scientific commentaries\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
BIOLOGY
ISSN: 2059-7983

Towards the standardized presentation and publication of small-angle scattering data from biomolecules in solution

crossmark logo

aSorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), 29680 Roscoff, Bretagne France
*Correspondence e-mail: czjzek@sb-roscoff.fr

Today Findable Accessible Interoperable Reusable, or FAIR, data principles are on everyone's lips (Wilkinson et al., 2016[Wilkinson, M. D., Dumontier, M., Aalbersberg, I. J. et al. (2016). Sci. Data, 3, 160018.]). But how do you ensure that these principles are easy to fulfil, widespread and adapted to your data? It is all about standardizing experiments, data treatment, data reporting and deposition. In this context, the macromolecular crystallography community, through engagement via the International Union of Crystallography (IUCr), has been exemplary and an early pioneer, as shown by the recent celebration of the 50th anniversary of the wwPDB (Worldwide Protein Data Bank) (Burley et al., 2022[Burley, S. K., Bhikadiya, C., Bi, C., Bittrich, S., Chen, L., Crichlow, G. V., Duarte, J. M., Dutta, S., Fayazi, M., Feng, Z., Flatt, J. W., Ganesan, S. J., Goodsell, D. S., Ghosh, S., Kramer Green, R., Guranovic, V., Henry, J., Hudson, B. P., Lawson, C. L., Liang, Y., Lowe, R., Peisach, E., Persikova, I., Piehl, D. W., Rose, Y., Sali, A., Segura, J., Sekharan, M., Shao, C., Vallat, B., Voigt, M., Westbrook, J. D., Whetstone, S., Young, J. Y. & Zardecki, C. (2022). Protein Sci. 31, 187-208.]). Through the decades, and in correlation with the technical and methodological advances in structural methods dedicated to macromolecules such as NMR or cryo-EM, the PDB coordinate repertoire has expanded to include as many as possible experimentally determined three-dimensional (3D) structural data from bio­logical macromolecules (https://www.rcsb.org/pages/about-us/history).

In contrast to the above-mentioned structural methods that (potentially) give access to close-to-atomic resolution, small-angle scattering (SAS) profiles, whether obtained by neutron (SANS) or X-ray (SAXS) scattering of macromolecules in solution, only give access to low resolution, and do not allow the determination of atomic coordinates that could be compatible with data deposition at the PDB. Albeit with this limitation, small-angle scattering is complementary to other methods, and is particularly powerful in combination with these other methods, leading to the emerging field of integrative/hybrid structure determination (Sali, 2021[Sali, A. (2021). From Integr. Struct. Biol. Cell. Biol. J. Biol. Chem. 296, 100743.]). Thanks to considerable advances in instrumentation and computational methods, the amount of SAS data has also increased dramatically over the past two decades (Fig. 1[link]), and the need for standardized data treatment and deposition has become equally urgent and important for SAXS and SANS data. Since the wwPDB initiative that created the SAS validation task force, publication guidelines have been extended to those of SAS data (Trewhella et al., 2013[Trewhella, J., Hendrickson, W. A., Kleywegt, G. J., Sali, A., Sato, M., Schwede, T., Svergun, D. I., Tainer, J. A., Westbrook, J. & Berman, H. M. (2013). Structure, 21, 875-881.]; Jacques et al., 2012a[Jacques, D. A., Guss, J. M., Svergun, D. I. & Trewhella, J. (2012a). Acta Cryst. D68, 620-626.],b[Jacques, D. A., Guss, J. M. & Trewhella, J. (2012b). BMC Struct. Biol. 12, 9.]), finally resulting in the Small Angle Scattering Biological Data Bank, SASBDB, (Valentini et al., 2015[Valentini, E., Kikhney, A. G., Previtali, G., Jeffries, C. M. & Svergun, D. I. (2015). Nucleic Acids Res. 43, D357-D363.]) that today is connected to the wwPDB through PDB-dev (Vallat et al., 2021[Vallat, B., Webb, B., Fayazi, M., Voinea, S., Tangmunarunkit, H., Ganesan, S. J., Lawson, C. L., Westbrook, J. D., Kesselman, C., Sali, A. & Berman, H. M. (2021). Acta Cryst. 77, 1486-1496.]).

[Figure 1]
Figure 1
Schematic flow of data representations for SAXS experiments.

The article by Trewhella et al. (2023[Trewhella, J., Jeffries, C. M. & Whitten, A. E. (2023). Acta Cryst. D79, 122-132.]) in this issue depicts the history of the actions commissioned by the IUCr and the SAS community, leading to best practice and publication guidelines, including template tables being published by Trewhella et al. in 2017[Trewhella, J., Duff, A. P., Durand, D., Gabel, F., Guss, J. M., Hendrickson, W. A., Hura, G. L., Jacques, D. A., Kirby, N. M., Kwan, A. H., Pérez, J., Pollack, L., Ryan, T. M., Sali, A., Schneidman-Duhovny, D., Schwede, T., Svergun, D. I., Sugiyama, M., Tainer, J. A., Vachette, P., Westbrook, J. & Whitten, A. E. (2017). Acta Cryst. D73, 710-728.]. With the aim of providing an updated template, following the IUCr announcement of requirement of data deposition (including SAXS and SANS data) prior to editorial review (Baker et al. 2022[Baker, E. N., Bond, C. S., Garman, E. F., Newman, J., Read, R. J. & van Raaij, M. J. (2022). IUCrJ, 9, 1-2.]), and of keeping pace with the recent methodological and technological advances, Trewhella et al. (2023[Trewhella, J., Jeffries, C. M. & Whitten, A. E. (2023). Acta Cryst. D79, 122-132.]) now provide a 2023 update of template tables for reporting biomolecular structural modelling of small-angle scattering data.

Integrating the experience gained by five years of using the template tables developed in 2017, combined with practical experience, the updated tables improve the presentation, while trying not to impose unnecessary work on researchers. While the original templates were mainly based on data from four SAXS examples, the new template tables also better integrate data coming from more complex samples (i.e. glycosylated proteins, DNA and RNA) and experiments, such as those from SAS contrast variation experiments (SAS-cv).

The article transparently describes the process by which the new consensus template tables were elaborated, highlighting the major changes and proposing the standardization of nomenclature to describe the components. The article then describes the reasons for reorganization of some of the sample details, or changes in reporting specific data-collection parameters, such as wavelength or beam geometry.

Finally, the newly developed table is tested for its utility using a published complex DNA–protein SAXS study (Pozner et al., 2018[Pozner, A., Hudson, N. O., Trewhella, J., Terooatea, T. W., Miller, S. A. & Buck-Koehntop, B. A. (2018). J. Mol. Biol. 430, 258-271.]), for which all reported items populate the template and are subsequently commented on in the context of how to analyse and interpret the given values.

A second objective of Trewhella and coworkers was the creation of a SAS-cv template table, to include the required additional parameters for this type of experiment. Again, Trewhella et al. (2023[Trewhella, J., Jeffries, C. M. & Whitten, A. E. (2023). Acta Cryst. D79, 122-132.]) describe which items have been added and why, with the aim of allowing a broadened applicability, without increasing the workload. To test the relative ease of use and utility of the template, it was populated with data and modelling from a combined SAXS/SANS-cv experiment deposited in SASBDB, of a protein complex consisting of a histidine kinase with bound protein inhibitors that were partially deuterated (Whitten et al., 2007[Whitten, A. E., Jacques, D. A., Hammouda, B., Hanley, T., King, G. F., Guss, J. M., Trewhella, J. & Langley, D. B. (2007). J. Mol. Biol. 368, 407-420.]). The reader is then guided through the resulting table, indicating how to read and interpret the given data, how the figures can complete the information obtained, and what assessments can be made by a reader/reviewer given the quality of the data presentation. The examples discussed nicely demonstrate the utility of such a standardized presentation, and the template tables will not only facilitate a critical assessment to readers and reviewers, but also largely support the experimenter to prepare, perform and present their SAS data in a concise but complete manner.

As a conclusion, the authors point out that it is evident that a single template table cannot account for all the different kinds of SAS experiments involving biomolecules that can be set up or thought of. However, discussions are already ongoing in the SAS community to follow the examples presented here and develop templates for SAS experiments involving nanoparticle/micelle/bicelle-type structures (Trewhella et al., 2023[Trewhella, J., Jeffries, C. M. & Whitten, A. E. (2023). Acta Cryst. D79, 122-132.]).

