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The use of artificial intelligence to process diffraction images is challenged by

the need to assemble large and precisely designed training data sets. To address

this, a codebase called Resonet was developed for synthesizing diffraction data

and training residual neural networks on these data. Here, two per-pattern

capabilities of Resonet are demonstrated: (i) interpretation of crystal resolution

and (ii) identification of overlapping lattices. Resonet was tested across a

compilation of diffraction images from synchrotron experiments and X-ray free-

electron laser experiments. Crucially, these models readily execute on graphics

processing units and can thus significantly outperform conventional algorithms.

While Resonet is currently utilized to provide real-time feedback for macro-

molecular crystallography users at the Stanford Synchrotron Radiation Light-

source, its simple Python-based interface makes it easy to embed in other

processing frameworks. This work highlights the utility of physics-based simu-

lation for training deep neural networks and lays the groundwork for the

development of additional models to enhance diffraction collection and analysis.

1. Introduction

Crystallography data rates are on the increase at synchrotrons

(SRs) and X-ray free-electron lasers (XFELs) alike. At SRs,

high-brilliance undulator beamlines coupled with advances in

robotics and detector technologies have accelerated the pace

of experiments, requiring faster algorithms to provide feed-

back on experimental outcomes. For example, at the micro-

focus beamline 12-1 of the Stanford Synchrotron Radiation

Lightsource (SSRL), data sets may be collected with crystal

rotation speeds up to 90� per second and frame rates

exceeding 100 Hz (Cohen, 2021). Beyond synchrotrons, XFEL

facilities produce ultrashort and ultrabright X-ray pulses,

making it possible to rapidly acquire high-resolution diffrac-

tion images with minimal radiation damage (Neutze et al.,

2000; Chapman et al., 2011). At the Linac Coherent Light

Source (LCLS), hard X-ray pulses are produced at 120 Hz,

with similar rates reported at SACLA (Nango et al., 2019),

PAL (Park et al., 2016) and SwissFEL (Milne et al., 2017). At

the European XFEL, using superconducting radiofrequency

cavities (Singer et al., 2015), hard X-ray pulses can be

produced at 27 kHz (Weidorn et al., 2018). Using similar

technology, the up-and-coming LCLS-II facility is aiming to

exceed this (Antipov et al., 2018; Raubenheimer, 2018). While

high-resolution diffraction images cannot currently be
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collected this fast, at XFELs the AGIPD (Allahgholi et al.,

2019) and JUNGFRAU 16M (Leonarski et al., 2018) can

record megapixel diffraction images at 3.5 and 1.1 kHz,

respectively, and at SRs the Dectris EIGER can record at

0.8–3 kHz, depending on the model (Casanas et al., 2016). A

driving force behind these engineering advances is time-

resolved protein crystallography, where biochemical reactions

are initiated in crystallo and atomic-scale motions of proteins

are mapped out by collecting multiple data sets along reaction

timelines (Gruhl et al., 2023; Schulz et al., 2022; de Wijn et al.,

2022; Brändén & Neutze, 2021; Pearson & Mehrabi, 2020;

Nango et al., 2019; Pandey et al., 2020; Šrajer & Schmidt, 2017;

Schmidt, 2015). As this technology progresses, the use of

automated processing tools will increasingly become neces-

sary to improve beamtime efficiency and to optimize sample

usage.

Work towards this goal has already progressed. For

example, in Ke et al. (2018) the authors trained a convolu-

tional neural network to determine whether an image

contained any sign of diffraction from protein crystals. This

neural network could then hypothetically be used to distin-

guish ‘hits’ from so-called ‘misses’, i.e. images with/without

diffraction. These ‘misses’ (which comprise significant

percentages of data collected using high-flow-rate injector

methods) could then be excluded from processing and/or

recording to disk to free up computing resources. More

recently, in Rahmani et al. (2023) various dimensionality-

reduction algorithms have been used to convert diffraction

data into a set of features suitable for training a machine-

learning classifier to automatically detect whether experi-

mental images contained diffraction.

The above methods could be useful in scenarios where a

large fraction of images contain misses (for example liquid-

injection experiments). However, their utility is limited in

cases of high-frame-rate experiments where most or all of the

collected images contain diffraction, for example fixed-target

serial crystallography (Lieske et al., 2019; Baxter et al., 2016;

Cohen et al., 2014) and high-speed rotational crystallography

(Cohen, 2021). We propose here to move beyond the binary

detection of diffraction and to use artificial intelligence (AI) to

describe the observed crystal diffraction with quality-indicating

metrics. For the presented work, an AI was trained to answer

the following questions: (i) ‘What is the crystal resolution?’

and (ii) ‘Is there parasitic diffraction from overlapping

lattices?’. Crystallographers can readily find answers to these

questions using visual inspection, but this practice is inefficient

and impractical at high data rates. Conventional crystallo-

graphic algorithms can answer the first question but are

sensitive to input parameters and image artifacts. For example,

the resolution-estimation program implemented in the DIALS

software suite (Winter et al., 2018) is sensitive to image arti-

facts from ice diffraction and pixels that record high values

arising from unknown, external sources (so-called ‘hot

pixels’). The CrystFEL suite also provides per-shot resolution

estimates for stills using indexed reflections (White et al.,

2016); however, the results are sensitive to the indexing

parameters. Regarding the second question, diffraction from

overlapping lattices (where Bragg peaks from multiple crystals

are not well separated) can hinder data processing. Depending

on the degree of peak separation, partially overlapping lattices

are exceedingly difficult to detect using conventional methods,

with detection usually requiring specialized indexing capabil-

ities (see, for example, Gildea et al., 2014; Schmidt, 2014).

To answer the above questions with AI models, forward-

simulation software was used to create vast and diverse

training data sets of X-ray diffraction images. Specific aspects

of diffraction were thus minutely controlled. Crucially, the

synthetic images were automatically labeled according to the

underlying physics. The PyTorch library was then used to train

a regression model for resolution prediction and a classifica-

tion model to label overlapping lattice diffraction. Both

models accepted a two-dimensional diffraction pattern as

input, after applying a simple downsampling filter.

The trained Resonet models were tested using previously

collected data representing a wide variety of detectors and

sources. Resonet models were also tested during live data

collection at several SSRL crystallography beamlines. Because

they have no tunable parameters, Resonet models were found

to be well suited for automated diffraction monitoring (see

Section A3). During rotation data collection, inferences from

Resonet models can also be used to monitor for radiation

damage, crystal mis-centering and asymmetric diffraction.

During serial experiments on BL12-1 at SSRL, Resonet results

can be used to optimize experimental parameters such as

injector flow rate, X-ray attenuation and/or beam size. Other

diffraction-monitoring applications can easily use Resonet,

especially Python-based programs such as OM (Mariani et al.,

2016). Work to expand Resonet to predict even more para-

meters of interest is ongoing, driven by a goal to produce a

stable, high-performance framework for general use at crys-

tallography facilities worldwide.

2. Methods

2.1. Simulating training data

To generate training data from which to build prediction

models, we used nanoBragg (Holton et al., 2014; Lyubimov et

al., 2016; Sauter et al., 2020), which simulates X-ray diffraction

by macromolecular crystals according to the kinematic theory

of diffraction (James, 1962). The nanoBragg program incor-

porates user-defined background scattering and adds noise by

sampling Poissonian and Gaussian distributions describing

photon counting and electronic noise, respectively. The use of

simulated images facilitates the creation of large training data

sets that would be impractical to accurately sort and label by

hand. Furthermore, it becomes possible to create training data

sets that vary or isolate any combination of properties. For all

of the simulations reported here, a variety of parameters were

randomly sampled, including detector distances, detector

types, beam-stop sizes, bad-pixel masks, hot-pixel masks,

proteins, space groups, unit cells, crystal volumes, mosaic

spreads and background scatter. These are summarized in

Appendix A, Sections A1.1–A1.5. For each simulated image,
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only one quadrant was used for training (the upper left) and

stored as a maxpool-downsampled array of 512 � 512 pixels.

2.1.1. Resolution training data. Resolution is perhaps the

most important quality metric in any structural biology

experiment because it defines the clarity of the structural

image. Formally, resolution is the minimum separation

distance between two features required for these two features

to be identified as distinct from one another, for example at

1 Å resolution individual atoms can be clearly resolved,

whereas at poorer resolutions (2–3 Å) amino-acid side chains

are resolvable but individual atomic positions must be inferred

from prior knowledge and are less reliable. In practice, X-ray

crystallographers determine the resolution cutoff as the point

at which the merged diffraction data become uninterpretable.

Criteria for inferring resolution have evolved over the

decades. Oftentimes, the recent and widely accepted CC1/2

metric defined by Karplus & Diederichs (2012) is used to set

the resolution cutoff, while in other cases the related signal-to-

noise ratio of the structure-factor intensities is used. In this

work, we used the latter approach to define a resolution for

comparison with Resonet inferences.

The ‘resolution of a diffraction pattern’ is also a concept

that is commonly used when discussing X-ray diffraction

experiments themselves and is defined by the widest angle

from the incident beam at which Bragg peaks can be observed.

Observability of the Bragg peaks is in turn related to the rate

at which the diffraction decays on the image, parameterized by

a quantity called the B factor (Bragg, 1914). Higher B factors

indicate disorder in the crystal due to uncertainties in atomic

positions arising from thermal motions, which ultimately affect

the resolution of a data set, causing diffraction to fall off more

rapidly with resolution and obscuring reflections at wider

scattering angles. B factors and resolutions are included with

structures deposited in the Protein Data Bank (PDB; Berman

et al., 2000), which makes them amenable to data mining. Thus,

an analysis of B factors and resolutions revealed a simple

nonlinear relationship that was first described in Holton

(2009). This trend was updated to account for the more than a

decade’s worth of new PDB structures since then (Fig. 1).

With this relationship between B factor and resolution as an

underlying assumption, a resolution-prediction training data

set was created by simulating images with varying B factors.

Fig. 2 shows a randomly selected assortment of these simu-

lated images and their corresponding resolutions. Some

parameters underlying each image are summarized in Table 1.

Note that the resolution cutoff does not always align with the

point at which the diffraction becomes invisible in the image.

Instead, resolution is defined here by the rate of diffraction

intensity decay as expressed by the B factor. However, it is

complicated by the varying degrees of background in each

image: a high-resolution image can also have a high back-

ground that makes it appear to be a low-resolution image

(Fig. 2f), adding uncertainty to our training data labels.

Further, specific to synchrotron experiments, the dose

received by a crystal also influences the B factor (Holton,

2009; Kmetko et al., 2006) and ultimately the resolution. A

strategy to account for these additional factors is described in

Holton & Frankel (2010), but for the main results presented

here we rely on the generality of the relationship between B

factor and resolution shown in Fig. 1 and note that the B factor

is the dominant term affecting the damage-limited intensity

from a protein crystal, appearing as a Gaussian expression in

equation (18) in Holton & Frankel (2010). Resolution training

data were simulated on a combination of PILATUS 6M and

EIGER 16M camera models with variable detector distances

in the range 200–300 mm. All simulations assumed a fixed

photon energy of 0.9795 Å. See Sections A1.1–A1.5 for

further details.

2.1.2. Overlapping lattice training data. Overlapping lattice

scattering occurs when multiple crystal domains are exposed

simultaneously, either because the diffracting volume contains

a crack or a major dislocation or if several crystals are caught

in the beam. This effect undermines diffraction data-processing

algorithms, which for the most part assume that diffraction

comes from a single lattice. To simulate training data for

overlapping lattice scattering, a random number of lattices (1,

2 or 3) were ‘placed’ in the simulated X-ray beam in rando-

mized orientations. For this training, rotational mosaic spread

was kept small (<0.01�) and overlapping lattice spacings were

drawn from a Gaussian distribution with a randomly chosen
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Figure 1
Resolution versus B factor. Structures from the PDB indicate an overall
trend in resolution versus B factor, as determined by a simple quadratic fit
(red line). The square markers shown here represent average B factors at
each resolution across the entire PDB, and the error bar is one standard
deviation. The fit was only performed using data in the interval 1–4.5 Å.
This trend becomes unreliable at resolutions of >5.5 Å.

Table 1
Simulation properties corresponding to Fig. 2.

Label in Fig. 2 Resolution (Å) Distance (mm) Background scale

A 2.06 217 1.25

B 1.71 221 1.25
C 2.46 240 1.25
D 12.8 253 1
E 5 224 0.05
F 1.43 253 1
G 1.63 298 0.01
H 2.5 250 1

I 1.9 225 1
J 6.82 274 1.25
K 1.9 293 1.25
L 2.4 260 0.02
M 19.2 238 1
N 2.84 264 0.1

O 2.07 222 1



variance of 0.1�, 1� or 10� and a mean of 0� (about the nominal

crystal orientation). In this way, it was theoretically possible

for Bragg peaks from different lattices to closely overlap in a

single image, thus simulating diffraction from a cracked

crystal. Fig. 3 shows a randomly selected assortment of over-

lapping lattice training data and illustrates how image features

vary with the number of lattices. Training data for this model

used a Rayonix 340 (Rayonix LLC) detector format matching

the geometry from an LCLS experiment (Artz et al., 2020);

however, it was found that the model generalized well to other

data sets using different detectors (as described in Section 3).

The training data set was made up of 50% single-lattice

images, 25% two-lattice images and 25% three-lattice images.

2.2. Image conditioning

All images (both simulated and experimental) were down-

sampled and normalized before model evaluation, as the raw

data formats considered for this study (Dectris PILATUS 6M,

Rayonix 340, JUNGFRAU 16M and Dectris EIGER 16M) are

large. To downsample an image by a factor of N (N = 2 for

PILATUS 6M; N = 4 for EIGER 16M, JUNGFRAU 16M and

Rayonix), the raw pixels were grouped into N � N blocks and

the value of each ‘block pixel’ was set as the maximum value

of the N2 raw pixels inside it. The downsampled ‘block pixel’

values were then replaced by their square root and cast as

integers. This data-conditioning process is shown in detail in

Fig. 4 for a region of a PILATUS 6M image containing a Bragg

reflection. After downsampling, the images were divided into

four quadrants of size 512 � 512 pixels, each of which could

be passed to our AI-trained models to produce independent

estimates for predictors. Preliminary tests revealed that the

above downsampling and normalization scheme lead to better

training when compared with simply averaging pixels toge-

ther. Further testing is needed to determine whether more

optimal preconditioning could lead to faster training and/or

more accurate models.

2.3. Model fitting

PyTorch (Paszke et al., 2017) was used to fit regression

(resolution prediction) and classification (overlapping lattice

detection) models using our training data sets. In general

terms, PyTorch was tasked with reducing the error (‘loss’)

between the ground-truth labels and those derived from the

current model. For resolution-prediction training, the loss
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Figure 2
Simulated PILATUS 6M images with varying resolutions. Some parameters underlying each image are summarized in Table 1. For each sub-image, the
beam center is in the upper left corner and the resolution (determined from the B factor) is indicated by a red dashed line. The sub-images represent one
quadrant of a PILATUS 6M camera, downsampled to a 512 � 512 pixel array according to Section 2.2 (see also Fig. 4). Note that resolution here is
related to the B factor by the relationship shown in Fig. 1. Hence, while the resolution sometimes appears intuitively as the point where the scattering
drops off (for example in A, B, C, D, G, H, I, K and O), at other times the Bragg reflections extend to wider angles beyond the indicated resolution (E, J, L
and N). This results from inaccuracy in the resolution-versus-B factor relationship (Fig. 1). Rarely, resolution is obscured by large background (F) or is
covered by the beam stop (M). These edge cases add noise to the model training. Color bars are shown in square-root-photon units.



function was the mean squared error between labels and

predictions in inverse units, i.e. inverse resolution was

predicted by the model and compared with inverse-resolution

labels (for example, an image simulated with a B factor

corresponding to 2 Å resolution was labeled by 0.5 Å� 1). For

overlapping lattice-detection training, the binary cross-

entropy loss function was used. Training labels were set to 0 or

1 (single lattice or overlapping lattices) and model predictions

were mapped to a probability using a sigmoid function and

then rounded to 0 or 1 before computing the loss.

2.3.1. Model architecture. Currently, Resonet uses a resi-

dual network (ResNet; He et al., 2015) architecture with a

modified input/output stage for predicting resolution and

detecting overlapping lattices. ResNet is a state-of-the-art

deep convolutional neural network architecture which accepts

RGB images as input. For each image, it outputs 1000 numbers
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Figure 3
Simulated diffraction from one lattice (top row), two lattices (middle row) or three lattices (bottom row). Each sub-image represents the lower quadrant
of a Rayonix camera, downsampled as illustrated in Fig. 4. Color bars are shown in square-root-photon units.

Figure 4
Downsampling scheme. A region of a PILATUS 6M image with a Bragg reflection is shown (with numbers indicating pixel values). Raw data (left) are
divided into blocks of pixels (indicated by red dashed lines). This occurs for both simulated and experimental data. The ‘conditioned’ pixel value (right)
is the square root of the maximum pixel value within each block, cast to an integer (floor operation). Block size varies according to the detector model;
either 2 � 2 blocks (PILATUS 6M) or 4 � 4 blocks (EIGER 16M, JUNGFRAU 16M and Rayonix 340) were used.



(features) intended for use in a multi-class classification model

(with up to 1000 possible outcomes). To use ResNet with

diffraction images, its input layer (a convolutional layer) was

modified to accept single-channel (greyscale) images.

Secondly, as originally performed in Lecun et al. (1998), two

fully connected (FC) layers were chained together at the

output stage to convert the 1000 numbers into a single number

suitable for prediction. The first FC layer mapped 1000

numbers to 100 numbers using 100 + 105 parameters, while the

second FC layer mapped 100 numbers to one number (using

1 + 102 parameters). Also, following Lecun et al. (1998), a

rectified linear unit activation function was used between the

first and second FC layers (see Fig. 5), adding nonlinearity to

the FC models. Fig. 5(a) shows the baseline architecture used

for both resolution and overlapping lattice-prediction models.

Each model has unique aspects related to the desired

predictor. For resolution, an additional input vector of basic

diffraction-geometry quantities (detector distance, pixel size

and wavelength) was used to convert the output of the base

model to an inverse-resolution quantity (Fig. 5b). Modeling

inverse resolution prevented scenarios where zero-division

could occur during model training. For overlapping lattice

detection, a sigmoid function was used to convert the output

to the range 0–1, typical for binary classification (Fig. 5c).

2.3.2. Model training. For the resolution-prediction model,

training was performed on a data set comprising 200 000

PILATUS 6M and 125 000 EIGER 16M images, each labeled

with a unique resolution according to its B factor, and with a

randomized sample-to-detector distance. After each epoch (a

pass through the entire training set, computing the loss func-

tion and its gradient for every training example), the model

was validated on 10% of the simulated images that were set

aside for testing and not included in training. The resolution-

inference training loss curve is shown in Fig. 6(a) for both the

training and test sets. Training was carried out on 16 Perl-

mutter GPU nodes at NERSC, utilized 64 A100 GPUs and ran

at a speed of 0.7 min per epoch. For the overlapping lattice-

detection model, training was performed using 117 000 simu-

lated diffraction images, each labeled by a Boolean indicating

the presence of overlapping lattices, and at each epoch the

model was validated on 13 000 simulated images (Fig. 6b).

Training was carried out on ten Cori GPU nodes at NERSC,

utilizing 80 V100 GPUs, and ran at a speed of 1.6 min per

epoch. Multi-node training at NERSC was performed using

the PyTorch Distributed Data Parallel protocol. Training on a

single GPU machine was also tested; using a single V100 GPU,
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Figure 5
Model architecture. (a) Raw data were downsampled as described in Section 2.2, forming four 512� 512 quadrants. Quadrants were then passed through
a ResNet architecture, resulting in 1000 features. Next, a series of fully connected layers (FC1, FC2) was used to convert the 1000 features into a scalar
value. If predicting resolution (b), this was converted to an inverse resolution using the diffraction wavelength (�), downsampled pixel size (p) and
sample-to-detector distance (d). If predicting overlapping lattice scattering (c), this scalar was passed through a sigmoid function and then rounded, such
that 0 and 1 indicated single and overlapping lattice scattering, respectively. The image and line plots in (a) are from a real experimental image as it was
passed through the fully trained resolution model. The inferred resolution in this case was 1.67 Å. Table 2 describes the number of parameters in the
different model stages (ResNet, FC1, FC2). One quadrant was sufficient to predict the quantities of interest; however, repeated model passes with the
second, third and fourth quadrants can provide a measure of uncertainty in the predicted values.

Figure 6
Training optimization curves. (a) Accuracy versus training epoch for the
resolution-prediction model. This is a regression model, for which we
define accuracy as the fraction of images whose predictions are within
0.07 Å� 1 of the ground truth. The training job was stopped after epoch
354 and then restarted, as indicated by the discontinuity. (b) Accuracy
versus epoch for the overlapping lattice-detection model. Here, accuracy
is the fraction of predictions with the correct label. For both plots, the test
curves (black markers) are derived from images that were never used for
training. Eventually, training accuracy diverges, indicating model bias.
The vertical lines mark the epoch where models were saved for use with
experimental data.



training a model using 43 000 simulated images took 11.5 min

per epoch. When training on a single GPU, fewer epochs were

required to reach convergence, and the full utility of the

Distributed Data Parallel protocol is still being investigated.

Table 2 summarizes the hyperparameters and architectures

used for both models.

3. Results

3.1. Resolution prediction in JUNGFRAU 16M SwissFEL data

The resolution model was tested on a serial JUNGFRAU

16M data set collected at the SwissFEL light source. CYP121

crystals (Fielding et al., 2017) were introduced into the

SwissFEL SASE (not pink) beam using a tape-drive setup

(Fuller et al., 2017) operated at ambient temperature and

pressure. Each JUNGFRAU diffraction image was written to

disk as a three-dimensional array (32 � 1024 � 512 pixels);

however, our resolution-prediction model expected 512 � 512

quadrant images oriented with the beam center aligned with

the first pixel in memory (for example as in Figs. 2 and 3). To

accommodate the model, each JUNGFRAU image was cast as

a two-dimensional array of size 4434� 4218 and the data were

subsequently downsampled into 512� 512 quadrants (Section

2.2). A resulting JUNGFRAU quadrant is shown in Fig. 7(a).

Fig. 7 describes the results from Resonet inferring resolution

for the entire data set of 9592 crystal hits. The predicted

resolutions were in the range 1.3–5.7 Å (Fig. 7d) and the

resolution obtained from cctbx.xfel.merge after processing all

9592 hits was 1.6 Å. It is noteworthy that the resolution model

used here was trained on PILATUS 6M and EIGER 16M

geometries but was able to estimate accurate resolutions for

these JUNGFRAU 16M data without any modifications.
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Table 2
Model-fitting details.

SGD, sparse-gradient descent; MAE, mean absolute error; BCE, binary cross
entropy.

Predictor type Resolution Overlapping lattice

ResNet parameters 25550760 21791400
Total parameters 25650961 21891601
Optimizer SGD SGD

FC1 dropout No Yes
Training images 292500 117000
Momentum 0.9 0.9983
Weight decay N/A 2.5 � 10� 4

Loss function MAE BCE
Learning rate 6 � 10� 3 1.04 � 10� 3

Figure 7
Resolution prediction for JUNGFRAU 16M data collected at the SwissFEL light source. All color bars are in square-root-photon units. (a) A quadrant
of the JUNGFRAU 16M image (512� 512 pixels) with the highest predicted resolution (1.3 Å). (b) The same as (a) but zoomed in to the outer corner of
the image, showing high-resolution Bragg peaks. (c) CC1/2 versus resolution for three different merges. Images were sorted according to Resonet
predicted resolution and then divided into three groups called ‘high’, ‘mid’ and ‘low’. The high, mid and low groups included images whose Resonet
predicted resolutions lay in the ranges 1.3–2.5, 2.0–2.9 and 2.5–5.2 Å, respectively. The images in each group were processed with dials.stills_process and
merged with cctbx.xfel.merge, resulting in three CC1/2 curves. As shown, images with higher resolutions yielded better CC1/2 statistics and indicated that
the model can be used to accurately sort images based on resolution. (d) Histogram of the resolutions predicted for all 9592 images containing crystals.
I–IV show maximum composite images. A maximum composite image is an image whose pixel value is the maximum across a subset of images (for a
further description, see Brewster et al., 2019). In this case, the subsets are those images whose resolutions fell within the shaded regions in (d). I, II, III
and IV correspond to the intervals 1.3–1.6, 2.0–2.2, 2.7–2.8 and 3.8–5.7 Å and contain 640, 640, 639 and 639 images, respectively. The average resolution in
each maximum composite image is labeled by a black dashed circle. The large peaks in these images are from salt crystals or other parasitic scatterers in
the beam, and the smaller, more densely packed peaks represent Bragg reflections.



Resonet overlapping lattice prediction was also tested for

these data (see Supplementary Fig. S9). See Supplementary

Section S1 for more examples of the application of Resonet to

XFEL data.

3.2. Resolution prediction for SSRL data

Resonet resolution inference was performed for 25 rotation

data sets obtained at the SSRL SMB beamlines. Table 3

describes these data sets. Each data set was labeled with an

overall resolution, determined from the output of AIMLESS

(Evans & Murshudov, 2013) as the point (resolution) where

the signal-to-noise ratio of the structure-factor intensity

dipped below 1.5. Fig. 8 shows the Resonet resolution versus

image number for each of these data sets. For each diffraction

image, four resolutions (one per quadrant) were predicted and

either the minimum or the mean resolution across the quad-

rants was taken as the effective resolution (Fig. 8; red and blue

markers, respectively). Also shown in Fig. 8 is the per-image

resolution estimated by DIALS (Winter et al., 2018). In most

cases Resonet inference worked qualitatively well and trends

in Resonet resolution inferences were confirmed to be due to

changes in diffraction quality and/or anisotropy (Fig. 9). These

synchrotron data represent a large array of experimental

conditions, not all of which were captured by our forward

model based on nanoBragg. The challenge in creating a

generalized resolution-prediction model is in preparing the

training data and ensuring that they cover the most important

scenarios, something that is still under investigation.

As described in Section 2.1.1, the Resonet resolution model

was designed to infer per-image B factors and convert them

to resolutions via the relationship shown in Fig. 1. This
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Figure 8
Resonet resolution prediction for rotational data sets recorded at the SSRL Structural and Molecular Biology (SMB) beamlines. The horizontal axis is
sorted according to collection time. The red and blue markers are the minimum and average inferred resolution per shot (across the four quadrants),
respectively, and the green markers are resolution estimates from DIALS. Each data set is labeled by a resolution determined using AIMLESS (shown at
the top of each subplot and indicated by the dashed line) as the point where the overall signal-to-noise ratio of the integrated intensity dipped below 1.5.
The yellow-shaded regions labeled I and II in subplots A, S and W correspond to regions where maximum composite images were computed to identify
the cause of systematic variation in the Resonet-predicted resolution (see Fig. 9 for the corresponding maximum composite images).

http://doi.org/10.1107/S2059798323010586
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relationship is an approximate one (Holton & Frankel, 2010),

hence a comparison between the Resonet B factors and those

derived using other means was warranted (Fig. 10). For this

comparison, the Resonet B factor of each data set was

computed as follows: for each diffraction image in a data set,

Resonet was used to infer four B factors (one per quadrant).

Bmin was defined as the minimum B factor amongst the

quadrants of an image and was then averaged across the data

set to obtain the ‘Resonet Bmin’ quantity shown in Fig. 10. We

found this correlated best with the Wilson B factor (Wilson,

1942) and the median atomic B factor refined using REFMAC

(Murshudov et al., 2011).

3.3. Overlapping lattice detection in Rayonix 340 data

collected at LCLS

To test overlapping lattice prediction, a data set produced

using cracked crystals was analyzed with Resonet. The data

were fixed-target diffraction images collected at 100 K using a

goniometer-based setup (Cohen et al., 2014) at the X-ray

Pump Probe (XPP) hutch of LCLS (Chollet et al., 2015), and

the results have previously been published (Artz et al., 2020).

Crystals were translated by 70 mm and rotated between

exposures, resulting in 512 diffraction images. Many of the

images, however, were collected from volumes of the crystal

which featured cracks that gave rise to split and overlapping

Bragg peaks. This complicated the analysis originally reported

by Artz and coworkers, who visually selected and subse-

quently processed 122 images which appeared to lack over-

lapping lattice features.

For this report, the Resonet overlapping lattice model was

tested using the entire 512-image data set. The overlapping

lattice prediction value, which we call pi for image i (where

0� pi � 1), indicated that 420 of the images were single-lattice

(pi < 0.5); this fraction included 118 of the 122 images hand-

selected by Artz and coworkers (Fig. 11). Examples of images

flagged as having single or overlapping lattices by Resonet are

shown in Fig. 12; in these examples, Resonet predictions

aligned well with visual inspection. To seek a more quantita-

tive result, the original data were reprocessed with a recently
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Figure 9
Maximum composite images of sequential groups of SSRL diffraction patterns. The resolution labels 3.20, 2.56 and 1.28 Å correspond to the SSRL data
sets that are shown in Fig. 8 (subplots W, S and A, respectively). The shot ranges over which the maximum composite images were computed are shown in
the subplots in Fig. 8 (W, S and A). Regions labeled ‘I’ correspond to relatively high-resolution estimates and regions labeled ‘II’ correspond to low-
resolution estimates from the same data set. The black circles indicate the nominal resolutions of the data sets (taken from the AIMLESS logs), and the
red circles mark the average resolutions determined by Resonet for the images that went into each maximum composite. Different features in the data
can influence the Resonet resolution. Here, we observe asymmetric diffraction influencing the predicted resolution of the pattern.



