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Fast, reliable docking of models into cryo-EM maps requires understanding of

the errors in the maps and the models. Likelihood-based approaches to errors

have proven to be powerful and adaptable in experimental structural biology,

finding applications in both crystallography and cryo-EM. Indeed, previous

crystallographic work on the errors in structural models is directly applicable to

likelihood targets in cryo-EM. Likelihood targets in Fourier space are derived

here to characterize, based on the comparison of half-maps, the direction- and

resolution-dependent variation in the strength of both signal and noise in the

data. Because the signal depends on local features, the signal and noise are

analysed in local regions of the cryo-EM reconstruction. The likelihood analysis

extends to prediction of the signal that will be achieved in any docking

calculation for a model of specified quality and completeness. A related

calculation generalizes a previous measure of the information gained by making

the cryo-EM reconstruction.

1. Introduction

The problem of docking models into cryo-EM maps is similar

to the molecular-replacement (MR) problem in crystallo-

graphy. The key difference is that cryo-EM data are enriched

by the phase information that is lost in crystallography, and

the resulting increase in signal to noise greatly simplifies the

task of translating an oriented model with fast Fourier trans-

form (FFT)-based correlation functions. However, this phase

information cannot be used directly in assessing different model

orientations prior to the translation search, so many existing

docking algorithms rely on a systematic six-dimensional

search over possible orientations and positions.

In crystallography, MR algorithms have been made signifi-

cantly more sensitive by using likelihood scores for rotation,

translation and rigid-body refinement tasks (McCoy et al.,

2007). In addition, an understanding of the relationship

connecting data and model quality with the likelihood scores

that can be expected in a particular calculation has opened up

new possibilities for tailoring MR calculations to the problem

at hand (McCoy et al., 2017; Oeffner et al., 2018). These

concepts can be applied to the related problems in cryo-EM.

Most existing docking methods for cryo-EM are scored

by variants of cross-correlation functions. Comprehensive

reviews of these score functions have been compiled by others

(Zundert & Bonvin, 2015; Cragnolini et al., 2021). Some

examples include cross-correlation of the experimental cryo-

EM map and a map computed from coordinates (Stewart et al.,

1993), local cross-correlation (Roseman, 2000), Laplacian
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filtered cross-correlation (Wriggers, 2012) and core-weighted

cross-correlation (Wu et al., 2003).

When comparing a variety of scores of fit to model,

including cross-correlations, Joseph et al. (2017) found that

mutual information was a better discriminator for low- to

medium-resolution maps. Like the likelihood score proposed

here, mutual information is a probabilistic measure, but it

works with real-space voxel values, not Fourier terms. In

addition, mutual information does not explicitly account for

errors in the reconstruction itself.

As noted below, our docking target is based on similar ideas

to the likelihood-based refinement target for models against

cryo-EM maps used in REFMAC (Murshudov, 2016), but

differs importantly in using a more sophisticated error model

for experimental data that takes account of the directional

dependence of both the signal and the noise in Fourier space.

2. Probabilities and likelihood targets

2.1. Error model for single-particle cryo-EM data

For a cryo-EM reconstruction, the aim is that each indivi-

dual molecule or molecular assembly in a particle is essentially

a rigid object, either by nature or as a result of particle

selection.

Errors in cryo-EM reconstructions come from a combina-

tion of suboptimal relative orientations of individual images,

structural differences, and imaging limitations and artefacts

among the collection of particles used in the reconstruction, as

reviewed, for instance, by Ramlaul et al. (2019). In the indi-

vidual 2D particle images derived from a series collected over

the total exposure, the images are smeared by any uncorrected

sample motion, degraded by the effects of any radiation

damage and limited in resolution by the detector pixel size.

Additional random shot noise comes from counting statistics

and the presence of irreproducible features in the vitrified

solvent around them.

For reconstruction, the information contained in the 2D

image is converted into its Fourier transform, which comprises

a 2D slice through the Fourier transform of the molecule;

errors in the Fourier terms can arise, for instance, from errors

in the contrast transfer function correction. If the correction

terms have been optimized, their values and errors will differ

in different images, so we can expect the remaining errors in

data from these individual images to be largely uncorrelated

with particle orientation or with the images themselves.

Nonetheless, if systematic errors remained it would be difficult

to distinguish them from signal.

Each particle imaged in a data set will be in a different

orientation and (to a greater or lesser extent) a different

conformation. 3D classification will allow significantly

different conformations to be grouped together, but variation

will remain within the groups, corresponding in real space to

blurring of the atoms over their range of possible relative

positions when constructing a 3D image. Further blurring will

come from uncertainties in the orientation and position of the

particle in each image when averaging the Fourier terms from

different images to obtain a 3D data set.

