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Determination of protein structures typically entails building a model that

satisfies the collected experimental observations and its deposition in the

Protein Data Bank. Experimental limitations can lead to unavoidable

uncertainties during the process of model building, which result in the

introduction of errors into the deposited model. Many metrics are available

for model validation, but most are limited to consideration of the physico-

chemical aspects of the model or its match to the experimental data. The latest

advances in the field of deep learning have enabled the increasingly accurate

prediction of inter-residue distances, an advance which has played a pivotal role

in the recent improvements observed in the field of protein ab initio modelling.

Here, new validation methods are presented based on the use of these precise

inter-residue distance predictions, which are compared with the distances

observed in the protein model. Sequence-register errors are particularly clearly

detected and the register shifts required for their correction can be reliably

determined. The method is available in the ConKit package (https://

www.conkit.org).

1. Introduction

Structural determination of proteins may be carried out using

a range of different techniques, of which macromolecular

X-ray crystallography (MX) and cryogenic electron micro-

scopy (cryo-EM) are currently the most popular. These

experiments typically culminate in the creation of a model that

satisfies the experimental observations collected, and which

is subsequently deposited in the Protein Data Bank (PDB;

Berman et al., 2000). However, as in all experiments, these

observations will have unavoidable uncertainties caused by

experimental limitations, which can result in the introduction

of errors into the final model.

Such errors were particularly common during the early

stages of X-ray crystallography, when technical advances

allowed an increasing number of protein folds to be experi-

mentally determined and deposited in the PDB. It was also

during this time that some deposited structures were first

found to contain major errors, highlighting the need for model

validation tools (Hooft et al., 1996; MacArthur et al., 1994;

Kleywegt & Jones, 1995). Several computational methods and

systems were developed to address the issue. Among them

were PROCHECK (Laskowski et al., 1993) and WHATIF

(Vriend, 1990), each majoring on geometric and stereo-

chemical properties and generating residue-by-residue reports

to inform the user of potential errors in the model. However, it

was noted that stereochemical analyses could be insufficient
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for the unambiguous identification of errors, leading to the

introduction of methods such as VERIFY_3D (Lüthy et al.,

1992) based on statistics of favoured amino-acid environ-

ments, ProSA (Sippl, 1993) based on the combination of a

C�–C� (or C�–C�) potential and solvent-exposure statistics,

DACA (Vriend & Sander, 1993) based on the evaluation of

interatomic contacts to test protein model packing and

ERRAT (Colovos & Yeates, 1993), which is based on the

statistics of nonbonded interactions between C, N and O

atoms. Further notable contributions include Coot (Emsley

et al., 2010), which provided interactive model-building tools

coupled with a series of residue-by-residue model validation

metrics based both on the geometric properties of the model

and its match to the map. MolProbity (Davis et al., 2007) was

later released and provided validation reports based on the

analysis of all-atom contacts together with other geometric

and dihedral angle analyses.

With the recent technical improvements in image proces-

sing and electron detectors, a rapid increase in the number of

molecules deposited in the PDB which were solved using

cryo-EM has been observed in recent years (Chiu et al., 2021).

Compared with X-ray crystallography, these models are often

built using lower resolution data, with maps that have varying

levels of local resolution at different parts of the model, all of

which can hinder model building and make cryo-EM models

more susceptible to errors. The discovery of modelling errors

among cryo-EM structures recently deposited in the PDB

(Croll et al., 2021; Chojnowski et al., 2022; Weiss et al., 2016)

has highlighted the need for new tools for model validation

(Lawson & Chiu, 2018; Afonine et al., 2018). This has led to

the creation of sophisticated new tools for model validation,

such as checkMySequence (Chojnowski, 2022), which uses the

latest advances in machine learning for the detection of out-

of-register sequence errors. New metrics for the assessment of

the quality of a model and its fit to the map have also been

introduced in recent years, such as SMOC (Joseph et al., 2016),

a segment-based Manders’ overlap coefficient between the

model and the map, FSC-Q (Ramı́rez-Aportela et al., 2021), a

model-quality validation score based on the local Fourier shell

correlation between the model and the map, and the map

Q-score (Pintilie et al., 2020), which measures atomic resol-

vability. The creation of these metrics has resulted in the

development of new user interfaces to integrate these

different metrics in order to facilitate their interpretability and

to provide an all-in-one package. This is the case for the

CCP-EM validation task (Joseph et al., 2022), which combines

several of these new metrics and tools into a graphical user

interface. Further developments in the interpretability of

validation metrics came with the release of Iris (Rochira &

Agirre, 2021), a tool that combines different validation metrics

calculated on a residue-by-residue basis.

Recent developments in the field of evolutionary covar-

iance and machine learning have enabled the precise predic-

tion of residue–residue contacts and increasingly accurate

inter-residue distance predictions (Ruiz-Serra et al., 2021).

Access to this accurate covariance information has played an

essential role in the latest advances observed in the field of

protein structural bioinformatics, particularly the improve-

ment of protein ab initio modelling, with the most notable

examples being AlphaFold2 (Jumper et al., 2021) and

RoseTTAFold (Baek et al., 2021).

Here, we present new validation methods based on the

availability of accurate inter-residue distance predictions.

Potential errors are recognized as residues and regions for

which the contacts and inter-residue distances observed in

the model differ significantly from those predicted by deep

learning-based methods. A series of metrics relating to the

consistency of observed and predicted contacts and distances

are fed into a support-vector machine classifier that was

trained to detect model errors using historical data from the

EM Validation Challenges (Lawson et al., 2021; Lawson &

Chiu, 2018). Further detection of possible register errors is

specifically performed by performing an alignment of the

predicted contact map and the map inferred from the contacts

observed in the model. Regions of the model in which the

maximum contact overlap is achieved through a sequence

register different to that observed in the model are flagged and

the optimal sequence register can then be used to fix the

register error. The results suggest that the detection of model

errors and the correction of sequence-register errors is

possible through the use of the trained classifier in conjunction

with the contact-map alignment, as revealed by analysing a set

of structures deposited in the PDB. This approach, which is

implemented in ConKit (Simkovic et al., 2017) through the

command-line option conkit-validate, thus provides a new tool

for protein structure validation that is orthogonal to existing

methods.

2. Materials and methods

2.1. Creation of a training data set of misregistered residues
extracted from the EM modelling challenges

Structures submitted to the EM modelling challenges that

took place in 2016, 2019 and 2021 (Lawson et al., 2021; Lawson

& Chiu, 2018) were analysed in order to create a database

containing modelling errors annotated according to whether

the cause was or was not an incorrect sequence register.

Firstly, structures in which more than half of residues scored a

sequence-dependent local–global alignment (LGA; Zemla,

2003) above 8 Å between the target and the experimentally

determined structure were discarded. For the remaining

structures, LGA values were smoothed using a three-residue

window rolling average. Model regions in which at least three

consecutive residues scored a smoothed LGA value of 3 Å or

higher were then visually inspected, searching for register

errors. These errors were defined as ranges of residues where

despite having a smoothed LGA above 3 Å, the main chain

had been modelled correctly when compared with the ground-

truth solution. To reduce redundancy, register errors found

within the same sets of residues across different models

submitted for the same target were removed, except for the

error affecting the largest number of residues, which was

selected as the representative error. All residues found among

research papers

Acta Cryst. (2022). D78, 1412–1427 F. Sánchez Rodrı́guez et al. � Validation with predicted inter-residue distances 1413



the resulting set of register errors were then labelled with the

positive class (modelled incorrectly) and taken into a database

of register errors. The remaining residues found in the models

from which these register errors were taken were also added

to the database, but they were instead labelled with the

negative class (modelled correctly) if the smoothed LGA was

below 3 Å; otherwise, they were considered to be part of a

modelling error and the positive class was assigned (modelled

incorrectly). This resulted in the creation of a data set

consisting of 8620 residues, of which 6192 were labelled with

the negative class and 2428 with the positive class. Residues

labelled with the positive class were extracted from 76

sequence-register errors (2278 residues) and 12 other model-

ling errors (150 residues).

2.2. Prediction of inter-residue distances using AlphaFold2

Predictions of inter-residue contacts and distances were

obtained for the models being validated using AlphaFold2.

The original CASP14 model preset was used and the database

search was set to full mode. All other parameters were left

with their default values. Predictions were carried out on a

computing grid in which each node is equipped with a twin

16-core Intel Xeon Gold 5218 running at 2.3 GHz, 160 GB of

memory and four NVIDIA Tesla V100 chips with 16 GB of

video memory each.

For each case, five models were produced and the inter-

residue distance predictions for the model with the highest

predicted local distance difference test (pLDDT; Mariani et

al., 2013) were taken. For each residue pair in the structure,

this prediction contains the predicted probability that these

residues are within a series of distance bins. These distances

were processed for all residue pairs so that the midpoint value

of the distance bin with the highest probability was considered

to be the predicted distance and the probability associated

with this bin was considered to be the confidence score.

Contact predictions were derived from the distance prediction

by adding together all of the the probabilities observed across

the distance bins up to 8 Å. The top L/2 contacts scoring the

highest probability values were then taken to form the final

predicted contact maps, where L denotes the sequence length.

2.3. New covariance-based metrics for model validation and
feature engineering

A set of new metrics were developed with the aim of

comparing the inter-residue contacts and distances observed

in a model and those predicted for the protein of interest.

Rather than a global comparison of the similarity of two

contact maps or distograms, these metrics were designed for

local model validation, hence they are calculated on a residue-

by-residue basis.

First, a weighted root-mean-square deviation (wRMSD) of

the predicted and the observed inter-residue distances was

calculated for each residue of the model as follows,

wRMSD ¼

PN
i¼1 wðxi � x̂xiÞ

2

N

" #1=2

;

where N represents the number of residues in the model, x

represents the observed distance for a pair of residues, x̂x

represents the predicted distance for a pair of residues and

w represents the confidence of the predicted inter-residue

distance (a value between 0 and 1).

A series of metrics based on analysis of the inter-residue

contacts on a residue-by-residue basis were also defined as

follows,

Accuracy ¼
TPþ TN

TPþ TNþ FPþ TN
;

Precision ¼
TP

TPþ FP
;

Sensitivity ¼
TP

TPþ FN
;

Specificity ¼
TN

TNþ FP
;

FN Rate ¼
FN

TPþ FN
;

FP Rate ¼
FP

TNþ FP
;

where TP represents true positives, FP represents false posi-

tives, TN represents true negatives and FN represents false

negatives. Additionally, the raw count of FN and FP was also

used as two additional features. Two residues are considered

to be in contact with each other when their C� atoms are

within 8 Å of each other (C� for glycine). For the calculation

of these metrics, the top L/2 contacts with the highest confi-

dence values were used, where L denotes the number of

residues in the protein sequence.

For all of the proposed metrics, smoothed and unsmoothed

versions were calculated. Whereas in the unsmoothed version

the values observed across the residues of the model were

kept intact, in the smoothed version these values were

smoothed using a convolution approach. In this approach, a

five-point unweighted filter was used to convolve the raw data,

making this transformation equivalent to using a moving five-

residue window averaging technique, with the added benefit of

not losing data at the edges of the model where there is not

sufficient information to calculate a window average.

Additionally, a Z-score derived metric was computed for all

of the proposed metrics. This was calculated by taking the

value observed for each residue of the model and using the

values observed for the residues within a range of 10 Å as the

full sample.

This resulted in the creation of 24 metrics: one distance

prediction-based metric, seven contact prediction-based

metrics, their smoothed and unsmoothed versions, and the

additional Z-score version. To ensure minimal autocorrela-

tion, Pearson’s correlation coefficients were examined for all

possible pairs of these metrics using the values observed

across the EM modelling challenge data set described in

Section 2.1 (Fig. 1). Where a pair or a group of metrics shared
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an absolute correlation value of 0.4 or higher, only one

representative metric was taken and the others were

discarded. The representative metric was selected based on

initial results obtained using a linear discriminant analysis

using the residues from the EM challenge data set and setting

the class label as the target. For a given set of correlated

metrics, the feature with the highest coefficient observed in

this analysis was selected as the representative. This resulted

in the creation of a final set of seven metrics: Accuracy, FP

Rate, smooth Sensitivity, smooth wRMSD, Z-score Accuracy,

Z-score Sensitivity and Z-score wRMSD.

2.4. Machine-learning training and hyperparameter tuning

Residues found in the data set created by extracting resi-

dues from the EM modelling challenge submissions were used

to train several machine-learning algorithms for the detection

of register errors. For each observation in this data set, the

covariance metrics described in Section 2.3 were calculated.

Additional features describing the local environment of the

residue were also included in the observations, specifically

the residue solvent accessibility (ACC) and the secondary-

structure element in which the residue was located (helix,

�-sheet or coil), which was assigned using DSSP (Touw et al.,

2015). Residues found to be part of register and other

modelling errors were labelled with the positive target class, or

otherwise with the negative class. To create the training and

test sets, residues labelled with the positive class were

randomly split using a 80:20 ratio. In order to ensure balanced

data sets, the same number of residues labelled with the

negative class were randomly selected and added to each set.

This resulted in the creation of a training set consisting of 3884

observations and a test set formed by 972 observations, with

both of them having a balanced number of observations in

each class. The data was then standardized to Z-scores using a

standard scaler, fitted only using the data seen in the training

set to prevent data leakage. Optimal training hyperparameters

for each classifier were found by performing a random search

of 200 iterations using the mean accuracy as the scoring

function. All of the algorithm implementations were

performed with scikit-learn version 0.24.2 (Pedregosa et al.,

2011).

2.5. Contact map alignment-based sequence reassignment

The alignment between predicted contact maps and the

contact maps observed in the models of interest was calculated

using map_align (Ovchinnikov et al., 2017). This tool creates

an alignment between two input contact maps so that the

contact maximum overlap (CMO) is achieved (Andonov et al.,

2011) by introducing and extending gaps as necessary. The

CMO is defined as the number of matching contacts between

the two input contact maps when optimal alignment is

achieved. If a misalignment between the input contact maps is

found for a set of residues, the sequence register used to

achieve the CMO between predicted and observed contacts is

proposed as a fix for the possible register error.
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Figure 1
Correlation matrix for the proposed covariance-based metrics for model validation. The colour in each cell corresponds to the Pearson’s correlation
coefficient observed between each pair of metrics. The scale goes from red for negative correlation to deep blue for positive correlation. The final set of
metrics are highlighted in bold.



2.6. Creation of filters to reduce the number of contact-map
alignment-based false positives

Three criteria were designed to detect and discard register

errors predicted using the contact-map alignment-based

approach in regions of the model where the contact-map

misalignment could have been caused by reasons other than a

register error.

The first criterion was to discard register errors where either

the mean or the median number of predicted contacts per

residue observed across the affected residue range was lower

than two contacts. This was performed to discard register

errors predicted without sufficient contact information to

produce a reliable contact-map alignment. Secondly, predicted

register errors affecting residues where the average pLDDT

assigned by AlphaFold2 was below 65 were discarded. This

was performed to remove instances where a register error was

predicted based on predictions of insufficient quality. Lastly,

for the third criterion, a structural alignment between the

deposited model in which a register error was detected and

the model predicted by AlphaFold2 was performed using

GESAMT (Krissinel, 2012). The GESAMT Q-score was then

calculated for the range of residues affected by the possible

register error. Those cases where the Q-score was below 0.5

were discarded to avoid instances with high discrepancy

between the deposited model and the predicted model, an

indication that the predictions produced by AlphaFold2 could

be inaccurate or that the predicted model was modelled in a

different conformation to that deposited.

2.7. Creation of a benchmark data set consisting of
PDB-deposited structures solved by cryo-EM

Protein structures determined using cryo-EM at 5 Å reso-

lution or better, with or without a nucleic acid component,

were selected from the Protein Data Bank (PDB; Berman et

al., 2000) as of 10 November 2021. For practical reasons, a

subset of 5744 with the size of the corresponding compressed

EM maps not exceeding 200 MB was selected from 7241

available structures. Next, all structures were automatically

analysed using the checkMySequence validation tool (Choj-

nowski, 2022), which identified 419 chains with tentative

sequence-assignment issues in 246 structures that were used

for further analysis.

Using the reference sequence deposited in the PDB,

distance predictions were obtained for each individual chain.

For 55 chains this was not possible due to hardware limita-

tions, particularly the system running out of memory before

the predictions could be completed. Ultimately, our analysis

could be applied to 364 protein chains found in structures

deposited in the PDB where possible register errors were

reported by checkMySequence. To ensure a match between the

residue numbering observed in the deposited models and the

numbering in the reference sequence used to obtain the inter-

residue distance predictions, CROPS (https://github.com/

rigdenlab/crops) was used to renumber the models based on

the reference. For the 149 cases where this was not possible

due to major inconsistencies between the protein sequence

and the residue numbering in the deposited model, a manual

inspection was carried out.

3. Results and discussion

3.1. Machine learning detects register errors using
covariance-based metrics

In order to create a classifier that is able to detect register

errors and other modelling errors using the newly developed

covariance-based metrics, three different types of classifiers

available in scikit-learn (Pedregosa et al., 2011) were selected:

support-vector machines using a linear kernel (SVM), random

forest (RF) and k-nearest neighbours (KNN). To create the

training and test sets, residues from the models submitted to

the EM modelling challenges were extracted and a train–test

split was created as described in Sections 2.1 and 2.4. Optimal

training hyperparameters found in a random search were then

used to train each of the classifiers using the observations in

the training set, and prediction of the test set was then

attempted. Analysis of the results obtained after prediction of

the test samples with each of the classifiers revealed an overall

good performance by all three classifiers, which were able to

provide accurate predictions for most residues present in the

test set (Fig. 2). Further analysis was performed by plotting the

receiver operating characteristic (ROC) curves of each clas-

sifier (Fig. 3), which showed that the three classifiers

performed well at different confidence-score threshold cutoff

values.

The performance of the trained classifiers on the hold-out

test-set samples was further analysed based on several metrics

(Table 1). Interestingly, only some minor differences were

observed across the different classifiers, which had a similar

overall good performance at predicting whether or not the

residues in the test set were part of model errors. Despite

achieving the highest Precision (0.885), the RF classifier was

not the classifier of choice to be integrated into ConKit; the

SVM was instead selected after having scored the highest

Accuracy, Area Under the ROC Curve (AUC), Recall and

F1-Score.
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Figure 2
Confusion matrices obtained after predicting the data points in the test
set with each of the three classifiers being assessed: support-vector
machines, random forest and k-nearest neighbours. Residues present in a
register error are labelled as class 1 and residues modelled correctly are
labelled as class 0. The numbers inside each cell correspond to the
number of data points in each category, which is proportional to the
colour intensity in each cell.



In order to assess the importance of each of the features in

the models being compared, a feature-permutation analysis

was carried out. In this analysis, the values of each feature

were randomly shuffled across the samples in the hold-out test

set. Prediction was then attempted with the trained classifiers

and the decrease in accuracy with respect to the baseline (the

accuracy of the trained classifier in the test set without shuf-

fling) was recorded. Each feature permutation was repeated

50 times at random for consistency of results. Analysis of the

results obtained after these permutations (Fig. 4) revealed a

strong decrease in accuracy after the shuffling of the wRMSD

values, an indication that all three models depend on wRMSD

the most for accurate prediction of whether or not a given

residue is part of a model error. This was followed by the

Sensitivity, which was the second most important feature

across the three classifiers. No major differences were

observed for the rest of the features across the different

classifiers, with the exception of the permutation of the

Accuracy and Z-score Accuracy features, which showed a

decrease in performance only for the SVM.

The trained SVM classifier outputs a predicted likelihood

that a given residue is within a model error (as defined in

Section 2.1) on a residue-by-residue basis, meaning that it

performs this prediction without any knowledge of the context

of the residue of interest. In particular, it does not have any

knowledge of the scores predicted for the neighbouring resi-

dues. Nevertheless, both sequence-register and other kinds of

modelling errors are expected to span several consecutive

residues within the model being validated. To exploit this

expectation, values ranging from 1 to 20 were tested as

threshold values for the number of consecutive residues

predicted to be within an error. Different thresholds for the

score required to predict a residue as an error were tested as

well, with the following values being used: 50%, 60%, 70%,

80% and 90%. All combinations of these values were tested

using the models in the EM modelling challenge data set, and

the Precision and Recall values were recorded (Fig. 5). This
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Figure 4
Depiction of the results of the feature-permutation analysis for the three
classifiers being assessed: support-vector machines (SVM, red), random
forest (yellow) and k-nearest neighbours (KNN, turquoise). Each violin
depicts the distribution of values observed for the Accuracy decrease
recorded after each independent feature permutation. Black bars inside
the violins depict the interquartile range, with a white dot showing the
median and black whiskers the maximum and minimum quartiles. Note
that ‘Accuracy decrease’ here refers to the Accuracy achieved by the
trained classifiers with the hold-out test set after feature permutation,
while the ‘Accuracy’ shown on the vertical axis refers to the metric used as
a predictive feature.

Figure 3
Receiver operating characteristic (ROC) curve depiction of the results
obtained on the test set using each of the three classifiers being assessed:
support-vector machines (SVM, red), random forest (yellow) and k-
nearest neighbours (KNN, turquoise). The horizontal and vertical axes
correspond to the two operating characteristics, the false-positive rate
and true-positive rate, respectively, measured at different confidence
threshold values. A dashed diagonal line represents the performance of a
no-skill classifier where predictions are made at random.

Table 1
Accuracy, Area Under the ROC Curve (AUC), F1-Score, Precision and
Recall achieved with the hold-out test set by support-vector machine
(SVM), random forest (RF) and k-nearest neighbours (KNN) classifiers.

Metric SVM RF KNN

Accuracy 0.873 0.860 0.867
AUC 0.944 0.928 0.941
F1-Score 0.873 0.860 0.867
Precision 0.872 0.885 0.863
Recall 0.874 0.827 0.872



revealed a negative correlation between the number of

consecutive residues required to flag a possible model error

and the Recall of these errors. Interestingly, higher Precision

and Recall values were achieved as the score threshold

increased, achieving a peak using a threshold of 90%. For

instance, a threshold of three consecutive residues with a

predicted score of at least 50% would achieve a Precision of

0.58 and a Recall of 0.9, while setting a threshold of 20

consecutive residues with a score of 50% or above would

achieve Precision and Recall scores of 0.81 and 0.3, respec-

tively. Depending on the use case, users may choose to

maximize Precision over Recall or vice versa, which is why

both thresholds can be tuned through the command-line

option conkit-validate. Default values were set to a threshold

of six consecutive residues with a score of 90% or higher to

flag possible register errors, which were observed to achieve a

Precision of 0.92 and a Recall of 0.66 on this test.