updated version of dials.stills_process. Starting with the set of

512 images, 437 were indexed and integrated. Of these images,

41 were removed for having a relatively low number of

indexed reflections. The remaining 396 images were sorted

according to pi and split into two data sets of equal size. The

50th percentile of pi for these data was 0.0265, so we created

Set A and Set B, such that 0� pi� 0.0245 for Set A and 0.0248

� pi < 1 for Set B. Images in Set A and Set B had an average

overlapping lattice probability pi of 0.006 and 0.42, respec-

tively. The structure-factor intensities from both sets were

merged separately, and the resulting CC1/2 statistics are shown

in Fig. 13. Notably, the CC1/2 was lower at wider scattering

angles for the set that included more overlapping lattice

diffraction (Set B). This is in line with the general assumption

that split and/or superimposed Bragg spots from overlapping

lattices are problematic for most data-processing software. We

emphasize that the detection of overlapping lattices within

diffraction data using conventional tools typically requires

indexing, for example, to calculate the fraction of observed

Bragg peaks that are indexable (see Supplementary Figs. S3–

S7). In contrast, Resonet only uses the raw pixel values. For

completeness, Resonet resolution estimation for these data is

shown in Supplementary Fig. S10. For additional examples of

the application of Resonet overlapping estimation to XFEL

data, see Supplementary Sections S1.2 and S1.3 and Supple-

mentary Figs. S3–S6.
3.4. Overlapping lattice detection in diffraction from SSRL

Resonet overlapping lattice detection was performed on the

data sets outlined in Table 3. The results are summarized in

Fig. 14. From these results, it was concluded that four of the

data sets (B, H, N and Y) had a majority amount of over-

lapping lattice scattering (>50% of the images). A closer look

at images from these data sets revealed features indicative of

overlapping lattice scattering, as shown in Fig. 15. Notably, the

overlapping lattice-detection model was trained on simulated

images in the Rayonix 340 detector format used during the

research papers

Acta Cryst. (2024). D80, 26–43 Derek Mendez et al. � Deep residual networks trained on synthetic data 35

Figure 10
Overall B-factor and resolution estimation for each of the SSRL data sets
shown in Table 3 and Fig. 8. The ‘min’ subscript for the B factor (Bmin)
and resolution (dmin) represents the minimum of the four values inferred
across the quadrants of each image and the angle brackets hi indicate an
‘average over images per data set’ (the number of images in each data set
is labeled in Fig. 8). Top: the overall Resonet B factor, the Wilson B factor
(from AIMLESS) and the median atomic B factor (from structure solu-
tion and refinement using REFMAC). Bottom: the overall Resonet
resolution, the resolution determined with AIMLESS and a resolution
estimate dfit based on all processed images but extrapolated to unit
multiplicity (for comparison with the Resonet inference, which is for a
single shot). See Section A2 for a detailed description of dfit.

Figure 11
Resonet overlapping lattice detection for fixed-target data collected at
LCLS (Artz et al., 2020). The raw prediction corresponds to the prob-
ability that the image contains overlapping lattice diffraction; hence,
subtracting this number from 1 computes the probability that the image
only contains diffraction from a single lattice. The gray histogram
represents all 512 images, whereas the red histogram represents the 122
images that were hand-selected for processing in Artz et al. (2020). These
hand-selected images were chosen because they resembled good-quality,
single-lattice diffraction. Only four of these hand-selected images were
predicted by Resonet to contain overlapping lattice scattering (with
overlapping lattice probability > 50%).

Table 3
SSRL crystallography data sets tested with Resonet.

Data
set

AIMLESS
resolution (Å)

Distance
(mm) Detector

Unit-cell
volume (Å3)

Space
group

A 1.28 200 PILATUS 6M 1.89 � 10� 5 P1
B 1.44 250 PILATUS 6M 1.45 � 10� 6 I4122
C 1.43 250 PILATUS 6M 1.51 � 10� 6 I4122
D 1.47 250 PILATUS 6M 2.66 � 10� 5 C121
E 1.52 250 PILATUS 6M 1.45 � 10� 6 I4122
F 1.64 300 PILATUS 6M 1.47 � 10� 6 I4122
G 1.68 300 PILATUS 6M 1.48 � 10� 6 I4122

H 1.74 300 PILATUS 6M 1.44 � 10� 6 I4122
I 1.66 300 PILATUS 6M 1.51 � 10� 6 I4122
J 1.79 300 PILATUS 6M 1.44 � 10� 6 I4122
K 1.81 300 PILATUS 6M 1.51 � 10� 6 I4122
L 1.78 300 PILATUS 6M 1.44 � 10� 6 I422
M 1.75 250 PILATUS 6M 1.47 � 10� 6 I4122

N 2.07 300 PILATUS 6M 2.41 � 10� 5 P1211
O 1.96 300 PILATUS 6M 1.50 � 10� 6 I4122
P 1.89 275 EIGER 16M 1.51 � 10� 6 I4122
Q 1.99 300 PILATUS 6M 1.46 � 10� 6 I4122
R 1.99 300 PILATUS 6M 1.47 � 10� 6 I222
S 2.56 350 PILATUS 6M 2.27 � 10� 5 P41212
T 2.85 300 PILATUS 6M 9.11 � 10� 5 P212121

U 3.07 300 PILATUS 6M 1.06 � 10� 6 P212121

V 2.97 350 PILATUS 6M 1.52 � 10� 6 I222
W 3.20 400 PILATUS 6M 5.18 � 10� 6 P212121

X 3.55 350 EIGER 16M 2.83 � 10� 6 P41212
Y 5.39 400 PILATUS 6M 1.48 � 10� 6 I4122

http://doi.org/10.1107/S2059798323010586
http://doi.org/10.1107/S2059798323010586
http://doi.org/10.1107/S2059798323010586
http://doi.org/10.1107/S2059798323010586
http://doi.org/10.1107/S2059798323010586
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XPP data collection discussed above; however, it worked well

on these SSRL data sets consisting of PILATUS 6M and

EIGER 16M images. This seems to indicate that the over-

lapping lattice features that the model looks for are related to

the Bragg peak profiles, and are mostly independent of the

underlying detector geometry. One complication appears to

be overlapping lattice features appearing in ice and salt

diffraction. Although these ice and salt features can be

masked, future versions of Resonet will infer their presence,

characteristics and severity, and attempt to decouple them

from overlapping lattice inference.