In our error model, we consider that the signal in an indi-

vidual Fourier term in the reconstruction comes from the

Fourier transform of the image of atoms at rest, blurred by the

effects of global and local variations in orientation and posi-

tion. These blurring effects are similar to what is modelled

locally in crystallography by anisotropic displacements or, on

a larger scale, by translation–libration–screw (TLS) models

(Schomaker & Trueblood, 1968).

Random noise in the contributions from individual particle

images will be reduced when the corresponding Fourier terms

from different images are averaged. However, the existence of

preferred orientations will mean that the magnitude of the

random noise terms, after averaging over different numbers of

observations, will vary with direction in Fourier space. In

principle, this could be modelled by keeping track of redun-

dancy during the reconstruction process, but in the current

implementation we are starting from conventional half-maps

rather than individual particle images. We assume that the

particles chosen for the half-map reconstructions are chosen

randomly, so that the half-maps contain different random

selections from the same sources of error. We approximate the

directional and resolution dependence as a smoothly varying

function in Fourier space. Since variations in conformation

need not be correlated with orientation preference in the

sample, the two sources of variation in signal and noise are

evaluated independently.

If we consider smaller subvolumes of the full reconstruction

(useful when searching for small components, as discussed

below and in the accompanying paper; Millán et al., 2023), the

strength of the signal will vary because the degree of local

structural order varies. On the other hand, the strength of the

noise should be reasonably uniform over different parts of the

full reconstruction, as discussed by Palmer & Aylett (2022). In

the algorithms described below, we nonetheless determine the

noise power independently for subvolumes, because cryo-EM

reconstructions are commonly masked towards the periphery

of the cube, and the effects of this can vary among subvolumes.

Because the estimation of noise requires the comparison

of independent measurements, all of our signal and error

evaluation is carried out using the Fourier terms computed

from the half-maps. The signal power is deduced from corre-

lations between the half-map terms and the error power from

their differences.

The signal in matching pairs of Fourier terms derived from

the half-maps can be expressed in terms of the underlying

Fourier transform of atoms at rest (represented as Thkl and

drawn from a complex normal distribution with variance �T

representing the scattering power), multiplied by a scale factor

combined with a term that varies with resolution and direction

in Fourier space (represented as Ahkl). The choice to separate

Ahkl from Thkl was made to allow a Bayesian prior to be

considered for the �T component of the signal strength, as

discussed below.

The noise term, """hkl, is drawn independently for each half-

map from a complex normal distribution with variance �E.
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Note that both �T and �E will vary with resolution; as noted

above, �E will also vary with direction in Fourier space.

Fhkl ¼ AhklThkl þ """hkl: ð1Þ

When describing the individual half-map terms, the subscripts

hkl will be implicit for simplicity of notation:

F1 ¼ ATþ """1; ð1aÞ

F2 ¼ ATþ """2: ð1bÞ

Because T and """ are both drawn from complex normal

distributions, the joint distribution of F1 and F2 can be defined

in terms of a bivariate complex normal distribution. The

covariance matrix for this distribution is given by

R ¼
hF1F�1i hF1F�2i

hF�1F2i hF2F�2i

� �
: ð2Þ

The terms in the covariance matrix can be simplified in terms

of the variances of the distributions for T and """, noting that """1

and """2 are independent so that their covariance is zero:

hF1F�1i ¼ hðATþ """1ÞðATþ """1Þ
�
i ¼ �S þ�E; ð3aÞ

hF2F�2i ¼ hðATþ """2ÞðATþ """2Þ
�
i ¼ �S þ�E; ð3bÞ

hF1F�2i ¼ hðATþ """1ÞðATþ """2Þ
�
i ¼ �S ¼ hF

�
1F2i ð3cÞ

where

�S ¼ A2�T: ð3dÞ

The parameters characterizing the bivariate complex

normal distribution can be estimated by maximizing the

likelihood of measuring the data derived from the two half-

maps.

The determinant and the inverse of the covariance matrix

are needed to compute the likelihood target:

det ¼ det
�S þ�E �S

�S �S þ�E

� �
¼ 2�S�E þ�2

E; ð4aÞ

R�1
¼

1

2�S�E þ�2
E

�S þ�E ��S

��S �S þ�E

� �
: ð4bÞ

The joint probability distribution of F1 and F2 is given by the

following bivariate complex normal distribution,

pðF1;F2Þ ¼
1

j�Rj
exp½�ðF1 � hF1i;F2 � hF2iÞ

H

� R�1
ðF1 � hF1i;F2 � hF2iÞ�

¼
1

j�Rj
exp½�ðF1;F2Þ

HR�1
ðF1;F2Þ�

¼
1

�2ð2�S�E þ�2
EÞ

� exp
�ðF2

1 þ F2
2 Þð�S þ�EÞ þ 2�SF1F2 cosð’1 � ’2Þ

2�S�E þ�2
E

� �
;