3.2. Contact-map alignment can be used for successful
sequence reassignment of register errors

In order to assess the performance of contact-map align-

ment as a method to reassign the correct sequence to register

errors, all of the models submitted to the EM modelling

challenges that form part of the training data set described in

Section 2.1 were tested as follows. The contact maximum

overlap (CMO) between the observed contacts in the

submitted model and the predicted contact maps was calcu-

lated as described in Section 2.5. If the CMO for a given range

of residues was achieved using a sequence register different to

that observed in the model being validated (i.e. there is a

misalignment between contact maps), then these residues

were predicted to be part of a register error and the optimal

sequence register was suggested as a fix. Encouragingly, of the

88 errors in this data set, 71 were detected using this contact-

map alignment approach (Fig. 6). For all of these detected

errors, the CMO between the predicted and the observed

contacts was achieved using the correct sequence register,

which was suggested as a fix, meaning that 87% of the errors

analysed could have been fixed if this method had been

available to the original authors of the models. Only 17 errors

could not be detected using this method. Of these, only five

errors were register errors, all of which had fewer than ten

residues. The other 12 errors were non-sequence-register

related modelling errors, for which this approach was unsur-

prisingly found to be unsuitable as an alternative sequence

register cannot be found to achieve the CMO. Furthermore,

only a small number of false positives were observed:

instances where the contact-map alignment would suggest a

different sequence register for the model despite there being

no error. Six such cases were found, all of them consisting of

misalignments that were less than ten residues in length.

Regarding true negatives, a total of 6152 residues which were
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Figure 5
Precision–Recall curves obtained using different threshold values for the
number of consecutive residues predicted as errors required to flag a
possible register error in a model and the score required to classify a
residue as an error. Curves coloured from dark blue to dark red
correspond to predicted score threshold values of 50%, 60%, 70%, 80%
and 90%, respectively. For each curve, Precision and Recall values were
recorded after setting different thresholds on the number of consecutive
errors required to flag an error: values start at 20 on the left and decrease
down to a single residue on the right. Actual values are available in
Supplementary Table S1.

Figure 6
Performance of the sequence reassignment of register errors in the EM
modelling challenges using contact-map alignment. The vertical axis
shows the number of residues present in the register errors, which are
represented with coloured points. Coloured points with a black dot
represent register errors where residues had, on average, less than three
predicted contacts. True positives (turquoise) are register errors where
the correct sequence register was revealed after contact-map alignment
(71 instances, of which four have less than three contacts per residue on
average). False negatives (yellow) are register errors where no contact-
map misalignment was detected at all (17 instances, of which 11 have less
than three contacts per residue on average). False positives (red) are
regions of the models where a contact-map misalignment was detected
despite there being no register error (six instances, of which two have less
than three contacts per residue on average). True negatives have been
omitted for clarity; they consist of 6152 residues that are not involved in
any kind of modelling error where no contact-map misalignment was
detected.



not involved in any kind of modelling error were also not

involved in a contact-map misalignment. Additionally, the

presence of sufficient contact information was revealed to be

essential for the reliable detection of register errors using this

approach: residues present in two thirds of the false negatives

had on average fewer than three predicted contacts. Unsur-

prisingly, the absence of contact information hindered the

detection of register errors in these instances. Similarly, two of

the six false positives were observed to affect regions of the

models where on average the residues had less than three

predicted contacts. This revealed that a lack of sufficient

contacts can also cause a contact-map misalignment to be

inferred in cases where no actual register error is present, as it

becomes difficult to find the optimal alignment between the

maps. In contrast, only 5% of true positives were found to

have less than three predicted contacts on average across the

residues involved.

To further characterize those errors that could not be

detected using this contact-map alignment approach, and

those regions of the submitted models that were part of a

contact-map misalignment despite there being no register

error, an analysis of the distribution of residues across the

different secondary-structure elements was carried out. Resi-

dues were assigned a secondary-structure element using

DSSP, and the number of residues found in each category

(true positives, false negatives and false positives) was

recorded for each secondary-structure element (Fig. 7). Initial

analysis of this distribution revealed that most register errors

are located within �-sheets, followed by coils and lastly

�-helices. Interestingly, there were no major differences in the

distribution of residues between coils and sheets, with both

having a high proportion of true positives and a significantly

smaller proportion of false negatives and false positives. In the

case of helices, the proportion of true positives was also high;

however, the proportion of false positives was somewhat

higher than in the other two cases.

3.3. Contact-map alignment and the SVM classifier are
complementary methods for the detection of modelling
errors

In order to assess whether the two proposed methods for

model validation complement each other, an analysis of the

residues found in register errors that could only be detected

using one approach or the other was carried out. In order to

do this, the 2428 residues found within register and other

modelling errors in the EM modelling challenges were

selected. Of these, 1943 residues had to be discarded as they

were part of the data set used to train the classifier. This left

486 residues for which classification was attempted using the

SVM classifier described in Section 3.1. The predicted class

was then recorded for each residue, together with whether a

different register was used to achieve the CMO. Encoura-

gingly, most of these residues could be correctly identified as

part of modelling errors using both approaches (Fig. 8) and

only 34 residues were left undetected. Interestingly, while the

calculation of the CMO proved to be an accurate approach for

the identification of most residues found in register errors,

there was a significant number of residues that could only be

detected using the SVM classifier. Furthermore, only the SVM

was able to identify any of the 28 residues originating from

non-register-related errors found in this data set, detecting 12

of them. This suggests that while both approaches can

successfully identify register errors, other kinds of modelling

errors can only be found using the SVM, an indication that the

methods complement each other.

3.4. Identification of register errors in cryo-EM structures
deposited in the PDB

A new covariance-based model-validation pipeline was

created based on combination of the trained SVM classifier

and the contact-map alignment-based sequence-reassignment

methods described in Sections 2.4 and 2.5. For each of the
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Figure 7
Secondary-structure context of residues found in register errors in models submitted to the EM modelling challenges. The vertical axis depicts the
percentage of residues in each category. Residues are grouped along the horizontal axis depending on the secondary-structure element. Turquoise bars
represent true positives (register errors where the correct sequence register was revealed after the contact-map alignment), yellow bars represent false
negatives (register errors where no contact-map misalignment was detected at all) and red bars represent false positives (regions of the models in which a
contact-map misalignment was detected despite there being no register error). Coloured bars are annotated with the total number of observations in
each category and their corresponding percentage relative to the secondary-structure element. Secondary-structure assignment was performed using
DSSP.



residues in the input model, the pipeline outputs the classi-

fier’s predicted probability that the residue is part of a register

error and whether a different sequence register is necessary to

achieve the CMO in the contact-map alignment step. This

pipeline was integrated into the Python package for the

manipulation of covariance data, ConKit, in the form of a new

command-line option conkit-validate. In order to assess the

performance of the proposed pipeline, a large-scale analysis

was carried out with the same data set as used to analyse the

performance of the validation tool checkMySequence (Choj-

nowski, 2022). This analysis localized possible register errors

in 419 protein chains found across 246 structures deposited in

the PDB with resolutions varying between 2.5 and 4.9 Å, all of

which were determined using cryo-EM. Given computational

restrictions, and the large size of some targets, it was possible

to obtain AlphaFold2 predictions for 364 chains, representing

170 unique sequences, as described in Section 2.7. The amount

of time required to produce these predictions varied between

cases, depending mostly on the number of residues that were

present in the sequence. Using the hardware described in

Section 2.2, an average of 100 min was required to complete

the AlphaFold2 predictions for a typical protein of 500 resi-

dues. Larger protein sequences required more computational

time, requiring an average of 450 min for the prediction of

sequences larger than 1000 residues. Faster predictions of

similar quality may well be available in the future using the

MMseqs2 API (Steinegger & Söding, 2017) as performed by

ColabFold (Mirdita et al., 2022).

The new conkit-validate pipeline was then used to analyse

all of the chains in the data set, which revealed a total of 541

possible register errors for which the CMO was achieved using

an alternative sequence register, of which 230 were found to

be unique when taking into consideration the fact that some

sequences are represented several times in the data set in

homomeric structures. In order to discard instances where a

contact-map misalignment was inferred despite there being no

actual register error, the predicted errors were then filtered as

described in Section 2.6. This decreased the number of

predicted register errors from 230 to 130. Fig. 9 shows the

characteristics of these 130 putative register errors.