3.5. Implementation at SSRL beamlines

Both the resolution and overlapping lattice-prediction

models are currently implemented in the live X-ray diffraction

analysis program Interceptor and the SSRL beamline-control

software Blu-Ice (McPhillips et al., 2002). Interceptor evaluates

all images collected at SSRL macromolecular crystallography
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Table 4
Downsample and inference time tests on a single Nvidia A100 GPU.

All times are in milliseconds, normalized by the number of MPI ranks. They therefore represent the effective per-image throughput. Downsample times are
medians over SSRL data sets P (EIGER 16M) and D (PILATUS 6M). Standard deviations are shown in parentheses. CPU-only times are shown for reference in
the two rightmost columns.

No. of MPI ranks† No. of quadrants Detector Downsample GPU Inference GPU Downsample CPU Inference CPU

8 1 EIGER 16M 2.8 (0.1) 1.0 (0.2) 3.8 (0.5) 70.9 (3.8)
8 4 EIGER 16M 8.8 (0.5) 1.2 (0.4) 16.5 (2.3) 287.6 (21.5)
24 1 EIGER 16M 1.8 (0.2) 0.5 (0.2) 2.5 (0.3) 42.1 (2.6)
8 1 PILATUS 6M 0.9 (0.1) 0.9 (0.1) 1.5 (0.1) 69.9 (3.4)

8 4 PILATUS 6M 2.3 (0.2) 1.2 (0.5) 6.1 (0.6) 290.4 (28.8)
24 1 PILATUS 6M 0.5 (0.1) 0.9 (0.4) 0.9 (0.1) 45.2 (2.3)

Figure 12
Comparing overlapping-lattice and single-lattice diffraction images from the XPP data set. Images (a)–(c) were flagged by Resonet as containing
overlapping lattice diffraction and images (d)–( f ) were flagged as containing diffraction from a single lattice. It is obvious visually that images (a)–(c)
contain more disordered diffraction, indicative of overlapping lattice scattering. Color bars are in square-root-photon units.



beamlines and sends the results to Blu-Ice, which updates a

chart of relevant metrics in real time for users to see (Fig. 16).

As Interceptor was written in Python, a basic interface to

embed Resonet into Python applications was created (see

https://github.com/ssrl-px/resonet), and this same interface

should also be usable by other monitoring software, for

example OM (Mariani et al., 2016). Further details of Inter-

ceptor are discussed in Section A3.

3.6. Processing times on a GPU

The Resonet resolution model was carefully timed using a

24-core (Intel Xeon Gold 6126 2.6 GHz) machine running

CentOS 7 with an Nvidia A100 GPU. The GPU was utilized by

multiple cores in parallel, and parallelization was performed

by evenly dividing the diffraction images over cores using the

message-passing interface (MPI) protocol. The results are

shown in Table 4; using a single GPU shared amongst multiple

processes greatly improved the inference time and overall

throughput. With this one machine, using all 24 cores, the

A100 and only using one quadrant for inference, EIGER 16M

images were processed at 97.7 Hz and PILATUS 6M images at

261 Hz, including the time taken to read the images from disk

using the FabIO library (Knudsen et al., 2013). It is expected

that these times will vary depending on the way that raw pixels

are handled in disk and RAM, and whether the detectors must

first write to disk before moving data to processing machines.

Without the GPU, these processing rates decreased to 18.1 Hz

(EIGER 16M) and 20.4 Hz (PILATUS 6M). These results,

however, suggest that GPU machines have great potential for

providing faster real-time feedback to users. Additional timing

tests are shown in Supplementary Fig. S8.

3.7. Quadrant variation

Due to the timing-test results shown in Table 4, for high-

frame-rate experiments it may sometimes be beneficial to use

a single quadrant for inference. Indeed, a single quadrant was

used for all of the overlapping lattice results shown in this

report. However, for the resolution inference results shown in

Figs. 8–10, all four image quadrants were used to infer reso-

lution separately, and the mean (or minimum) was then taken

as the effective resolution. Looking at the entire image to

gauge its resolution is perhaps the most accurate approach,

but it is instructive to explore the variation in resolution across

quadrants. This is shown in Fig. 17 for the 25 SSRL data sets

from Table 3 (and Fig. 8). In most of the data sets the reso-

lutions were similar regardless of quadrant; however, aniso-

tropic diffraction and inaccurate beam centering can both

influence resolution inference in individual quadrants (see, for

example, Fig. 17a). Future versions of Resonet models will be

trained on more diverse data sets to yield even more precise

resolution estimates. It is intriguing to postulate that these

models could be trained to recognize diffraction anisotropy

and incident beam misalignment from a single quadrant.