Taken together, these efforts are of great importance to enhance the confidence with which the scientific community can rely on biomolecular SAS data and build up upon them for further investigations. And I sincerely believe that the structural biology community will strongly welcome the template tables and use them extensively for future publications.

References

First citationBaker, E. N., Bond, C. S., Garman, E. F., Newman, J., Read, R. J. & van Raaij, M. J. (2022). IUCrJ, 9, 1–2.  CrossRef CAS PubMed IUCr Journals Google Scholar
First citationBurley, S. K., Bhikadiya, C., Bi, C., Bittrich, S., Chen, L., Crichlow, G. V., Duarte, J. M., Dutta, S., Fayazi, M., Feng, Z., Flatt, J. W., Ganesan, S. J., Goodsell, D. S., Ghosh, S., Kramer Green, R., Guranovic, V., Henry, J., Hudson, B. P., Lawson, C. L., Liang, Y., Lowe, R., Peisach, E., Persikova, I., Piehl, D. W., Rose, Y., Sali, A., Segura, J., Sekharan, M., Shao, C., Vallat, B., Voigt, M., Westbrook, J. D., Whetstone, S., Young, J. Y. & Zardecki, C. (2022). Protein Sci. 31, 187–208.  CrossRef CAS PubMed Google Scholar
First citationJacques, D. A., Guss, J. M., Svergun, D. I. & Trewhella, J. (2012a). Acta Cryst. D68, 620–626.  CrossRef IUCr Journals Google Scholar
First citationJacques, D. A., Guss, J. M. & Trewhella, J. (2012b). BMC Struct. Biol. 12, 9.  Google Scholar
First citationPozner, A., Hudson, N. O., Trewhella, J., Terooatea, T. W., Miller, S. A. & Buck-Koehntop, B. A. (2018). J. Mol. Biol. 430, 258–271.  CrossRef CAS PubMed Google Scholar
First citationSali, A. (2021). From Integr. Struct. Biol. Cell. Biol. J. Biol. Chem. 296, 100743.  Google Scholar
First citationTrewhella, J., Duff, A. P., Durand, D., Gabel, F., Guss, J. M., Hendrickson, W. A., Hura, G. L., Jacques, D. A., Kirby, N. M., Kwan, A. H., Pérez, J., Pollack, L., Ryan, T. M., Sali, A., Schneidman-Duhovny, D., Schwede, T., Svergun, D. I., Sugiyama, M., Tainer, J. A., Vachette, P., Westbrook, J. & Whitten, A. E. (2017). Acta Cryst. D73, 710–728.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTrewhella, J., Hendrickson, W. A., Kleywegt, G. J., Sali, A., Sato, M., Schwede, T., Svergun, D. I., Tainer, J. A., Westbrook, J. & Berman, H. M. (2013). Structure, 21, 875–881.  Web of Science CrossRef CAS PubMed Google Scholar
First citationTrewhella, J., Jeffries, C. M. & Whitten, A. E. (2023). Acta Cryst. D79, 122–132.  CrossRef IUCr Journals Google Scholar
First citationValentini, E., Kikhney, A. G., Previtali, G., Jeffries, C. M. & Svergun, D. I. (2015). Nucleic Acids Res. 43, D357–D363.  Web of Science CrossRef CAS PubMed Google Scholar
First citationVallat, B., Webb, B., Fayazi, M., Voinea, S., Tangmunarunkit, H., Ganesan, S. J., Lawson, C. L., Westbrook, J. D., Kesselman, C., Sali, A. & Berman, H. M. (2021). Acta Cryst. 77, 1486–1496.  Google Scholar
First citationWhitten, A. E., Jacques, D. A., Hammouda, B., Hanley, T., King, G. F., Guss, J. M., Trewhella, J. & Langley, D. B. (2007). J. Mol. Biol. 368, 407–420.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWilkinson, M. D., Dumontier, M., Aalbersberg, I. J. et al. (2016). Sci. Data, 3, 160018.  CrossRef PubMed Google Scholar

This article is published by the International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoSTRUCTURAL
BIOLOGY
ISSN: 2059-7983
Follow Acta Cryst. D
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds