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Model building and refinement, and the validation of their correctness, are very

effective and reliable at local resolutions better than about 2.5 Å for both

crystallography and cryo-EM. However, at local resolutions worse than 2.5 Å

both the procedures and their validation break down and do not ensure reliably

correct models. This is because in the broad density at lower resolution, critical

features such as protein backbone carbonyl O atoms are not just less accurate

but are not seen at all, and so peptide orientations are frequently wrongly fitted

by 90–180�. This puts both backbone and side chains into the wrong local energy

minimum, and they are then worsened rather than improved by further

refinement into a valid but incorrect rotamer or Ramachandran region. On the

positive side, new tools are being developed to locate this type of pernicious

error in PDB depositions, such as CaBLAM, EMRinger, Pperp diagnosis of

ribose puckers, and peptide flips in PDB-REDO, while interactive modeling in

Coot or ISOLDE can help to fix many of them. Another positive trend is that

artificial intelligence predictions such as those made by AlphaFold2 contribute

additional evidence from large multiple sequence alignments, and in high-

confidence parts they provide quite good starting models for loops, termini or

whole domains with otherwise ambiguous density.

1. Introduction

In structural biology of macromolecules, the lack of atomic

detail at low resolution has always been an issue, but it has

become a more central problem in recent years because

crystallography now routinely solves large, dynamic machines

with diffraction limited to 3 Å resolution or lower, while cryo-

EM suddenly became capable of solving structures at as high

as 3–4 Å resolution (and now even better). This regime is

especially problematic because refinement needs more extra

information to behave well, and so validation criteria are

being used as refinement targets, artificially removing all

outliers without trying to correct them. This makes these

validation criteria useless, and also turns out to make many of

the errors worse rather than better.

‘Low resolution’ or ‘high resolution’ mean different things

in different contexts, but for our purposes the distinction

happens at resolutions (evaluated locally) where particular

critical features change between visible and invisible. For

instance in crystallography ‘atomic resolution’ means better

than about 1.4 Å, where the saddle points in density between

covalently bonded atoms become clear. For nucleic acids,

there is a significant transition near 4 Å resolution, where

double helices change from continuous density across base
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pairs with gaps between successive pairs to continuous and

much less informative density along the stacking direction. For

proteins, an especially critical tipping point for determining

backbone conformation is at about 2.5 Å, where the carbonyl

O atoms disappear into increasingly featureless tubes of

backbone density.

1.1. Features visible at different resolutions

Here, we will systematically visualize electron density as a

function of resolution, especially paying attention to the

visibility of backbone carbonyl groups and thus of peptide

orientation. Fig. 1 allows a comparison of this effect, and other

features, at 4, 3, 2 and 1 Å resolution for a particular helix and

a particular loop in apo T4 lysozyme crystal structures, with

red ‘O’s marking three specific carbonyl O atoms.

In the well ordered parts of a 1 Å resolution structure,

covalently bonded atoms show clearly resolved peaks,

allowing bond angles and dihedral angles to be measured

accurately, including the orientation of the carbonyls and the

peptide planes. Even pairs of alternate conformations are

often very clear, as seen for Asn68 on the right-hand side of

the helix in the 1 Å panel in Fig. 1. However, resolution, or

relative disorder, is a local property. Ultrahigh-resolution

structures almost always have a few disordered stretches at

termini or loops, and when model restraints have been greatly

loosened or turned off, such parts have the worst geometry

outliers in the PDB (Chen et al., 2011). In great contrast, at
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Figure 1
Comparing the same electron-density features at 4, 3, 2 and 1 Å resolution for crystal structures of apo T4 lysozyme. At the top is the helix Ile58–Gly77
and at the bottom is the loop Asn132–Trp138. The left panel is PDB entry 4gbr at 3.99 Å resolution (Zou et al., 2012), the second panel is PDB entry 5zbh
at 3.0 Å resolution (Yang et al., 2018), the third panel is PDB entry 1lyi at 2.0 Å resolution (Bell et al., 1992) and the right panel is PDB entry 5jdt at 1.0 Å
resolution (Consentius et al., 2016). All are wild type except for a Thr59!Asp mutation in PDB entry 1lyi. The �A-weighted 2Fo � Fc maps are
contoured at 1.2� (gray) and 3� (purple).



4 Å resolution a helix has become a broad cylinder (see the

4 Å panel in Fig. 1), the �-sheet is confusing and only a few

side chains such as those of tryptophan or selenomethionine

can be directly identified. 3–4 Å is actually a difficult resolu-

tion range to model well because density connectivity is

changing non-uniformly. For instance, a helix goes from a

narrow spiral tube with zero density along the helix axis at 2 Å

resolution to a wide tube with maximum density along the

helix axis at 5 Å resolution. In between, false breaks and false

connections are produced by local side-chain mass and

hydrogen-bonding details.

In protein crystallography, a structure at 2 Å resolution is

considered to be an excellent, workhorse standard. At 2 Å the

backbone CO density is a high-contour, clearly directional

protrusion out from the main-chain density, as seen for the

red-circled O atoms in the 2 Å panel in Fig. 1. However, at 3 Å

resolution there is no CO protrusion even at lower contour

levels, the carbonyl O atom is out of density or at its edge, and

that density is broadly smooth both along and around the

main chain. Thus at 3 Å resolution neither visual inspection

nor automated fitting can determine the orientation of the CO

group, and thus of the peptide, directly from the experimental

data. 2.5 Å is the approximate midpoint of that transition, with

some fraction of interpretable nubbins.

By 3 Å resolution side chains have also become proble-

matic, with some atoms outside the shortened, blobby density

that no longer shows the characteristic amino-acid shape or its

rotamer at all well. Lowering the contour level does not help

much with side chains either. Ligand identity and conforma-

tion have also become unclear from the density alone, and

waters are seldom identifiable.

1.2. Current tools

In general, at lower resolutions the fit to density of the

model becomes increasingly ambiguous, with multiple

distinctly different models giving an equally mediocre fit into

the broad and sometimes misleading density, both locally

and globally (Richardson, Williams, Videau et al., 2018). The

familiar single-residue, empirical criteria such as Ramachan-

dran, rotamers, ribose puckers etc. inherently have multiple

minima that pure downhill refinement cannot move between.

If multiple models are being compared in model building or

rebuilding, then maximizing hydrogen bonding and mini-

mizing some form of atom bumps helps, optimizing all-atom

contacts with H atoms is better (Arendall et al., 2005), and

adding Bayesian consideration of prior probabilities would be

even better. However, only small local subsets of distinct

conformations can feasibly be compared.

A special case is handling rotamers for exposed surface side

chains with poor density and no good hydrogen-bond or even

van der Waals contacts with anything. Such a side chain has

nothing to hold it in an energetically unfavorable conforma-

tion (a rotamer outlier). If modeled at all, it should be placed

in a favorable rotamer that does not clash with anything and

preferably given an occupancy of <1 for the atoms that are

poorly seen or unseen.

Recent validation tools aimed at lower resolution problems,

such as CaBLAM (Williams, Videau et al., 2018), EMRinger

(Barad et al., 2015), Pperp for ribose puckers (Chen et al.,

2010) or pepflip in PDB-REDO (Joosten et al., 2014) help by

operating on a scale larger than a single residue and/or by

evaluating new, less classical parameters that are not yet being

explicitly refined. Several new systems specifically tailored for

various aspects of cryo-EM include likelihood-based fitting of

predictions or fragments into maps (Read et al., 2023; Millán

et al., 2023), ModelAngelo (Jamali et al., 2022) for maximum-

likelihood (ML)-based initial model building and MEDIC

(Reggiano et al., 2022) for ML-based validation of final

models. These have not yet been broadly tested, but each has

been shown to improve on previous methods for its test cases.

Other new approaches will hopefully continue to emerge.

High-confidence parts of the new, unprecedentedly successful

artificial intelligence (AI) predictions can also help with

sparse-data entire structures or regions by providing very

good starting hypotheses for the 3D structure, with few

geometry or conformational problems. The low-confidence

regions are usually bad but are sometimes useful.

2. Results and observations

Here, we will draw on our own experience with assessing and

correcting problems to provide specific advice for working

with lower resolution and locally disordered regions, and will

describe useful recent and coming tools and protocols.

2.1. Consequences of overfitting, especially peptide

orientations

Using the well established Ramachandran, rotamer and

other conformational preferences as targets in refinement

sounds like a good idea, and some type of conformational

restraints are necessary at lower resolution to keep secondary

structures and well fitted loops from becoming distorted.

However, refining inaccurate initial models against multiple-

minimum targets turns out in practice to make the model

worse (as shown in Fig. 2c), in addition to invalidating vali-

dation by giving perfect scores for very imperfect structures.

As demonstrated and discussed in Section 1, the directionality

of peptide CO groups cannot be seen at 3 Å or worse in either

X-ray or cryo-EM. As a consequence, the most common error

in a backbone trace at such lower resolutions is peptide

orientations that are incorrect by large rotations (Prisant et al.,

2020; Lawson et al., 2021), which means that the ’,  values of

both surrounding residues will be wrong by as much as 90–

180� and subsequently refine into the wrong local minimum in

the Ramachandran plot (Croll et al., 2021). As well as being

undefined when the backbone is a smooth tube, peptides are

often misoriented at 3–4 Å because of the misleading local

breaks or extra connectivity in backbone density described

above or by trying to push the carbonyl O atom inside the

density contour.

A very useful example structure for the study of such effects

is the large MCM2-7 heterohexamer helicase of PDB entry
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3ja8 determined at 3.8 Å resolution by cryo-EM (Li et al.,

2015), which had used Ramachandran restraints in refinement

and was later carefully studied and corrected (to PDB entry

6eyc) as the test case for the ISOLDE user-guided molecular-

dynamics (MD) rebuilding program (Croll, 2018). Those

interactive corrections used the AMBER force field, map fit,

user judgment and many validation flags, but were indepen-

dent of the backbone markup in CaBLAM (Williams, Videau
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Figure 2
Fixups in PDB entry 6eyc from the misoriented peptides in PDB entry 3ja8. (a) Two misoriented CO groups at the end of a helix, flagged by CaBLAM
outliers and clashes. (b) Corrected version, with no outliers, equal map fit and a standard helix C-cap conformation. (c) Ramachandran plot for eight
residues neighboring misoriented peptides; green arrows point from the misfitted to the corrected positions.



et al., 2018). Genuine cis nonproline peptides only occur in

about one in 3000 residues (Croll, 2015; Williams, Headd et al.,

2018), and all of the 116 in PDB entry 3ja8 were found to be

incorrect, nearly all of them in very poor map density. Espe-

cially notably, a sequence misalignment was corrected and

32.5% (1229) of the residues moved a non-H atom by more

than 2 Å and/or changed by >45� in ’,  or !.

The first 135 residues in PDB entry 3ja8 (chain 2 residues

201–335) were chosen here as a workable-sized sample for

detailed examination (and ended there because residues 340–

373 are a weak-density region that was fitted rather differently

in PDB entry 6eyc and is unsuitable for close comparisons).

Residues 201–335 contain 15 peptide orientations that are

wrong by >60�. Two (Leu234 and Thr302) are unjustified cis

nonprolines. Every one of these 15 is flagged by CaBLAM,

which validates CO–CO virtual dihedrals in the context of the

surrounding five C� atoms. One is a severe C� geometry

outlier, eight are at the 1% CaBLAM outlier level and six are

at the 5% level, while only three are flagged by Ramachan-

dran outliers. In that same region there are three other

CaBLAM flags at the 5% level. Two of those peptide orien-

tations needed no refitting and the third was rotated in PDB

entry 6eyc by a marginal 50�. In this sample, then, all

CaBLAM outliers were worth looking at, and even at the 5%

level (purple markup) two thirds of them were found to be

wrong.

Figs. 2(a) and 2(b) show before-and-after CO and peptide

orientations for two cases at the end of a helix, both flagged

graphically by CaBLAM outliers, three-part lines that follow

adjacent CO orientations (Prisant et al., 2020). A misoriented

peptide in an initial model changes the preceding  angle and

the following ’ angle by an amount similar to the misfitted

peptide rotation angle, thus moving both surrounding ’,  

positions by very large distances to locations usually within or

close to a wrong Ramachandran region. Refinement of the

Ramachandran values then pulls them further into the wrong

minimum, often removing all Ramachandran outliers but

making these model conformations worse rather than better.

Fig. 2(c) shows the consequences on a Ramachandran plot for

eight residues surrounding badly misoriented peptides, where

each green arrow starts at the value in PDB entry 3ja8 and

ends at the value in PDB entry 6eyc. All eight of these ’,  

pairs in PDB entry 3ja8 had been refined into the wrong

minimum in Ramachandran space rather than improved. In

our anecdotal experience, the residues next to misoriented

peptides end up in an incorrect Ramachandran region only

somewhat less than 100% of the time.

A similar process happens when incorrect side-chain

conformations are refined into the nearest valid rotamer or

too slavishly into the map density. One of the most common

side-chain errors at low local resolution is that both people

and automated systems tend to scrunch side chains down into

their nubbins of density, which is seldom the right answer.

