addenda and errata\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
BIOLOGY
ISSN: 2059-7983

Bulk-solvent and overall scaling revisited: faster calculations, improved results. Corrigendum.

crossmark logo

aLawrence Berkeley National Laboratory, One Cyclotron Road, MS64R0121, Berkeley, CA 94720, USA, bDepartment of Bioengineering, University of California Berkeley, Berkeley, CA 94720, USA, cIGBMC, CNRS–INSERM–UdS, 1 Rue Laurent Fries, BP 10142, 67404 Illkirch, France, and dUniversité Nancy: Département de Physique – Nancy 1, BP 239, Faculté des Sciences et des Technologies, 54506 Vandoeuvre-lès-Nancy, France
*Correspondence e-mail: pafonine@lbl.gov

Edited by R. J. Read, University of Cambridge, United Kingdom (Received 23 May 2023; accepted 2 June 2023; online 20 June 2023)

Equations in Sections 2.3 and 2.4 of the article by Afonine et al. [Acta Cryst. (2013). D69, 625–634] are corrected.

In the article by Afonine et al. (2013[Afonine, P. V., Grosse-Kunstleve, R. W., Adams, P. D. & Urzhumtsev, A. (2013). Acta Cryst. D69, 625-634.]) some improper notations and errors in several equations in Sections 2.3 and 2.4 have been corrected. We note that the Computational Crystallography Toolbox (Grosse-Kunstleve et al., 2002[Grosse-Kunstleve, R. W., Sauter, N. K., Moriarty, N. W. & Adams, P. D. (2002). J. Appl. Cryst. 35, 126-136.]) has been using the correct version of these equations since 2013. Updated versions of Section 2.3 and equations (42)[link], (43)[link] and (45)[link] are given below.

2.3. Bulk-solvent parameters and overall isotropic scaling

Assuming the resolution-dependent scale factors kmask(s) and kisotropic(s) to be constants kmask and kisotropic in each thin resolution shell, the determination of their values is reduced to minimizing the residual

[\eqalignno {\textstyle \sum \limits_{\bf s} \{|{\bf F}_{\rm calc}({\bf s}) & + k_{\rm mask}{\bf F}_{\rm mask}({\bf s})|^2 \cr &\ \quad -\ [k_{\rm overall}\,k_{\rm anisotropic}({\bf s})k_{\rm isotropic}]^{-2}F_{\rm obs}^2({\bf s})\}^2, &(22)}]

where the sum is calculated over all reflections s in the given resolution shell, and koverall and kanisotropic(s) are calculated previously and fixed. This minimization problem is generally highly over-determined because the number of reflections per shell is usually much larger than two.

Introducing ws = |Fmask(s)|2, [{v_{\bf s}} = \textstyle{1 \over 2}[{\bf F}_{\rm calc}({\bf s}) {\bf F}_{\rm mask}^*({\bf s})] + [{\bf F}_{\rm calc}^*({\bf s}){\bf F}_{\rm mask}({\bf s})]], us = |Fcalc(s)|2, [I_{\bf s} = [k_{\rm overall}\,k_{\rm anisotropic}({\bf s})]^{-2} F_{\rm obs}^2({\bf s})] and [K = k_{\rm isotropic}^{-2}] and substituting them into (22)[link] leads to the minimization of

[{\rm LS}(K,k_{\rm mask}) = \textstyle \sum \limits_{\bf s} [(k_{\rm mask}^2{w_{\bf s} + 2k_{\rm mask}v_{\bf s} + u_{\bf s}) - KI_{\bf s}]^2} \eqno(23)]

with respect to K and kmask. This leads to a system of two equations:

[\cases {\displaystyle{{\partial} \over {\partial K}} {\rm LS}(K,k_{\rm mask}) = - 2\textstyle \sum \limits_{\bf s} [(k_{\rm mask}^2w_{\bf s} + 2k_{\rm mask}v_{\bf s} + u_{\bf s}) - KI_{\bf s}] I_{\bf s} \cr \quad\quad\quad\quad\quad\quad\quad = 0, \cr \displaystyle{{\partial} \over {\partial k_{\rm mask}}} {\rm LS}(K,k_{\rm mask}) = 4\textstyle \sum \limits_{\bf s}[(k_{\rm mask}^2w_{\bf s} + 2k_{\rm mask}v_{\bf s} + u_{\bf s}) - KI_{\bf s}]\cr \quad\quad\quad\quad\quad\quad\quad\quad\quad \times\ (k_{\rm mask}w_{\bf s} + v_{\bf s}) \cr \quad\quad\quad\quad\quad\quad\quad\quad= 0.} \eqno(24)]

Developing these equations with respect to kmask,

[\cases {k_{\rm mask}^2\textstyle \sum \limits_{\bf s} w_{\bf s}I_{\bf s} + 2k_{\rm mask}\textstyle \sum \limits_{\bf s} v_{\bf s}I_{\bf s} + \textstyle \sum \limits_{\bf s} u_{\bf s}I_{\bf s} - K\textstyle \sum \limits_{\bf s} I_{\bf s}^2 = 0, \cr k_{\rm mask}^3\textstyle \sum \limits_{\bf s} w_{\bf s}^2 + 3k_{\rm mask}^2\textstyle \sum \limits_{\bf s} w_{\bf s}v_{\bf s} + k_{\rm mask}\textstyle \sum \limits_{\bf s}(2v_{\bf s}^2 + u_{\bf s}w_{\bf s} - KI_{\bf s}w_{\bf s}) \cr \quad\quad+ \textstyle \sum \limits_{\bf s} u_{\bf s}v_{\bf s} - K\textstyle \sum \limits_{\bf s} I_{\bf s}v_{\bf s} = 0,} \eqno(25)]

and introducing new notations for the coefficients, we obtain

[\cases {k_{\rm mask}^2C_2 + k_{\rm mask}B_2 + A_2 - KY_2 = 0, \cr k_{\rm mask}^3D_3 + k_{\rm mask}^2C_3 + k_{\rm mask}(B_3 - KC_2) + A_3 - KY_3 = 0.} \eqno(26)]

Multiplying the second equation by Y2 and substituting KY2 from the first equation into the new second equation, we obtain a cubic equation with fixed coefficients

[\eqalignno {&k_{\rm mask}^3(D_3Y_2 - C_2^2) + k_{\rm mask}^2(C_3Y_2 - C_2B_2 - C_2Y_3)\cr &\quad+ k_{\rm mask}(B_3Y_2 - C_2A_2 - Y_3B_2) + (A_3Y_2 - Y_3A_2) = 0. &(27)}]

The senior coefficient in equation (27)[link] satisfies the Cauchy–Schwarz inequality:

[D_3Y_2 - C_2^2 = \textstyle \sum \limits_{\bf s} w_{\bf s}^2\textstyle \sum \limits_{\bf s} I_{\bf s}^2 - \textstyle \sum \limits_{\bf s} w_{\bf s}I_{\bf s}\textstyle \sum \limits_{\bf s} w_{\bf s}I_{\bf s} \,\gt \,0. \eqno(28)]

Therefore, equation (27)[link] can be rewritten as

[k_{\rm mask}^3 + ak_{\rm mask}^2 + bk_{\rm mask} + c = 0 \eqno(29)]

and solved using a standard procedure.

The corresponding values of K are obtained by substituting the roots of equation (29)[link] into the first equation in equation (26)[link],

[K = (k_{\rm mask}^2C_2 + k_{\rm mask}B_2 + A_2)/Y_2. \eqno(30)]

If no positive root exists, kmask is assigned a zero value, which implies the absence of a bulk-solvent contribution. If several roots with kmask ≥ 0 exist then the one that gives the smallest value of LS(K, kmask) is selected.

If desired, one can fit the right-hand side of expression (10) to the array of kmask values by minimizing the residual

[\textstyle \sum \limits_{\bf s} [k_{\rm mask} - k_{\rm sol}\exp(-B_{\rm sol}\,{s^2}/4)]^2 \eqno(31)]

for all kmask > 0. This can be achieved analytically as described in Appendix A. Similarly, one can fit koverall exp(−Boveralls2/4) to the array of K values.

Equations (42), (43) and (45) in Section 2.4 of Afonine et al. (2013[Afonine, P. V., Grosse-Kunstleve, R. W., Adams, P. D. & Urzhumtsev, A. (2013). Acta Cryst. D69, 625-634.]) are also updated as follows

[{\bf b} = \left[\textstyle \sum \limits_{\bf s} I({\bf s})I_1({\bf s}_1), \ldots, \textstyle \sum \limits_{\bf s} I({\bf s})I_N({\bf s}_N),1 \right]^t, \eqno(42)]

[{\rm LS}(K,k_{\rm mask}) = \textstyle \sum \limits_{\bf s} \left \{\left[\textstyle \sum \limits_{j=1}^N \alpha_j| {\bf F}_{\rm calc}({\bf s}_j) + k_{\rm mask}{\bf F}_{\rm mask}({\bf s}_j)|^2 \right] - KI_{\bf s} \right\}^2, \eqno(43)]

[{\rm LS}(K,k_{\rm mask}) = \textstyle \sum \limits_{\bf s}\left[(k_{\rm mask}^2w_{\bf s} + 2k_{\rm mask}v_{\bf s} + u_{\bf s}) - KI_{\bf s}\right]^2. \eqno(45)]

References

First citationAfonine, P. V., Grosse-Kunstleve, R. W., Adams, P. D. & Urzhumtsev, A. (2013). Acta Cryst. D69, 625–634.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGrosse-Kunstleve, R. W., Sauter, N. K., Moriarty, N. W. & Adams, P. D. (2002). J. Appl. Cryst. 35, 126–136.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoSTRUCTURAL
BIOLOGY
ISSN: 2059-7983
Follow Acta Cryst. D
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds