of the oscilla-

tion. Fig. 2 shows a graphical representation of these para-

meters along with examples of the fits to simulated

intermediate scattering functions. Although this simple model

does not replicate the simulated data perfectly, it is sufficient

to identify the sets of parameters of most interest for further

experimental study (for example a slow decay with strong

oscillations). Unless stated otherwise, the parameters used to

generate the results in the remainder of this section are given

in Table 1.

3.1. Scattering vectors: Q? and Qz

The scattering vectors link the intermediate scattering

function, and hence the dynamics, to the length scales on

which they are observed. For the out-of-plane scattering

vector Qz, the dynamics are very sensitive to the location of

the correlation peaks, as can be seen in Fig. 3. The height of

the plateau gradually decreases with increasing Qz whilst

oscillating with the Kiessig fringes and correlation peaks. The

decay constant follows a series of troughs and peaks, where

the former coincide with the correlation peaks. This slowing

down of the dynamics at the correlation peaks in S(Q) is

known as de Gennes narrowing and has been well docu-

mented (De Gennes, 1959; Holderer et al., 2007; Sobolev, 2016;

Wu et al., 2018). Crucially, the amplitude of the oscillations in

the intermediate scattering function also exhibits maxima

around the correlation peaks. Presumably, this is due to the

fact that at these Q-values one is explicitly probing the

average layer–layer separation distances and therefore layer–

layer correlation functions. A corollary of this effect can be be

found when examining the behaviour of the inter-layer

spacing at constant Qz. The results are shown in the

supporting information and highlight the sensitivity of the

system to very small changes in sample thickness. For the

purposes of model validation, the optimum Qz value would be

on the shoulder of a higher-order Bragg peak; here, the

oscillations of the intermediate scattering function (ISF) are

still strong and the dynamics are sufficiently fast that long

Fourier times are not required.

The behaviour of the ISF with increasing Q? is shown in

Fig. 4. At small in-plane scattering vectors the plateau remains

close to unity with comparatively strong oscillations. Conver-

sely, for large in-plane scattering vectors the ISF decays to a

very low plateau with little oscillation. The transition between

the high-plateau/strong-oscillation and low-plateau/weak-

oscillation regimes occurs at Q? ’ 0.005–0.008 Å�1. This

threshold marks the approximate boundary below which

collective behaviour is observed and is thought to correspond
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Figure 2
(a) Illustration showing the contributions of the terms A, B and � (dashed lines) to Sfit in equation (10) (solid line). (b) Representative computed
intermediate scattering functions, S(Q, 	), using the parameters given in Table 1 for N = 3, 5 and 10 (circles). The computed data were subsequently fitted
with equation (10) (dashed lines).

Table 1
Summary of the parameters and values used for the simulations shown in
Section 3.

Parameter Description Value Unit

N Number of layers 5
B Layer compression modulus 1 
 106 N m�2


 Layer bending modulus 19 kBT
�3 Layer sliding viscosity 2 
 10�3 Pa s
T Temperature 308.15 K
dlayer Interlayer distance 60 Å
Qz z component of the scattering vector 0.21 Å�1

Q? In-plane component of the scattering vector 0.0065 Å�1

dev Evanescent field depth 500 Å
rmax r integration limit 2000 Å
qmax q integration limit 1 Å�1

Nr Number of r integration points 2000
Nq Number of q integration points 200
wcut Cutoff width 0.3



to the wavelength of the dominant membrane oscillations,

in this case �80 nm. Interestingly, this corresponds almost

exactly to the wavelengths of 75–100 nm observed experi-

mentally for collective oscillations in a lipid membrane stack

via GISANS (Jaksch et al., 2019).

3.2. Number of layers: N

The effects of increasing the number of layers in the system

is shown in Fig. 5. The number of lamellae in a stack princi-

pally influences the observed dynamics in two ways. Firstly,

and rather trivially, the number of layers affects the static

structure factor S(Q, 0), as shown in Fig. 3(a). Increasing the

number of layers gives rise to sharper Bragg peaks and more

fringes in the structure factor. As shown above, the scattering

function S(Q, 	) is rather sensitive to the scattering vector

being probed (i.e. the proximity of Qz to a peak in the static

structure factor). However, this sensitivity can be somewhat

mitigated by probing at a scattering vector on the shoulder of

a Bragg peak.