While most register errors consisted of shifts of one or two

residues affecting 50 or fewer residues, a total of 18 possible

register errors consisting of 100 residues or more were found

across 15 different structures (Table 2). Application of the

criteria described in Section 2.6, which were designed to

remove possible false positives, filtered out 11 of these large

errors. Encouragingly, further inspection of these 11 errors

revealed the presence of eight instances where the presence of

a register error was unlikely and the contact-map misalign-

ment could be explained due to a lack of sufficient contact

information or high discrepancy between the deposited model

and the predictions made by AlphaFold2. For two of the three

register errors that did not meet the criteria but where no

evidence of a false positive was found, an entry deposited at

higher resolution in the PDB for the same protein and with the

register that achieved the CMO was found. This is an indica-

tion that while the criteria proposed in Section 2.6 were

effective in the removal of false positives, some true positives

might also be removed in the process.

Further analysis of the seven large errors which met the

criteria revealed for five of them the existence of at least one

entry deposited in the PDB at higher resolution and with the

register that achieved the CMO. Additional assessment of

these models was carried out by calculating the Fourier shell
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Figure 9
Characteristics of putative sequence-register errors found in the data set
of cryo-EM structures deposited in the PDB. Each point represents a
predicted register error found in a chain in the data set. Errors within five
residues of each other were merged together into a single data point. For
cases where errors are present in the same range of residues among
several homomers, only one error is displayed. The vertical axis indicates
the number of residues affected by the register error, which varies
between five and 323 residues: one register error with more than 250
residues was found, but has been omitted for clarity. The horizontal axis
shows the resolution, which varies between 2.5 and 4.9 Å. The colour and
size of the point depict the average sequence shift observed in the error:
one residue (dark blue), two residues (turquoise), three residues (yellow),
four residues (light orange) and five residues or more (dark red).

Figure 8
Venn diagram showing the number of residues found in modelling errors
that could only be detected using the CMO approach (turquoise), the
support-vector machines classifier (SVM, red), both methods (intersec-
tion) or neither of them (outside the circumferences). Residues found in
the training set for the SVM classifier were discarded for this analysis. The
numbers of residues involved in non-register-related modelling errors are
shown in parentheses.



correlation (FSC) between the affected range of residues and

the density maps after 20 cycles of jelly-body refinement using

REFMAC5 (Nicholls et al., 2018). For each pair of models

deposited for the same protein, this calculation was made

using the same map deposited with the original structure

where the possible register error was found. In the case of the

deposited models with the alternative sequence register, the

model was superimposed on the original structure using

GESAMT with default parameters before refinement. Inter-

estingly, in five out of seven cases the structure with the

alternative sequence register achieving the CMO was also

observed to achieve the highest FSC of the pair. While the

FSC is a well established valuable metric for the agreement

between the model and the map, it can sometimes be hard to

interpret due to variations in local resolution or the effects of

map sharpening. That this conventional model-to-map fit

measurement does not support some of the models with the

alternative register found to achieve the CMO may reflect

these limitations.

Among the structures where an alternative deposition was

found in the PDB with the proposed register, a 326-residue

anti-CRISPR protein solved at 4.2 Å resolution (PDB entry

5xlp chain D; Peng et al., 2017) was found to contain a possible

register error corresponding to the entire structure having
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Table 2
List of register errors spanning 100 residues or more that were found using conkit-validate in the checkMySequence benchmark data set.

Structures listed under ‘Original Structure’ correspond to structures where an error was found using conkit-validate and those listed under ‘Alternative Structure’
correspond to a PDB deposition for the same protein where the register matches that found to achieve the CMO. The residue range and size of the register error
might differ due to the presence of missing residues. FSC refers to the Fourier shell correlation between the specified range of residues and the density map. For
each pair of structures, calculation of the FSC was performed using the map of the original deposited model where the error was predicted. In the case of the
deposited models with the alternative sequence register, the model was superimposed on the original structure using GESAMT with default parameters before
calculating the FSC. Sequence identity was calculated using all residues in both chains. The ‘Passes filtering’ column refers to whether the predicted sequence-
register error meets the criteria described in Section 2.6 and provides a reason why these filters might not have been passed. Suspected false positives have been
marked in the last column.

Original Structure Alternative Structure

PDB
code,
chain ID

Resolu-
tion (Å) Year Residues Size FSC Citation

Passes
filtering

Suspected
false
positive

PDB
code

Resolu-
tion (Å) Year

Sequence
identity
(%) Residues FSC Citation

5nd8, G 3.7 2017 44–169 125 0.33 Khusainov et al.
(2017)

Yes No 6s0z, F 2.3 2019 100 44–169 0.45 Halfon et al.
(2019)

5nd8, O 3.7 2017 27–130 103 0.54 Khusainov et al.
(2017)

Yes No 6s0z, J 2.3 2021 100 27–130 0.79 Halfon et al.
(2019)

5xlp, D 4.2 2017 16–339 323 0.53 Peng et al. (2017) Yes No 6vqv, E 2.57 2020 100 32–357 0.74 Zhang et al.
(2020)

5yz0, A 4.7 2017 2–547 534 0.49 Rao et al. (2018) No: high
Q-score

Yes N/A N/A N/A N/A N/A N/A N/A

5yz0, A 4.7 2017 555–1520 720 0.53 Rao et al. (2018) No: high
Q-score

Yes N/A N/A N/A N/A N/A N/A N/A

5yz0, A 4.7 2017 1884–2110 226 0.61 Rao et al. (2018) Yes No N/A N/A N/A N/A N/A N/A N/A
6j5i, b 3.34 2019 3–208 205 0.34 Gu et al. (2019) No: insufficient

contact
information

Yes N/A N/A N/A N/A N/A N/A N/A

6klh, A 3.7 2020 1861–2007 107 0.20 Peng et al. (2020) No: high
Q-score

Yes N/A N/A N/A N/A N/A N/A N/A

6rwa, E 4.0 2019 21–140 119 0.42 Leidreiter et al.
(2019)

Yes No N/A N/A N/A N/A N/A N/A N/A

6uxv, F 4.7 2019 597–779 168 0.60 Han et al. (2020) No: insufficient
contact
information

Yes N/A N/A N/A N/A N/A N/A N/A

6vyh, C 3.0 2020 130–232 102 0.48 Pan et al. (2020) No: high
Q-score

No 5kvg, L 1.7 2016 96 118–211 0.64 Zhao et al.
(2016)

6w2s, 2 3.47 2020 644–870 226 0.43 Neupane et al. (2020) Yes No 6zp4, C 2.9 2020 98 644–870 0.56 Thoms et al.
(2020)

6xe9, A 4.3 2020 852–1674 380 0.40 Yang et al. (2020) No: insufficient
contact
information

Yes N/A N/A N/A N/A N/A N/A N/A

6ybd, v 3.3 2020 33–154 121 0.33 Brito Querido et al.
(2020)

No: insufficient
contact
information

No 6zp4, E 2.9 2020 98 33–154 0.09 Thoms et al.
(2020)

6z6f, D 3.11 2021 117–235 118 0.46 Lee et al. (2021) No: insufficient
contact
information

Yes N/A N/A N/A N/A N/A N/A N/A

6zme, Lt 3.0 2020 7–138 115 0.15 Thoms et al. (2020) Yes No 7o7y, Bt 2.2 2021 100 9–138 0.005 Bhatt et al.
(2021)

7adk, B 2.8 2020 196–385 184 0.36 Nottelet et al. (2021) No: high
Q-score

No N/A N/A N/A N/A N/A N/A N/A

7kdp, A 3.6 2020 643–768 125 0.64 Kumar et al. (2021) No: high
Q-score

Yes N/A N/A N/A N/A N/A N/A N/A



been shifted by ten residues towards the C-terminus. Inter-

estingly, a structure of the same protein exhibiting the

sequence register that achieved the CMO was deposited three

years later at a resolution of 2.57 Å (PDB entry 6vqv chain E;

Zhang et al., 2020). Visual inspection of both models together

with their respective EM maps revealed a clear improvement

in the match between the model and the map in the later

structure (Supplemetnary Fig. S1). The later, corrected

structure was built ab initio and it seems that there was no

mention of the incorrect register in the earlier structure.