ð5Þ

where superscript H indicates the Hermitian transpose. Note

that before we have any knowledge of the values of F1 and F2,

their expected complex values are zero. In the final part of

equation (5) the argument of the exponential is expanded out

by multiplication, using the expressions for the inverse and

determinant of the covariance matrix in equation (4), and the

Fourier terms are represented in terms of their amplitudes and

phases. The likelihood function (L) for a pair of half-map

Fourier terms is the probability distribution in equation (5)

given values for the variance parameters that are being eval-

uated. The contribution of a single Fourier term to the log-

likelihood function is therefore given by the logarithm of the

joint probability distribution shown in equation (5):

lnðLÞ ¼ � ln½�2
ð2�S�E þ�2

EÞ�

�
ðF2

1 þ F2
2 Þð�S þ�EÞ

2�S�E þ�2
E

þ
2�SF1F2 cosð’1 � ’2Þ

2�S�E þ�2
E

:

ð6Þ

2.1.1. Estimating the variance parameters in the error
model. We have tested two approaches to determining the

values of �S and �E as they vary over Fourier space. One is to

assume that their values are close to constant in a small region

of Fourier space such as a sphere around a particular Fourier

term (or at least that their variation over that sphere is such

that their mean value is representative of the term at the

centre). This approach makes no assumption about the func-

tional form of their dependence on resolution or direction in

Fourier space. The second approach is to assume that the

variation can be captured by some combination of a resolution

term (such as a constant for each spherical shell) and an

anisotropic tensor representing a 3D Gaussian.

For the local variation approach, there is an analytical

solution for the �S and �E terms that maximize the log like-

lihood for a local region in Fourier space. This is obtained by

taking the derivatives of the sum of the log likelihood in

equation (6) over a set of n Fourier terms, with respect to �S

and �E, and then solving the simultaneous equations to find

the values where the two derivatives are equal to zero:

c�S�S ¼
1

n

P
F1F2 cosð’1 � ’2Þ; ð7aÞ

c�E�E ¼
1

2n

P
F2

1 þ F2
2

� �
�c�S�S: ð7bÞ

The results for the maximum-likelihood estimators are

intuitively reasonable. c�S�S is an unnormalized correlation

function of the half-map Fourier terms. If we substitute the

expression for c�S�S (equation 7a) into the expression for c�E�E

(equation 7b), we can see that c�E�E is proportional to the mean-

squared value of the magnitude of the difference between the

complex values of F1 and F2.

These maximum-likelihood estimates of the parameters

have the great advantage that they require no assumptions

about the shape of their distribution over Fourier space. This is

particularly acute for the �E error terms; these will largely

reflect the distribution of favoured orientations, which can

have a number of modes that do not necessarily obey any

symmetry. A priori, there seems little reason therefore to

expect this distribution to be described well by an anisotropic

tensor. Indeed, preliminary work testing the anisotropic
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tensor approach gave poor results (not reported here in

further detail). Local variation in Fourier space is therefore

used exclusively for the error terms.

There is a different trade-off for the �S signal terms. In

regions of Fourier space where the signal is much lower than

the noise, the statistical error in the correlation function

becomes very large relative to the true value, leading to

serious artefacts near the resolution limit when applying the

local variation approach. However, the local variation esti-

mates of �S behave well in regions of Fourier space with

strong signal, with the benefit of avoiding any assumptions

about the shape of the distribution of signal strength. For that

reason, a hybrid method that couples the local variation

approach with an anisotropic tensor approach has been

chosen, as discussed below.

For the �S signal terms, the assumption that the local

molecular structure undergoes displacements that can be

captured by an anisotropic tensor is easier to justify, based on

bonding constraints, than for the �E terms. An overall

anisotropy model is frequently used for diffraction data in

crystallography, as a relatively simple and useful approxima-

tion to account for the overall effects of atomic displacements.

For cryo-EM, such an approximation is best justified when

considering a limited volume containing a component under-

going overall rigid-body displacements, but will degrade if

different components undergo different rigid-body displace-

ments.

There does not appear to be an analytical solution for

maximum-likelihood estimates of the terms determining �S,

so an iterative refinement is required. The refinable para-

meters for the signal power in the log-likelihood function are

the parameters determining the values of A and �T,

A ¼ A0 expð�hT�AhÞ; ð8Þ

where A0 is an overall scale, h is a triplet of hkl values and �A

is an anisotropic tensor that captures the effects of overall

anisotropic displacements of the object in the map.

�T is a function of resolution because the spectral variation

of the Fourier transform reflects both the width of atomic

features and favoured interatomic distances within the imaged

object. If the signal to noise were reasonably high for all

resolution ranges, �T could be estimated reliably in resolution

bins, but this is not usually a safe assumption towards the

resolution limit. For a similar problem in normalizing crys-

tallographic data (Read & McCoy, 2016), we have found that a

Bayesian framework using a prior probability distribution is

useful: we assume that the overall spectral variation of the

data should be similar to the average seen in a large variety of

structures, as captured by the BEST curve tabulated by Popov

& Bourenkov (2003). This curve will not be exact for any

particular data set, so some variation must be allowed; this is

accomplished by refining binwise resolution parameters that

are set initially to one and weakly restraining the logarithm of

their values to zero. Weaker restraints are used at low reso-

lution than at high resolution, because the low-resolution

Fourier terms depend more on molecular shape than favoured

interatomic distances, and thus vary more from structure to

structure. The restraints have very little effect on the refined

parameters for strong data but dramatically improve the

behaviour of refinement for weak data. Note that the BEST

curve was derived using a large set of X-ray diffraction data to

high resolution. A related curve is not yet available for cryo-

EM or electron diffraction data, although a similar use of

power spectra has been suggested in the past (Scheres, 2012),

but we note that the spectral variation of the Fourier terms

from cryo-EM reconstructions at high resolution show similar

behaviour to those from X-ray diffraction because of the

predominant effect of favoured distances. Using the BEST

curve, the refinable parameters for �T are the resolution bin

parameters in the equation

�T ¼ �T;bin�T;BEST: ð9Þ

Note that the assumption that the spectral variation will follow

the BEST curve will be violated when the half-maps have been

manipulated, for instance by applying band-pass filters. For

this reason (among others), our method requires the avail-

ability of unfiltered, unmasked half-maps.

In the hybrid method for estimating signal power, �S is

computed as a weighted average of the local variation estimate

and the estimate from the anisotropic tensor approach.

Because the anisotropic tensor parameters are estimated from

a likelihood target in which they contribute even when the

local signal is strong, their refinement is stable, but they only

dominate the determination of the hybrid estimate of �S when

the local signal is weak. The relative weight is determined by a

sigmoid function of the local complex correlation (or local

Fourier sphere correlation CCsphere) of the Fourier terms:

�S;hybrid ¼ waA2�T þ ð1� waÞ
b��S; ð10aÞ

where

wa ¼ 1� k0

expðs CCsphereÞ

expðs=2Þ þ expðs CCsphereÞ
: ð10bÞ

In equation (10b) s is a steepness parameter, set by default

to 9, and k0 is a parameter, set by default to 0.95, to ensure that

the anisotropic tensor approach still considers data with a high

local correlation.

2.2. Likelihood target for evaluating models in cryo-EM
reconstructions

To derive a likelihood target for evaluating the fit of models

to data, we need to account for errors in the model (in addi-

tion to estimates of the measurement error discussed above).

Both structure refinement and docking can be carried out

using a likelihood target that evaluates the likelihood of the

map given the model. We start by considering the errors

between the Fourier terms corresponding to the (unknown)

true map (T) and the average map coefficients obtained from

the two half-maps. This can be evaluated by considering the

definition of the half-map Fourier coefficients in terms of the

true coefficients:
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Fmean ¼
ðF1 þ F2Þ

2
¼
ðATþ """1 þ ATþ """2Þ

2
¼ ATþ """mean;

ð11aÞ

where

"""mean ¼
ð"""1 þ """2Þ

2
: ð11bÞ

When """1 and """2 can be considered independent with equal

variance (as we assume for half-maps), the variance of their

mean is reduced by a factor of two. This allows us to work out

the terms of the covariance matrix relating T and Fmean:

hT T�i ¼ �T; ð12aÞ

hFmeanF�meani ¼ A2�T þ�E=2; ð12bÞ

hT F�meani ¼ A�T ¼ hT
�Fmeani: ð12cÞ

The likelihood target has a simpler form if it is expressed in

terms of normalized map coefficients (E-values), in which the

mean-square value of E is expected to be one:

ET ¼ T=ð�TÞ
1=2; ð13aÞ

Emean ¼ Fmean=ðA
2�T þ�E=2Þ1=2; ð13bÞ

hETE�meani ¼
A�T

½�TðA
2�T þ�E=2Þ�1=2

¼
A2�T

A2�T þ�E=2

� �1=2

¼
�S

�S þ�E=2

� �1=2

¼ Dobs: ð13cÞ

Dobs is the complex correlation relating Emean and the true

value, ET. It plays the same role, for a single Fourier term, as

FSCref (the Fourier shell correlation to the true map) does for

a whole resolution shell in Fourier space. Note that if �E is

zero then Dobs is one, but it becomes smaller as the ratio

between �E and �S increases, reaching zero when �S is zero.

The other source of error in the likelihood target is model

error. For docking, it is generally safe to assume that the errors

in the map and the errors in the model are independent prior

to any refinement against the map, so there are no concerns

about overfitting. The relationship between the Fourier coef-

ficients computed from a model and those that would be

obtained from the true map is the same as that between

calculated and true structure factors in crystallography: the

central limit theorem allows us to conclude that the errors in

the calculated Fourier coefficients that arise from the sum of

many small errors from the individual atoms in the model can

be described in terms of a complex normal distribution, like

the errors between the true map and the experimental

reconstruction. In crystallography, this is described by the

complex correlation, termed �A, between the normalized

structure factors (Srinivasan & Ramachandran, 1965; Read,

1990). The �A term combines the effects of completeness of

the model (the fraction f of the scattering accounted for by

the model) and the accuracy of the model; if we make the

simplifying assumption that the errors in the coordinates of all

the atoms are all drawn from the same 3D Gaussian distri-

bution, �A can be calculated with the formula

�AðsÞ ¼ f 1=2 exp �
2�2

3
s2�2

� �
; ð14Þ

where s is the inverse resolution and � is the r.m.s. radial

coordinate error (Read, 1990). Violation of this assumption

can change the resolution dependence of the �A curve, but a

compromise effective overall r.m.s. error is determined by

refinement after placing the model. The complex normal

distribution is relevant regardless of the types of modelling

errors, as long as none of them are so large that they dominate.

Because the errors between the true map and either the

calculated map or the observed map are independent, the

complex correlation between the observed map and the model

is simply the product of the two individual complex correla-

tions Dobs and �A. Therefore, the joint distribution of Emean

and the normalized calculated Fourier coefficient, EC, is a

bivariate complex normal distribution with expected values of

zero (prior to any knowledge of either) and the covariance

matrix

� ¼
1 Dobs�A

Dobs�A 1

� �
: ð15Þ

The likelihood function for judging the fit of a model in a map

(whether derived by docking or structure refinement) is the

conditional probability distribution for the observed normal-

ized Fourier coefficient given the corresponding term

computed from the model. This conditional distribution is

obtained by a simple manipulation of the joint distribution,

yielding a complex normal distribution with a variance of

1�D2
obs�

2
A and an expected value of Dobs�AEC:

pðEmean; ECÞ ¼
1

�ð1�D2
obs�

2
AÞ

exp �
jEmean �Dobs�AECj

2

1�D2
obs�

2
A

� �
:

ð16Þ

It is more convenient to work with the log-likelihood gain or

LLG, i.e. the gain in the log-likelihood score compared with an

uninformative model (for which �A is zero). The contribution

of a single Fourier term to the total LLG can be determined

by taking the logarithm of p(Emean; EC) and subtracting the

logarithm of that probability with �A set to zero. After

expanding the arguments of the exponentials in terms of the

amplitudes and phases of the Fourier terms, the result can be

simplified to

LLGðEmean; ECÞ

¼
2Dobs�AEmeanEC cosð�’Þ �D2

obs�
2
AðE

2
mean þ E2

CÞ

1�D2
obs�

2
A

� lnð1�D2
obs�

2
AÞ; ð17Þ

where �’ is the difference between the phases of Emean and

EC, and Emean and EC are amplitudes. Note that this can

alternatively be expressed in terms of a correlation function

between the weighted averaged map and the model, a scale

factor and an offset:
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LLGðEmean; ECÞ ¼
2

1�D2
obs�

2
A

Dobs�AEmeanEC cosð�’Þ

�
D2

obs�
2
AðE

2
mean þ E2

CÞ

1�D2
obs�

2
A

� lnð1�D2
obs�

2
AÞ:

ð18Þ

The total LLG score is the sum over all Fourier terms.

However, it is important to note that cryo-EM differs from

crystallography in that the Fourier transform of the recon-

struction is typically highly oversampled: proteins in crystals

pack in a lattice in which molecules are in contact with each

other, whereas the cryo-EM reconstruction is computed in a

much larger box than required to contain the particle. Over-

sampling leads to strong correlations among neighbouring

Fourier terms. This can be accounted for simply by applying a

correction factor equal to the ratio of the volume required to

contain the particle and the volume of the box in which the

reconstruction was carried out, as proposed by van Heel &

Schatz (2020) for computing information content. The same

correction factor must be applied to all fast approximations,

expected values and information gain discussed below.

The likelihood target described here has the same basic

functional form as the likelihood target used to refine

cryo-EM models in REFMAC (Murshudov, 2016), differing

importantly in taking account of the dependence of the signal

and error terms on direction in reciprocal space, instead of

depending only on resolution. As shown in Section 5 below,

we see large differences in the size of signal and error terms

within a resolution shell, which will have significant effects on

the likelihood scores.

2.3. Map coefficients

Two sets of map coefficients can be generated for evaluating

the fit of a docked model. The first type uses the Fourier

coefficients

Fmap ¼ DobsEmean: ð19Þ

Since this is the expected value of the true sharpened map

coefficient (the centroid of the probability distribution), this

should give a map that minimizes the error from the true

sharpened map.

The second type uses Fourier coefficients that include the

other weighting terms from the correlation function in the log-

likelihood target (equation 18),

Fmap ¼
2

1�D2
obs�

2
A

Dobs�AEmean: ð20Þ

The correlation of this map (equation 20) with the sharpened

map computed from a docked model should be proportional

to the likelihood target. To compute such a map, a choice has

to be made of the value of �A that is used, which primarily

depends on the scattering in the volume under consideration

but also coordinate error and the ability of atomic models to

account for the bulk-solvent region.