Secondly, the number of layers affects the dynamics of the

system as a whole: the more layers that are present, the greater

the number of available energy modes. Importantly, this

means that the undulation amplitude of the layers closest to

the solid surface varies in a discrete (and not necessarily

linear) fashion. The effect of this is that the dynamical beha-

viour does not vary linearly with the number of layers, as can

be seen from the darker and lighter stripes in Fig. 5(a). This

can be problematic for experimental systems, where the

precise number of layers is not necessarily well known or

constant over the illuminated sample. In general, however, it

can be seen that increasing the number of layers has the effect

of damping the collective dynamics (lower oscillation ampli-

tudes), slowing the overall dynamics (smaller decay

constants).

It should also be noted that increasing the number of layers

in the system increases the calculation time; this can be seen in

Fig. 5(c). On a single core, the calculation time of one ISF for a

five-layer system is approximately 180 s. The calculation time

scales with t ’ [N(N + 1)]/2, a dependence which stems

directly from the total number of correlation functions unm
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Figure 3
Overview of the simulation results for different out-of-plane scattering vectors. (a) The scattering intensity at 	 = 0 for different total numbers of layers.
The evolution of the intermediate scattering functions with changing Qz is shown in (b) for all data and in (c) for selected examples. (d) The
corresponding evolution of the fitted values. The shaded green bar in (d) highlights the region in which the collective dynamic behaviour is observed
most clearly. The standard parameter values used can be found in Table 1.



that must be calculated in a system with N layers. For larger

systems, the calculation times were observed to increase faster

than this triangular scaling, most likely due to bottlenecks

associated with the storage and manipulation of very large

arrays.

3.3. Layer compression modulus: B

The layer compression modulus describes the ability of a

layer to resist changes in area; the higher the compression

modulus, the ‘stiffer’ the layer. In lipid multilayer systems, the

compression modulus is linked both to the composition of the

layer (Saeedimasine et al., 2019) and to the hydration of the
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Figure 5
Overview of the simulation results for different values of N, the total
number of layers. The overall evolution of the intermediate scattering
functions with changing N and some representative examples are shown
in (a) and (b), respectively. (c) shows the time taken for each calculation
(points) and the expected t’ [N(N + 1)]/2 dependence (dotted line). The
standard parameter values used can be found in Table 1.

Figure 4
Overview of the simulation results for different in-plane scattering
vectors. The overall evolution of the intermediate scattering functions
with changing Q? and some representative examples are shown in (a) and
(b), respectively, whilst (c) shows the corresponding evolution of the
fitted values. The shaded green bar highlights the region in which the
collective dynamic behaviour is observed most clearly. The standard
parameter values used can be found in Table 1.



headgroups (Binder & Gawrisch, 2001), and therefore it is

very useful to determine when characterizing a multilayer

sample. The dynamical behaviour as a function of the layer

compression modulus is shown in Fig. 6. It can be seen that the

amplitude of the ISF oscillations decreases and the plateau

height increases as the compression modulus of the

membranes is increased. This weakening of the dynamical

features is expected, as stiffer membranes will undergo less

deformation at a given thermal energy than softer membranes.

In Fig. 6(b) it can also be seen that the frequency of the

oscillations increases with increasing compression modulus.
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Figure 7
Overview of the simulation results for different layer sliding viscosities.
The overall evolution of the intermediate scattering functions with
changing �3 and some representative examples are shown in (a) and (b),
respectively, whilst (c) shows the corresponding evolution of the fitted
values. The standard parameter values used can be found in Table 1.

Figure 6
Overview of the simulation results for different layer compression
moduli. The overall evolution of the intermediate scattering functions
with changing B and some representative examples are shown in (a) and
(b), respectively, whilst (c) shows the corresponding evolution of the
fitted values. The shaded green bar highlights the region in which the
collective dynamic behaviour is the most stable. The standard parameter
values used can be found in Table 1.



3.4. Layer sliding viscosity: g3

The layer sliding viscosity, which determines the interlayer

viscous interactions, also has a substantial effect on the

dynamics of the system (Fig. 7). At low viscosities, the initial

decay in the intermediate scattering function is very fast and

the amplitude of the oscillations is large. With increasing

viscosity, the system becomes more damped such that the

initial decay becomes much slower, the oscillation amplitude

decreases and the height of the plateau increases. The small

peak in the oscillation amplitude at �3 ’ 0.001 Pa s is an

artefact of the fitting procedure, as the oscillating part of the fit

function has a uniform amplitude and does not capture

decaying amplitude that is present in the simulations.

The strong effect of the layer oscillation amplitude is also

useful from an experimental perspective. In contrast to the

layer compression modulus, the layer sliding viscosity cannot

be determined from X-ray or neutron reflectivity measure-

ments. In a recent GINSES study of the effects of salt

concentration on the behaviour of a lipid membrane stack, the

MembaneDyn program was used to show that the layer sliding

viscosity decreases with the addition of NaCl (Jaksch et al.,

2021).