3.5. checkMySequence and the proposed methods
complement each other in the task of model validation

A comparison of the register errors found using the

checkMysequence validation tool and the two proposed

approaches was carried out in order to determine whether

these methods complement each other. Predicted sequence-

register errors found with each of these tools were recorded

and a comparison was carried out (Fig. 10). Since the set of

structures used to perform this analysis consisted of models in

which checkMySequence found a possible register error during

a previous study, a total of 374 predicted register errors were

found across the 364 models in this data set, with every model

having at least one error predicted by checkMySequence.

Using the combination of the contact-map alignment approach

and the trained SVM, conkit-validate predicted the presence

of 439 possible register errors for the same set of structures.

Encouragingly, all three methods intersected in the prediction

of 153 register errors, and 293 of the errors found with

checkMySequence could also be found using either the

contact-map alignment approach or the trained SVM. Addi-

tionally, the analysis revealed the presence of sequence-

register errors that could only be predicted by either check-

MySequence or by the combined use of the CMO and the

SVM: 81 and 146 errors, respectively.

Additional characterization of the errors that could only

be found using one of the methods being compared was

performed in the context of the available contact information

(Fig. 11). This revealed that most of the register errors that

could only be found using checkMySequence had a signifi-

cantly lower number of contacts available than those that

could only be found using contact-map alignment. This high-

lights the importance of sufficient available contact informa-

tion for the reliable calculation of the CMO. In contrast, the

trained SVM was able to detect register errors that contained

fewer contacts than those detected with the CMO approach, a

likely consequence of the fact that the most relevant feature,

the wRMSD, was calculated using inter-residue distance

predictions rather than contact predictions (Fig. 4). This

helped conkit-validate close the gap with the number of errors

detected by checkMySequence in cases where there is poor

contact information: of the 151 errors that were detected by

checkMySequence but not by the CMO approach, 50 were

found to lack sufficient contact information to produce a

reliable contact-map alignment, and of these 37 could be

detected using the SVM.

These results highlight the existing synergy between these

two approaches: while there might be errors that can only be

detected with a map-based method such as checkMySequence

or with a coordinate-based method such as conkit-validate,

cases where these two independent approaches intersect can
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Figure 11
Distribution of the average number of contacts predicted for residues
involved in sequence-register errors that could only be predicted by
checkMySequence (yellow), the contact maximum overlap approach
(turquoise) or the trained SVM (red). Black bars inside the violins depict
the interquartile range, with a white dot showing the median and black
whiskers showing the maximum and minimum quartiles.

Figure 10
Venn diagram showing the number of predicted register errors found
using checkMySequence (cMS; yellow), the contact-map alignment
approach (CMO; turquoise) and the SVM classifier (SVM; red). Errors
found using checkMySequence or contact-map alignment where the SVM
predicted at least half of the residues to be part of modelling errors have
been included in the intersection between the SVM and these methods.
Any other stretch of at least six consecutive residues predicted by the
SVM to be part of a modelling error with a probability of 90% was added
as an error found by the SVM.



lead to the confident identification of sequence-register errors.

While it is possible that errors with poor contact information

will not be detected using conkit-validate, checkMySequence

might still be able to detect them. Similarly, errors with poor

map quality, poor local resolution or mistraced backbones

proved to be harder to detect using checkMySequence in a

previous study (Chojnowski, 2022), yet these factors should

not diminish the performance of the CMO approach or the

trained SVM.

3.6. Case study: register error found in a mycoplasma
peptidase

Within the set of cryo-EM structures in which a possible

register error was found using conkit-validate, a subselection

of structures was made in order to assess whether it was

possible to observe evidence of these errors when inspecting

the model and the density map. In order to make this

assessment as unambiguous as possible, structures solved at

high resolution and that contain residues with aromatic side

chains within the possible register error were selected. Among

these structures, a mycoplasma peptidase deposited at 2.8 Å

resolution was found to have a possible register error in one of

its domains (PDB entry 7adk, chain B; Nottelet et al., 2021).

The function of this domain is not clear, although the original

authors suggested that it is possibly a serine protease with a

function related to the pathogenicity of the organism, speci-

fically immune evasion.

Analysis of the validation report produced by conkit-

validate (Fig. 12) revealed four areas of the deposited model

where the CMO was achieved using an alternative sequence

register: residues 196–385, 515–524, 620–633 and 649–657.

None of these errors could be verified by the existence of a

different model deposited in the PDB with the register that

achieved the CMO. The largest of these four errors corre-

sponds to a 15-residue shift affecting 186 residues (residues

196–385). Interestingly, located among the residues at the end

of this predicted register error, an unusual loop was found in

the deposited model between residues 378 and 401. This loop

was absent from the top-ranking model produced by Alpha-

Fold2 (Supplementary Fig. S2), resulting in an otherwise

structurally similar model with a different sequence register.

Examination of the scores predicted by the SVM classifier for

the other parts of the deposited model also revealed multiple

stretches of residues predicted to be within modelling error.

While most of these stretches coincided with the portions of

the model where an alternative register was suggested using

the CMO approach, high-scoring residues were also found in

other areas of the model where the CMO did not indicate a

potential register shift. Further inspection of the deposited

model revealed that 25% of the residues predicted by the

SVM to lie within modelling errors, despite there being no

issues found using the CMO approach, were within 10 Å of at

least five residues for which a different register was found

using the CMO. This suggests that the predicted scores for

these sets of residues could have been affected by neigh-

bouring residues found within register errors. This can occur

due to the nature of the metrics used as features for the SVM

classifier: inter-residue contacts and distances of a correctly

modelled set of residues can still be affected by incorrectly

modelled neighbouring regions.

Interestingly, analysis of the same structure using check-

MySequence revealed a possible register error for residues in

the range 613–637, which coincides with the set of residues in

positions 620–633 where the CMO was achieved after shifting

the sequence by one residue towards the C-terminus. Residues

within this range were also assigned high predicted scores by

the SVM classifier. Validation reports available for the PDB

deposition showed that within this range of residues only

Tyr633 was listed as a plane outlier and a rotamer outlier.

Thus, the conventional validation metrics reported by the

PDB did not flag any issue with this stretch. Visual inspection

of the structure and the EM map was then carried out using

ChimeraX (Goddard et al., 2018), specifically for the range of

residues in which both checkMySequence and conkit-validate

predicted the presence of a register error. This region of

interest was then reassigned to the new sequence register

suggested by the CMO approach, using the sequence-shift tool

available in ISOLDE (Croll, 2018). Visual inspection of these

residues before and after applying this sequence shift revealed

improvements in the model–map match, which is particularly

evident when looking at residues with large side chains such as

Tyr626 or Tyr633 (Fig. 13). Similarly, calculation of the FSC

between the density map and this range of residues also

revealed an improvement. After 20 cycles of jelly-body model

refinement using REFMAC5 on both the original and the

altered structures, FSC values of 0.65 and 0.73, respectively,
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Figure 12
Validation report generated for PDB entry 7adk chain B using conkit-
validate. Scores predicted with the SVM classifier are shown as a
turquoise line and have been smoothed using a five-residue rolling
average. The red dotted line shows the 0.5 score threshold. The top
horizontal bar at the bottom of the figure shows for each residue position
whether the predicted score was above (red) or below (cyan) 0.5. The
lower horizontal bar at the bottom of the figure shows for each residue
position whether the CMO was achieved using the sequence register
observed in the model (dark blue) or an alternative register (yellow).



were achieved, an indication that in this case the conventional

model-to-map fit supports the alternative register.