2.4. Fast rotation target for scoring orientations of models

In crystallographic MR, the six-dimensional problem of

finding the orientation and position of a model to fit the

diffraction data is typically divided into a sequence of two

three-dimensional problems: an orientation search (rotation

function) followed by translation searches with models in a

number of plausible orientations determined from the orien-

tation search (translation function). The crystallographic

rotation function can be directly adapted to the docking

problem in cryo-EM; it does not use the phase information in

the complex Fourier terms, but phase information cannot be

used in any event without some knowledge of the position of

the search model. The rotation search thus depends solely on

the amplitudes of the Fourier terms, so the crystallographic

likelihood-based rotation function (Storoni et al., 2004) can be

used without alteration: the cryo-EM Dobs plays the same role

as the crystallographic Dobs parameter in the log-likelihood

gain on intensities (LLGI) target (Read & McCoy, 2016;

Jamshidiha et al., 2019). As in crystallography, an approx-

imation of the likelihood-based rotation function can be

computed rapidly by FFT methods before being scored by the

exact likelihood function.

It should be noted that phase information can be used

indirectly in the rotation search. If there is a hypothesis for the

location of a particular component in a full reconstruction, the

rotation search can use the Fourier terms computed from a

portion extracted from the full reconstruction. The use of such

a procedure is essential to the subvolume searches mentioned

below and is discussed in detail in the accompanying paper

(Millán et al., 2023).

2.5. Fast translation target for scoring positions of oriented
models

In crystallography, where there is typically no prior phase

information in an MR search, only an approximation to the

likelihood target can be computed by FFT methods. However,

the LLG score for the fit of a model to cryo-EM data (equa-

tion 18) takes the form of a correlation function, which can

therefore be calculated exactly as a function of translation

using a single FFT, plus terms accounting for scaling para-

meters and contributions that do not change with translation.

2.6. Rigid-body refinement

Refinement of a docked model involves optimizing the

parameters of equation (18) to maximize the LLG. The

orientation and translation parameters affect the calculated

Fourier terms, while the estimated r.m.s.d. of the model from

the true structure after being correctly placed (typically in the

range 0.8–1.2 Å) changes the �A term. As in the related MR

case, a careful choice of parameterization can improve the

refinement behaviour. For instance, correlations between

rotation and translation parameters can be minimized by

defining the rotation in terms of a rotation about the centre of

mass of the component. In addition, defining the rotation in

terms of a perturbation applied to the current orientation by

rotating sequentially about orthogonal x, y and z axes (rather
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than, for instance, Euler angles) makes the rotation para-

meters locally close to orthogonal.

Although improvements in hardware and cryo-EM proto-

cols have generally reduced the uncertainty about voxel size

(or magnification factor) in modern cryo-EM reconstructions,

we have implemented a cell scale-factor parameter, which

affects the calculated Fourier terms and therefore can be

refined to compensate for any error in voxel size.

3. Expected likelihood scores and information gain

In crystallographic MR, it has been possible to optimize the

choice of search strategy by firstly knowing the absolute LLG

score that is required for correct solutions to be recognized

and secondly being able to predict the LLG score that can be

achieved in a particular search given the quality of the model,

the quality of the data and the resolution limit applied to the

data (McCoy et al., 2017; Oeffner et al., 2018). The same

considerations of expected LLG (or eLLG) can be applied to

docking in cryo-EM, as discussed in detail in the accom-

panying paper (Millán et al., 2023).

3.1. Rotation eLLG

In a rotation search for a cryo-EM reconstruction lacking

symmetry, the LLG score for an orientation is the same as the

crystallographic LLG score for a model of a crystal in space

group P1. Therefore, the rotation eLLG, eLLGrot, can be

computed using the same formula as the crystallographic

eLLG for space group P1 (McCoy et al., 2017),

eLLGrot ¼
P
hkl

eLLGrot;hkl; ð21aÞ

where

eLLGrot;hkl ¼
D4

obs�
4
A

2
: ð21bÞ

In equation (21) the value of Dobs for each Fourier term is

obtained from analysis of the reconstruction or a subvolume

extracted from it. It is instructive to consider the effect of

increasing the volume of a sphere extracted from the total

reconstruction. If a sphere containing the correct volume for

the component under investigation were doubled in volume,

the number of Fourier terms would double. At the same time,

the fraction of the map accounted for by the model would

decrease by the same factor of two. Because �A is proportional

to the square root of the model completeness, each term in the

sum would be reduced by a factor of 4, so that the total

eLLGrot would be reduced by a factor of two. More generally,

all else being equal, eLLGrot is inversely proportional to the

volume of the part of the map being used for the search.