3.5. Layer bending modulus: j

Fig. 8 shows how the dynamics are affected by the layer

bending modulus 
, which is related to the bulk modulus K by

K = 
/dlayer. As already recognized in the original work by

Romanov and Ul’yanov, the bending modulus has only a very

minimal effect on the dynamics of the supported multilayer

system. The height of the underlying plateau increases slightly

with increasing 
; however, this effect is very small and can be

neglected in the range of interest for most systems.

4. Discussion and conclusions

In this work, we have extended the mathematical framework

to calculate the static scattering function from a supported

membrane stack, first developed by Romanov and Ul’yanov,

into the time domain, yielding the normalized intermediate

scattering function S(Q, 	)/S(Q, 	 = 0). This is a quantity that

we can access experimentally via neutron spin-echo spectro-

scopy under grazing-incidence conditions. From the examples

given above, the strongest oscillations are observed in systems

with a small number of layers, a low layer compression

modulus and a low layer viscosity. In addition, the oscillatory

behaviour is best observed at small in-plane scattering vectors

(Q? < 0.008 Å), corresponding to large real-space length

scales, and at out-of-plane scattering vectors Qz on the

shoulder of a Bragg peak.

In practice, previously published experimental GINSES

data suggest that collective dynamics in supported membranes

are more prominent than the MembraneDyn simulations

predict (see Fig. 9a). The reasons for this discrepancy may

arise in part due to an oversimplification of the scattering

function. The MembraneDyn program treats each layer as a

thin membrane sheet, ignoring the thickness of the layers, the

scattering length density (SLD) contrast and the form factor

of the layers. This is not unreasonable as the ISF is normalized

to unity and the measurement times are so long that only a

single scattering vector Q can be probed in a typical experi-

ment. It cannot be ruled out, however, that the inclusion of

these parameters (i.e. the thickness, form factor and contrast)

is necessary to perform quantitative analyses and fits, despite

the associated increase in computation times.

A further possible explanation for the discrepancy stems

from experimental considerations. In a GINSES experiment,

the measured intermediate scattering function is likely to be

affected by contributions from the background of the

measurement. In particular, due to the grazing-incidence

geometry, it is not always straightforward to determine and

separate the different contributions from the elastic (non-

decaying) portion of the scattering function or the contribu-

tion from incoherent scattering. This may give rise to large

errors in normalization and/or background subtraction. This

point is illustrated graphically in Fig. 9(b), where the data have
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Figure 8
Overview of the simulation results for different layer bending moduli. (a) The evolution of the intermediate scattering functions with changing 
 and (b)
some selected examples. The standard parameter values used can be found in Table 1.



been subjected to a slightly different normalization and

background subtraction. Note that the simulated dynamics in

Figs. 9(a) and 9(b) are identical; the data have not been fitted.

Such issues may be solved by optimization of the experimental

methods as well as through the use of virtual GISANS

experiments (for polymers at interfaces, see, for example,

Kyrey et al., 2021) in which these contributions can be simu-

lated.

In addition to implementation of the thickness, form-factor

and contrast contributions, there is also room for optimization

with regard to the computation time. It is numerically rather

demanding to solve the required integrations in real space and

reciprocal space accurately due to the oscillating Bessel

function in equation (9). Although the Gaussian cutoff allows

the real-space integration to be implemented in a stable and

reliable manner with sparse integration points, the bottleneck

currently resides in the reciprocal-space integration step. Due

to the high-frequency oscillations, this currently requires a

large number of integration points (�2000). Adaptive routines

could be used to optimize the integration steps, but unfortu-

nately these are incompatible with the current structure of the

program and would require a significant overhaul. Further

details of the integration steps and parameters used can be

found in the supporting information. We consider that the

MembraneDyn program may be used in a fully quantitative

manner to fit and interpret experimental GINSES data, in

particular once some (or all) of the abovementioned

improvements have been implemented.

5. Code availability

The Fortran code for the description of membrane fluctuations

at interfaces can be found at https://jugit.fz-juelich.de/

neutrons/membranedyn. The repository also contains a

Jupyter notebook with the Fortran routine imported as a

module.

6. Related literature

The following reference is cited in the supporting information

for this article: Uhlenbeck & Ornstein (1930).
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Figure 9
(a) Comparison of the experimental data (previously published in Jaksch et al., 2017) with a MembraneDyn simulation. The parameters are given in
Table 1, with the following exceptions: N = 10, B = 5 
 106 N m�2, �3 = 1 
 10�3 Pa s. In (b) the experimental data have undergone a different
background subtraction and normalization. Note that this is simply an illustration of how small differences in background subtraction and normalization
can affect the data; it is not a fit.
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