Fig. 3 shows two such examples: a helical valine and leucine in

hemoglobin structures that are scrunched-down outliers at

3.5 Å and correct in unambiguous density at 1.25 Å resolution.

In addition to the examples above, we have thoroughly

documented the many errors in 2.5–4 Å resolution structures

and in disordered loops and termini at high resolution by

assessments in the EMDB Cryo-EM Challenges (Richardson,

Williams, Videau et al., 2018; Lawson et al., 2021), comparisons

of low-resolution structures with later high-resolution versions

(Moriarty et al., 2020), in our work correcting important

structures (Croll et al., 2021; Dunkle et al., 2011; PDB entries

6vyo v.2.0, 6m71, 7btf, 7bv1, 7bv2 v.2.0, 5hut v.2.0 and 3q9v

v.2.0) and even by local, carefully parallel maximum-likelihood-

evaluated refinements between original and corrected

versions (Richardson, Williams, Hintze et al., 2018). This can
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Figure 3
Two side chains pulled too close down into their nubbins of density. (a) In PDB entry 2qls at 3.5 Å, with backbone clashes (red spikes), a rotamer outlier
(gold) and a C� deviation (magenta ball). (b) In PDB entry 2dn2 at 1.25 Å resolution, in clear 2Fo � Fc density with relaxed, spread-out rotamers and no
outliers.



be a contentious issue because these structures have been

made to look misleadingly good by well meaning but dubious

procedures that were not obvious to their creators or end

users, and no one likes to hear that, including us.

2.2. Remedies for overfitting peptide orientations and side

chains

When you have an initial model, before refining it consult

wider-scale validations including CaBLAM and PDB-REDO

peptide flips for protein and Pperp sugar puckers for RNA,

and try to fix the backbone outliers that they show before

running refinement. The easiest common CaBLAM fixes are

(i) idealize an outlier inside secondary structure and (ii) for

two CaBLAM outliers in a row, try rotating the central CO

group. Be aware of the prior improbabilities, such as one in

3000 for a cis nonproline (Williams, Videau et al., 2018) or

other very rare conformations. It can also be quite helpful to

run all of PDB-REDO (Joosten et al., 2014) or compare with a

high-confidence AI prediction to identify candidates for fixing

outliers. Accept changes if they are much more probable and/

or correct outliers and are about as good a fit to the density.

Do not try too hard to get rid of all outliers, and remember

that a few outliers are genuine, strained conformations that

are conserved by evolution for functional reasons. To prevent

distortion in subsequent refinement, it is better to restrain

hydrogen bonds rather than Ramachandran scores.

Then check for side chains that are scrunched down into

map density as well as those with rotamer outliers, clashes or

C� deviation outliers (Lovell et al., 2003). Try all favorable

rotamers to find one that does not clash, preferably makes

good contact with something and can have one or two atoms

(or even more for long side chains) out of density. Allow the

backbone to move slightly when trying different rotamers,

either as a backrub rotation around the axis between the n � 1

and n + 1 C� atoms (Davis et al., 2006) or just by letting that

large a region adjust in Coot (Emsley et al., 2010) or ISOLDE.

There are of course other possible problems, but these are the

most frequent and most fixable errors. At resolutions poorer

than 3 Å, especially for very large structures, the ISOLDE

user-guided MD rebuilding program with real-time density

and validation display (Croll, 2018), a plug-in to ChimeraX

(Pettersen et al., 2021), is the state of the art for correcting

problems in either an initial or a post-refinement X-ray, cryo-

EM or AlphaFold model.

2.3. Use of AI predictions at lower resolutions or in poor

density

Another new set of useful tools are the highly successful AI

structure predictions from AlphaFold2 (Jumper et al., 2021),

RoseTTAFold2 (Baek et al., 2021), RoseTTAFoldNA (Baek et

al., 2022), OpenFold (Ahdritz et al., 2022), ESMFold (Lin et

al., 2023) and others, which bring a rich source of new infor-

mation from large multiple sequence alignments (MSAs) or

large language models. AlphaFold2 (AF), the earliest and

with the huge, open AlphaFold Database (AFDB) of results

(Varadi et al., 2022) at https://alphafold.ebi.ac.uk/ and the

Colab notebook implementation (Mirdita et al., 2022) at

https://bit.ly/alphafoldcolab, is the most used and studied so

far and will provide almost all of our examples.

The AF confidence-level measure is called pLDDT

(predicted local difference distance test, running from 0 to

100). Models or regions that are predicted with high confi-

dence (pLDDT above 70–75) can very often make better

starting models than de novo models built into the density at

resolutions poorer than 2 Å, for either X-ray or cryo-EM.

These should almost never have a stretch of misaligned

sequence because estimated residue-pair distances are central

to their data, and we have found that when they disagree with

alignment in a PDB entry the AF version is always the correct

one. They are of course exempt from scrunching side chains

down into density since they do not see the density, and they

are good at avoiding many other local errors common in

experimental starting models. However, they have some new

vulnerabilities, such as switching the positions of aliphatic

side-chain branches or the positions of long opposed side

chains, presumably because these choices are ambiguous in

the distances predicted from MSA covariance. Properly

pruned pieces of a predicted model (the best pLDDT region)

can usually provide molecular-replacement solutions to solve

the phase problem for crystal structures (Baek et al., 2021). All

of the major software systems have automated utilities to

superimpose a pruned model onto the optimal place in a cryo-

EM map and some version of flexible fitting for either tech-

nique, as is almost always necessary between domains or for

external loops. High-confidence, pruned AF predictions are

good starting models for use in ISOLDE, and alternatively

they can be used as restraints applied to a model from a

different data source.

The next step is low-resolution validation and fixup as

described in Section 2.2 for experimental starting models,

followed by refinement and rebuilding, iterated several times.

There is now a new way to improve even further before

deposition by cycling back to give prediction implicit infor-

mation from the experimental data by providing the rebuilt

and refined model as a template, which is shown to improve

both the predicted models and the models refined from them,

converging in about three such cycles (Terwilliger et al., 2022,

2023).

A high-confidence prediction is definitely what one hopes

for, but our laboratory is interested in helping less lucky

structural biologists to sometimes be able to solve a structure

when there is only a mid- or low-confidence prediction. In

particular, we have found that even at a local pLDDTunder 65

there can be ‘near-folded’ parts that are reasonably compact

and protein-like and are known to at least sometimes be

good enough for a molecular-replacement solution (Fig. 4c).

However, even more prevalent at pLDDT < 65 are the very

different ‘barbed-wire’ parts consisting of long, loopy strands

that make essentially no contact with the rest of the model

(Fig. 4a) and with an unprecedented concentration of dire

local backbone geometry (Fig. 4b; Williams et al., 2022). We

hypothesize that barbed-wire regions represent predictions

that failed at an early stage, presumably because of unhelpful
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MSA patterns, and also that barbed wire is the reason that

pLDDT < 50 was found to be an excellent predictor of

intrinsically disordered regions (IDPs) in CASP14 (Ruff &

Pappu, 2021). As is also true for many IDPs, some barbed-wire

regions are known to fold when they find the right binding

partner, which can often be shown by AlphaFold or

RoseTTAFold multimer prediction (Drake et al., 2022). For

anyone used to looking at protein 3D structures, barbed-wire

segments are obvious in visualizations, especially with outliers

turned on, but to enable automation we have developed a set

of five specially tuned criteria (packing,  , !, CaBLAM and

geometry) that can identify and delete the barbed wire from

low-pLDDT regions, leaving the near-folded parts that may

have usable predictive value, as in Fig. 4(c). A preliminary

version of this tool is available on the Phenix command line as

barbed_wire_analysis and will be further tested and

improved.

3. Conclusions

At resolutions significantly worse than 2.5 Å, traditional

model validations of Ramachandran, rotamer and all-atom

clash outliers become nearly useless because the outliers can

be artificially refined away within the broad density without

correcting the underlying problems and without compro-

mising the R factors or other fit-to-data and fit-to-density

measures. Both the structural biology community and the

PDB need to address this issue as promptly as possible. We

should use the new tools that are now available to identify and

correct bad local conformations before refinement sweeps

them under the rug, and the PDB ‘slider’ summaries and

detailed validation reports need to include new model and fit-

to-map validation metrics, as recommended by the Cryo-EM

Task Force and community meeting at Hinxton in January

2020.

Individual new structure determinations can take advantage

of starting models from AI predictions and of validations such

as CaBLAM, EMRinger, Pperp ribose pucker and peptide-flip

diagnosis, and then use correction tools such as Coot, PDB-

REDO and/or ISOLDE both before and after refinement and

rebuilding.
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MolProbity validation markup. (c) A near-folded model for Methano-
caldococcus jannaschii UniProt Q57775 (pLDDT < 70 in yellow and
pLDDT < 50 in orange).
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