3.2. Translation eLLG

The expected value of the LLG for an individual Fourier

term is given by the probability-weighted average of the LLG

over all possible values of the calculated Fourier term, where

the weighting is the conditional probability of that calculated

term given the observed Fourier term. Because the joint

probability distribution of the calculated and observed Fourier

terms is symmetric, the required conditional probability has

the same functional form as the likelihood of the data given

the model:

eLLGtra;hkl ¼
R

pðEC; EmeanÞLLGðEmean; ECÞ dEC: ð22aÞ

where

pðEC; EmeanÞ ¼
1

�ð1�D2
obs�

2
AÞ

exp �
jEC �Dobs�AEmeanj

2

1�D2
obs�

2
A

� �
:

ð22bÞ

The integral has a simple analytical solution, which was

determined using Mathematica (version 12.0; Wolfram

Research):

eLLGtra;hkl ¼ ðE
2
mean � 1ÞD2

obs�
2
A � lnð1�D2

obs�
2
AÞ: ð23Þ

Considering that the expected value of E2
mean is one, if we

assume that there is no correlation between E2
mean and D2

obs�
2
A

the expected value of the first term is zero, so that

eLLGtra;hkl ’ � lnð1�D2
obs�

2
AÞ: ð24Þ

For all values of Dobs�A, eLLGtra,hkl is greater than

eLLGrot,hkl, especially for the poorest combinations of map

and model quality; when Dobs�A is 0.01, for instance, the ratio

is about 20 000. This is an indication of the extent to which

phase information enhances the likelihood scores. The impli-

cation is that the trade-off between the size of the subvolume

and the sensitivity to the correct solution is very different for

the rotation and translation parts of the search.

In contrast to eLLGrot,hkl, eLLGtra,hkl is relatively insensi-

tive to the size of the subvolume, especially when either the

map or the model is poor (Dobs�A � 1), in which case the

change in the number of Fourier terms counterbalances the

change in the logarithmic term. Intuitively this makes sense,

because the inclusion of phase information implicitly focuses

the calculation on the position of the model. The implication

that the size of the subvolume is relatively unimportant for the

translation search can be exploited for a six-dimensional

brute-force search, as discussed in the accompanying paper

(Millán et al., 2023).

3.3. Information gained by cryo-EM reconstruction

Information theory and likelihood are closely connected,

and the information gained by measuring the data in a cryo-

EM reconstruction, computed using the Kullback–Leibler

divergence (Kullback & Leibler, 1951), can be derived using

methods related to those used for the eLLG. Essentially, the

Kullback–Leibler divergence (if measured with the natural

logarithm in units of natural units of information, nats, rather

than the conventional bits obtained with the logarithm base 2)

is equivalent to the eLLG that would be expected for a perfect

model (i.e. the true structure in the sample).

The Kullback–Leibler divergence for the information

gained about the true map, given the reconstruction, can be

computed for one Fourier term with the following integral

over all possible values of the true Fourier term, E:
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DKL ¼
R

pðE; EmeanÞ ln
pðE; EmeanÞ

pðEÞ

� �
dE: ð25Þ

The probability weighting this integral is equivalent to

p(EC; Emean) when the model is perfect (i.e. EC = E). Applying

Bayes’ theorem, we can substitute

pðE; EmeanÞ

pðEÞ
¼

pðEmean; EÞ

pðEmeanÞ
ð26Þ

for the likelihood ratio in the logarithm. The logarithm of a

likelihood ratio is equivalent to the differences between the

logarithms of the likelihoods, so we see that the logarithm in

the integral is the LLG that would be achieved with a perfect

model. The expression for DKL is therefore equivalent to the

expression for eLLGtra,hkl in equation (22a) if the model were

perfect. Because a perfect model would have �A = 1 for all

Fourier terms,

DKL ¼ ðE
2
mean � 1ÞD2

obs � lnð1�D2
obsÞ: ð27Þ

Noting as before that the mean value of E2
mean should be one, if

E2
mean and D2

obs are uncorrelated we have

DKL ¼ � lnð1�D2
obsÞ: ð28Þ

Information in units of bits instead of nats can be obtained by

using the logarithm base 2, which differs by a factor of ln(2).

The total information gain in an entire data set or in a

resolution shell will be the sum from the individual Fourier

terms, but corrected for the correlations arising from over-

sampling in Fourier space. As above, following similar

reasoning to that invoked by van Heel & Schatz (2020), the

correction for oversampling can be made by comparing the

volume of the map with the volume occupied by the ordered

part from which the signal is obtained.

Although it is not immediately obvious, the DKL measure

proposed here is closely related to the information content

measure proposed by van Heel & Schatz (2020), in which they

followed a different line of reasoning. They proposed a

Fourier shell information (FSI) measure for the information,

in bits, gained by a shell of data in Fourier space, expressed in

terms of the FSC between two half-maps for that resolution

shell,

FSIðsÞ ¼ K log2

1þ FSCðsÞ

1� FSCðsÞ

� �
; ð29Þ

where K is the effective number of independent Fourier terms

in the shell under consideration. As noted above, Dobs plays

the same role for a single Fourier term as FSCref does for a

resolution shell. If we assume that all Fourier terms in a

resolution shell have the same value of Dobs, we can express

the FSI equation in terms of Dobs using the relationship

between FSC and FSCref derived by Rosenthal & Henderson

(2003):

Dobs ¼ FSCref ¼
2FSC

1þ FSC

� �1=2

: ð30Þ

Solving for FSC yields

FSC ¼
D2

obs

2�D2
obs

: ð31Þ

Substituting this for FSC in (29) and simplifying yields

FSIðsÞ ¼ �K log2ð1�D2
obsÞ: ð32Þ

Interpreting K as the number of independent Fourier terms

in the shell, this is equivalent to the expression given above

for the Kullback–Leibler divergence measured in bits. The

expression given here is more general because it allows for

differences in accuracy of different Fourier terms around a

shell arising from anisotropy and the effects of favoured

orientations, which will lead to variation among the values of

Dobs for different terms.

In our docking calculations the information gain calculation

is used to save computing time by omitting Fourier terms that

will have almost no effect on the likelihood calculation. As

performed in the related molecular-replacement calculation

(Jamshidiha et al., 2019), Fourier terms with an information

gain of less than 0.01 bit are ignored after the error-analysis

step.

4. Implementation of algorithms

The algorithms have been implemented as a combination of

Python scripts and C++ code, both making substantial use of

the Computational Crystallography Toolbox (cctbx; Grosse-

Kunstleve et al., 2002).

Tools to analyse the maps, determine the parameters char-

acterizing the signal and noise, and compute modified Fourier

coefficients for the docking calculation have been imple-

mented in the Python program prepare_map_for_docking.

The prepare_map_for_docking tool is available as a Python

script within the maptbx section of the open-source cctbx

(Grosse-Kunstleve et al., 2002). This is available standalone

and also as part of the Phenix (Liebschner et al., 2019) and

CCP4 (Winn et al., 2011) software suites.

5. Results

5.1. Behaviour of signal and error analysis

As noted by Palmer & Aylett (2022), errors are similar

throughout a cryo-EM reconstruction, but signal-to-noise

ratios can vary dramatically within the reconstruction because

of variations in the strength of the signal. This can be

demonstrated by looking at the local behaviour of the signal

power (�S) and noise power (�E) in reciprocal space after

analysis using the prepare_map_for_docking tool. One infor-

mative example is the map for conformation 2 of Escherichia

coli respiratory complex I (EMDB entry EMD-12654, PDB

entry 7nyu), for which the local reconstruction quality varies

widely (Kolata & Efremov, 2021). An analysis of one of the

best and one of the worst regions of the map is given in Fig. 1,

illustrating that the noise power is similar in the two regions,

whereas the signal power, and its variation in Fourier space,

differs substantially. The poorly ordered region of the map

corresponds to chain L of the model, where the authors
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estimate the local resolution to be in the range 9–11 Å. This

agrees roughly with the resolution at which the signal and

noise powers are equivalent in Fig. 1(b).

6. Discussion and conclusions

The problem of docking an atomic model into a cryo-EM

reconstruction is reminiscent of the molecular-replacement

problem in crystallography. The similarity is more than

superficial, as both problems can be addressed using like-

lihood functions that start from joint distributions of complex

Fourier terms. In both cases the model is represented by its

Fourier transform (either of its electrostatic potential or its

electron density), but cryo-EM differs in the important fact

that the data retain the phase information that is lost in the

crystallographic diffraction experiment.

Applying likelihood requires the characterizion of all

sources of error, which differ between the methods. In cryo-

EM, the typical presence of favoured particle orientations

leads to large differences in the reliability of the Fourier terms.

The variation of noise contributions to the Fourier terms is

expected to vary smoothly over Fourier space, and a method

to assess this variation has been developed.

The likelihood framework allows the implementation of

tools that have been found to be useful in molecular

replacement. In particular, the expected log-likelihood-gain

(eLLG) score can be calculated in advance of any docking

search, as well as the information gained by making the cryo-

EM reconstruction.

The accompanying paper (Millán et al., 2023) describes the

implementation of these ideas in software tools for docking,

and the success of those tools demonstrates the validity of the

approach described here, including the use of eLLG to choose

optimal strategies.
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Figure 1
Variation of signal power (�S) and noise power (�E) in Fourier space for (a) well ordered (centre of the cytoplasmic domain) and (b) poorly ordered
(chain L) regions of E. coli respiratory complex I. Both regions correspond to spheres with a radius of 30 Å. Signal power is shown with solid lines and
noise power with dashed lines as it varies in three directions parallel to the x (blue), y (orange) and z (red) coordinate axes of the reconstruction. The
variation of noise power is similar for the two regions of the reconstructions, but the variation of signal power differs significantly even in the relative
falloff in the three directions.
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