3.7. Case study: register error found in an ion channel

Within the set of cryo-EM structures used to benchmark

conkit-validate, the structure of a ligand-gated ion channel was

found to have a possible register error in a set of residues

located at the receptor ligand-binding domain. This structure

was selected for further analysis in order to determine the

presence of the detected register error as unambiguously as

possible, due to the combination of high resolution (2.5 Å)

and residues with aromatic side chains within the possible

error (PDB entry 7l6q, chain B; Kumar et al., 2021).

Analysis of the validation report generated using conkit-

validate for this structure (Fig. 14) revealed that the sequence

register for residues in the range 137–152 had to be altered

in order to achieve the CMO. Additionally, this same set of

residues was predicted to be part of a modelling error by the

SVM classifier, a further indication of a potential sequence-

register error. While another 11 residues outside this range

were also classified as part of modelling errors, none of these

formed stretches of more than four consecutive residues, an

indication that these are unlikely to be actual errors. Inter-

estingly, analysis of the same structure using checkMy-

Sequence revealed a possible register error for residues in the

range 136–155, in agreement with the set of residues where a

potential error was found using the other two methods.

Examination of the validation report available for this PDB

deposition revealed the presence of four rotamer outliers

within this range of residues: Gln138, Gln139, Arg141 and

Tyr148.

The sequence register for this range of residues was then

shifted by two residues towards the C-terminus using

ISOLDE in ChimeraX so that it would match the register that

achieved the CMO between the predicted and the observed

contact maps. Unexpectedly, after 20 cycles of jelly-body

model refinement using REFMAC5 on both models, calcula-

tion of the FSC did not reveal an improvement in the model

with the alternative register, with observed values of 0.84 and

0.83 for the deposited structure and the altered model,

respectively. Despite this, there are several strong reasons to

believe that the structure with the alternative register is more

likely to be correct than the originally deposited structure.

Firstly, visual inspection of the model before and after this

modification revealed a clear improvement in the match

between the side chains of these residues and the EM map

(Fig. 15). Secondly, both the trained SVM and the CMO

approaches predicted the presence of an error (Fig. 14).

Thirdly, analysis of this PDB deposition, which consists of five

identical chains, using checkMySequence suggested a possible

sequence-register error for the same set of residues in three

chains where an error was predicted using our methods. Since

checkMySequence is a map-based validation tool, it is ortho-

gonal to our methods. Finally, previous studies have observed
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Figure 14
Validation report generated for PDB entry 7l6q chain B using conkit-
validate. Scores predicted with the SVM classifier are shown as a
turquoise line and have been smoothed using a five-residue rolling
average. The red dotted line shows the 0.5 score threshold. The top
horizontal bar at the bottom of the figure shows for each residue position
whether the predicted score was above (red) or below (cyan) 0.5. The
lower horizontal bar at the bottom of the figure shows for each residue
position whether the CMO was achieved using the sequence register
observed in the model (dark blue) or an alternative register (yellow).

Figure 13
Detailed view of the section of the deposited model in which a possible
sequence-register error was detected using conkit-validate. The density
map is represented as a transparent grey surface and the level was set
at 4.8�. A mask of 3 Å around the model was applied. The original
deposition is coloured red and the structure with the sequence register
suggested by conkit-validate is in blue. Residues 626 and 633 have been
highlighted for clarity. The error corresponds to PDB entry 7adk chain B
residues 620–634.



that FSC can be inaccurate in the detection of issues affecting

small regions of a model (Lawson et al., 2021) such as this one.

Taken together, this evidence suggests that the alternative

register is indeed more likely to be correct.

Most of the structures in this benchmarking data set consist

of structures solved using cryo-EM that were deposited at a

time when no previous model of the same structure was

available in the PDB. Interestingly, unlike most of the other

structures in this benchmark set, this cryo-EM structure is of a

ligand-gated ion channel that had already been solved by

X-ray crystallography to a resolution of 3.3 Å in a previous

study (PDB entry 2vl0, chain B; Hilf & Dutzler, 2008).

Examination of this crystal structure revealed that it shares

the same sequence register with the cryo-EM structure that

was found to contain a potential register error. Visual

inspection of this model together with the electron-density

map also revealed similar features that could indicate a

possible register error, particularly a poor model–map match

for residues with large side chains. A better match was then

achieved after modification of the deposited model using

ISOLDE in ChimeraX to match the new sequence register

proposed by conkit-validate, as revealed by further visual

inspection (Supplementary Fig. S3). After 20 cycles of jelly-

body model refinement using REFMAC5 on both the model

with the alternative register and the original deposition,

calculation of Rwork and Rfree also revealed an improvement,

with observed values of 0.2172 and 0.2449, respectively, for the

alternative structure, compared with scores of 0.2176 and

0.2485, respectively, for the deposited structure. Interestingly,

an advanced search of the PDB to retrieve structures sharing

at least 95% sequence identity with PDB entry 7l6q chain B

returned hits for 33 chains, of which 16 shared the same

(predicted erroneous) sequence register for this range of

residues.

4. Conclusion

Here, we have presented new approaches for model validation

based on the use of accurate inter-residue contact and distance

predictions obtained using AlphaFold2. Firstly, a set of new

metrics were fed into a support-vector machine classifier in

order to train it to detect modelling errors based on the

agreement or disagreement between the observed and

predicted inter-residue distances. Trained using historical data

from the EM modelling challenges, the classifier achieved an

accuracy of 87% on the hold-out test set and proved to be

capable of detecting modelling errors among structures

deposited in the PDB. At this point it is worth noting that

residues in the training and hold-out sets sometimes origi-

nated from the same register-shifted regions, which may have

resulted in redundancy and overestimated accuracy. This

could have been avoided by a more rigorous (and laborious)

data stratification where each register-shift instance is repre-

sented in the training and test sets. We noted, however, that

the number of support vectors defining the trained classifier is

very low (757 of 3884 training observations), which is an

indication of very good generalization properties (Cortes &

Vapnik, 1995). If the low number of support vectors was the

result of training-set redundancy and overfitting, the estimated

test-set accuracy would be reduced compared with the training

set. In our setup, however, we observed comparable accuracies

in the training and test sets (87% and 86%, respectively).

Contact-map alignment was then used to attempt sequence

reassignment of possible register errors: parts of the model

where the contact maximum overlap was achieved using a

different register to that observed in the model were marked

as possible sequence-register errors and the alternative

register was proposed as a fix. Using this approach, it was

possible to propose the correct sequence register for 87% of

the register errors contained in a data set derived from the

models submitted to the EM modelling challenges. We

acknowledge that the performance may have been enhanced

by the presence of some of the EM map modelling challenge

structures and their homologues in the AlphaFold2 training

set. Indeed, it has been observed that the AlphaFold2 confi-

dence scores are higher for target sequences for which

homologues are available in the PDB (Jones & Thornton,

2022). It is not clear, however, whether this bias comes from

the direct use of templates, which can be accounted for rela-

tively easily, or the availability of homologues in the training

set. As a result, accounting for the AlphaFold2 training set

bias would be very difficult: for example, the sequence-identity

level threshold that would be set for the definition of an

‘unbiased’ test set is unclear. Contact-map alignment has
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Figure 15
Detailed view of the section of the deposited model in which a possible
sequence-register error was detected using conkit-validate. The density
map is represented as a transparent grey surface and the level was set to
1.35�. A mask of 3 Å around the model was applied. The original
deposition is coloured red and the structure with the sequence register
suggested by conkit-validate is in blue. Residues 148 and 142 have been
highlighted for clarity. The error corresponds to PDB entry 7l6q chain B
residues 138–148.



previously been used in the field of ab initio modelling for the

selection of templates among known protein structures

(Ovchinnikov et al., 2017), but to the best of our knowledge

never in the context of correcting sequence-register errors. For

the purpose of this study, the models used as the ground truth

in these EM modelling challenges were considered to contain

no errors. While it is possible that some errors could be

present in these models, we believe this to be unlikely as only

models with high-quality experimental data are used and

exceptional care is taken when creating these models (Lawson

et al., 2021).

These two new approaches were combined together into a

pipeline and integrated into ConKit as a new command-line

option conkit-validate. Future work will incorporate the

method into the Iris model-validation GUI that will soon be

distributed with CCP4 (Winn et al., 2011) and also CCP-EM

(Burnley et al., 2017) as part of new efforts to provide tools for

map and model validation. In contrast to other approaches

that compare the model coordinates with the density map

derived from the experimental data (Pintilie et al., 2020;

Ramı́rez-Aportela et al., 2021; Liebschner et al., 2021; Joseph

et al., 2016), our approach relies solely on the use of deep

learning-based inter-residue distance predictions, which are

compared with the distances observed in the model of interest.

Using this new pipeline, model validation was performed for a

set of cryo-EM structures deposited in the PDB which were

found to contain possible register errors using checkMy-

Sequence. The results revealed that the use of the trained

classifier in combination with contact-map alignment was

successful in the detection and correction of 130 register errors

which have inadvertently been deposited in the PDB. An

inherent limitation of our proposed methods is the availability

of high-quality inter-residue distances predicted by Alpha-

Fold2. AlphaFold2 may, for example, struggle with cases in

which only a shallow multiple sequence alignment is available,

and special care should be taken in interpreting the results of

our methods in these and any other cases where AlphaFold2 is

not expected to perform well. While we do not have reasons to

believe this was the case for the set of errors shown here, we

acknowledge that in cases where AlphaFold2 predictions are

of poor quality, such as in regions where the predicted model

has a low pLDDT, these methods may falsely suggest potential

register and modelling errors that do not really exist. In this

and other respects, our method, being entirely coordinate-

based, potentially has useful synergy with the map-based

method of Chojnowski (2022): confident prediction of register

errors can be performed in cases where these two independent

methods intersect with each other. Together, they represent a

new generation of software that can help to detect and correct

the errors that even experienced structural biologists may

inadvertently introduce when confronting the challenges of

poorer resolution experimental data.
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O., Becker, T., Kirchhoff, F., Sparrer, K. M. J. & Beckmann, R.
(2020). Science, 369, 1249–1255.

Touw, W. G., Baakman, C., Black, J., te Beek, T. A., Krieger, E.,
Joosten, R. P. & Vriend, G. (2015). Nucleic Acids Res. 43, D364–
D368.

Vriend, G. (1990). J. Mol. Graph. 8, 52–56.

Vriend, G. & Sander, C. (1993). J. Appl. Cryst. 26, 47–60.

Weiss, M. S., Diederichs, K., Read, R. J., Panjikar, S., Van Duyne,
G. D., Matera, A. G., Fischer, U. & Grimm, C. (2016). Hum. Mol.
Genet. 25, 4717–4725.

Winn, M. D., Ballard, C. C., Cowtan, K. D., Dodson, E. J., Emsley, P.,
Evans, P. R., Keegan, R. M., Krissinel, E. B., Leslie, A. G. W.,
McCoy, A., McNicholas, S. J., Murshudov, G. N., Pannu, N. S.,
Potterton, E. A., Powell, H. R., Read, R. J., Vagin, A. & Wilson,
K. S. (2011). Acta Cryst. D67, 235–242.

Yang, S., Tiwari, P., Lee, K. H., Sato, O., Ikebe, M., Padrón, R. &
Craig, R. (2020). Nature, 588, 521–525.

Zemla, A. (2003). Nucleic Acids Res. 31, 3370–3374.

Zhang, K., Wang, S., Li, S., Zhu, Y., Pintilie, G. D., Mou, T. C., Schmid,
M. F., Huang, Z. & Chiu, W. (2020). Proc. Natl Acad. Sci. USA, 117,
7176–7182.

Zhao, H., Fernandez, E., Dowd, K. A., Speer, S. D., Platt, D. J.,
Gorman, M. J., Govero, J., Nelson, C. A., Pierson, T. C., Diamond,
M. S. & Fremont, D. H. (2016). Cell, 166, 1016–1027.

research papers

Acta Cryst. (2022). D78, 1412–1427 F. Sánchez Rodrı́guez et al. � Validation with predicted inter-residue distances 1427

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qo5002&bbid=BB64
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qo5002&bbid=BB64
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qo5002&bbid=BB64
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qo5002&bbid=BB28
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qo5002&bbid=BB98
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qo5002&bbid=BB29
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qo5002&bbid=BB29
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qo5002&bbid=BB30
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qo5002&bbid=BB30
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qo5002&bbid=BB32
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qo5002&bbid=BB31
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qo5002&bbid=BB31
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qo5002&bbid=BB31
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qo5002&bbid=BB31
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qo5002&bbid=BB31
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qo5002&bbid=BB31
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qo5002&bbid=BB31
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qo5002&bbid=BB31
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qo5002&bbid=BB31
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qo5002&bbid=BB31
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qo5002&bbid=BB31
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qo5002&bbid=BB31
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qo5002&bbid=BB33
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qo5002&bbid=BB33
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qo5002&bbid=BB34
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qo5002&bbid=BB34
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qo5002&bbid=BB35
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qo5002&bbid=BB35
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qo5002&bbid=BB36
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qo5002&bbid=BB37
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qo5002&bbid=BB37
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qo5002&bbid=BB38
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qo5002&bbid=BB38
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qo5002&bbid=BB39
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qo5002&bbid=BB39
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qo5002&bbid=BB40
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qo5002&bbid=BB40
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qo5002&bbid=BB41
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qo5002&bbid=BB41
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qo5002&bbid=BB42
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qo5002&bbid=BB42
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qo5002&bbid=BB42
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qo5002&bbid=BB43
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qo5002&bbid=BB43
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qo5002&bbid=BB43
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qo5002&bbid=BB44
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qo5002&bbid=BB44
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qo5002&bbid=BB44
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qo5002&bbid=BB45
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qo5002&bbid=BB45
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qo5002&bbid=BB45
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qo5002&bbid=BB45
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qo5002&bbid=BB47
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qo5002&bbid=BB47
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qo5002&bbid=BB46
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qo5002&bbid=BB46
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qo5002&bbid=BB46
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qo5002&bbid=BB48
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qo5002&bbid=BB48
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qo5002&bbid=BB49
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qo5002&bbid=BB49
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qo5002&bbid=BB49
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qo5002&bbid=BB50
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qo5002&bbid=BB50
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qo5002&bbid=BB51
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qo5002&bbid=BB52
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qo5002&bbid=BB52
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qo5002&bbid=BB53
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qo5002&bbid=BB53
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qo5002&bbid=BB54
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qo5002&bbid=BB55
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qo5002&bbid=BB56
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qo5002&bbid=BB56
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qo5002&bbid=BB56
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qo5002&bbid=BB56
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qo5002&bbid=BB56
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qo5002&bbid=BB57
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qo5002&bbid=BB57
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qo5002&bbid=BB57
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qo5002&bbid=BB58
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qo5002&bbid=BB99
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qo5002&bbid=BB59
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qo5002&bbid=BB59
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qo5002&bbid=BB59
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qo5002&bbid=BB60
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qo5002&bbid=BB60
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qo5002&bbid=BB60
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qo5002&bbid=BB60
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qo5002&bbid=BB60
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qo5002&bbid=BB61
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qo5002&bbid=BB61
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qo5002&bbid=BB62
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qo5002&bbid=BB63
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qo5002&bbid=BB63
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qo5002&bbid=BB63
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qo5002&bbid=BB64
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qo5002&bbid=BB64
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qo5002&bbid=BB64