4. Discussion

AI as a tool is inherently tied to automation. The central utility

of computers is to enhance the human experience by auto-

mating routine tasks, and this goes for crystallographers as

well. Indeed, data analysis at SR crystallography beamlines

has increasingly become automated (Cornaciu et al., 2021;

Douangamath et al., 2021; Tsai et al., 2013), and this is also true

for XFEL experiments. For example, during two recent LCLS

experiments targeting small molecules and viral COVID-19

proteins (Blaschke et al., 2021), data were recorded at SLAC

and automatically transferred using the XROOT protocol to

the National Energy Research Scientific Computing Center

(NERSC) for high-performance computing. Data-processing

jobs were submitted to NERSC compute nodes remotely by

the cctbx.xfel application (Brewster et al., 2019), and preli-

minary structure solutions were automatically uploaded to a

web server for experimenter assessment in as little as 10 min

after 120 Hz data collection began. This did require initial

user inputs for indexing, integration, merging and structure
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Figure 13
Merging statistics for hydrogenase data collected at XPP. After indexing
the images with dials.stills_process, they were grouped into two sets
according to the probability of each image containing overlapping lattice
diffraction (according to Resonet). Each set contained 198 images. (a) The
CC1/2 obtained after merging either set using cctbx.xfel.merge. CC1/2 was
computed five times per set with random half-data-set assignments. The
markers represent the mean, and the shaded region indicates�1 standard
deviation from that mean. (b) The merged multiplicity in the asymmetric
unit. Notably, Set B had a slightly higher overall multiplicity (7.83 versus
7.36), but a lower CC1/2 at high resolution.

Figure 14
Resonet overlapping lattice detection in the 25 SSRL data sets described
in Table 3 and shown in Fig. 8. The y axis here indicates the probability
that an image from the data set contains overlapping lattice diffraction.

https://github.com/ssrl-px/resonet
http://doi.org/10.1107/S2059798323010586


refinement, but with the addition of new AI programs (Ke et

al., 2018; Rahmani et al., 2023) to screen for diffraction, and

our present body of work that uses AI to characterize

diffraction, we are edging away from requiring user inter-

actions for serial data processing.

One drawback of using these supervised learning approa-

ches is the sensitivity to training-data content. Indeed, in Ke et

al. (2018) and Rahmani et al. (2023) the authors concluded

that their training data sets did not readily adapt to new data

collected under different experimental conditions or using

different setups. We have seen training-set bias in our own

work as well. The benefit of our simulation-to-model approach

is that the simulations are fully within our control, allowing us

to readily expand training data sets to adjust for shortcomings

and to adapt to new experimental parameters and setups. As

an example, we applied the models trained here to serial

crystallography data from the early-generation CSPAD

camera (Hart et al., 2012) used in Boutet et al. (2012) and

found that they performed poorly (Supplementary Section

S1.2). We suspected that this was because the data collection

by Boutet and coworkers, performed at the LCLS, used a

vastly different experimental geometry (9.4 keV photons,

93 mm sample-to-detector distance). By simply retraining the

resolution-prediction model on synthetic data simulated in

this regime, we were able to accurately estimate the resolution

for these images (Supplementary Figs. S1–S3). In our experi-

ence, Resonet was sensitive to the data that it was trained on

in complex, obscure ways. By increasing the training-data

diversity, we could seek to train a single model to work in all

conceivable diffraction scenarios, but it would perhaps be

more computationally efficient to train smaller models

targeting specific scattering geometries that can be used as

needed. Further, with the Resonet framework, we are well

positioned to begin exploring the prediction of other inter-

esting experimental parameters. We are actively exploring the

use of Resonet models to determine the incident beam position

on the detector, and the preliminary results are encouraging.

These models could then be used to warn users when the

detector or beam geometry is misaligned. In addition to

providing real-time feedback, we expect that Resonet will
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Figure 15
Maximum composite images for the first 20 exposures (4� total rotation) from the SSRL data sets indicated by the subplot labels B, H, N, D, I and O.
Based on Resonet overlapping lattice detection (see Fig. 14) it was known that data sets B, H and N had a high chance of containing overlapping lattice
scattering (80%, 74% and 57%, respectively). On the contrary, data sets D, I and O had a low chance of containing overlapping lattice scattering (12%,
0% and 0%, respectively), but were similar in setup to experiments B, H and N. All color bars are in ‘square-root-photon’ units. While data set N clearly
exhibited diffraction indicative of overlapping lattice features from separate protein crystals, it appeared that data sets B and H contain more subtle
features (streaks and Bragg peaks from ice and/or salt) that cause Resonet to infer the presence of overlapping lattices.

http://doi.org/10.1107/S2059798323010586
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reduce the time and effort required to aptly process challen-

ging data sets. Resonet can accurately detect and flag proble-

matic diffraction images, such as highly anisotropic images

or those containing parasitic amounts of overlapping lattice

diffraction. The inclusion of problematic diffraction images

reduces the quality of merged data, making structure deter-

mination (especially by ab initio phasing) difficult or impos-

sible. We expect that Resonet will be key to identifying which

diffraction images should be included and processed to yield

optimal merged data sets.

AI models are already being used to scale and merge

structure-factor intensity measurements (Dalton et al., 2022).

AI tools such as Resonet can potentially be used to inform

users of progress towards full data sets or how to adjust the

beamline parameters to optimize the chances of experimental

success. The presented work demonstrates two ways in which

AI models might aid crystallographers, but additional models

(for example auto-indexers) can and should be developed.

Future work to utilize AI for diffraction processing will lead to

better results and higher throughput experiments at crystal-

lography beamlines in general.

5. Availability of Resonet

Installation instructions, and tutorials for simulating images,

training a Resonet model and applying existing Resonet models

(including those used for this report), are available at https://

github.com/ssrl-px/resonet.

6. Related literature

The following references are cited in the supporting infor-

mation for this article: Maia (2012), Sellberg et al. (2014) and

Nam & Cho (2021).

APPENDIX A

Simulation details

A1.1. Crystal models

For each simulated image, a crystal and list of structure-

factor intensities were modeled using a randomly chosen PDB

entry from the following list: 1h74, 1hk5, 1keq, 1ktc, 1lbv,

1nne, 1pdv, 1qtx, 1r03, 1rlk, 1sg8, 1uic, 1uv7, 1vh6, 1xrt, 1yj1,

1yo6, 1z35, 1z6s, 2ar6, 2bh4, 2cc3, 2hu3, 2hyf, 2i8d, 2ibm, 2itu,

2nrz, 2pkg, 2qa4, 2qex, 2qma, 2qt4, 2vj3, 2vuy, 2wox, 2wyf,

2x8i, 2xh6, 2y8k, 2ycf, 2zg2, 2znt, 2zry, 3agy, 3ch7, 3cma, 3cpw,

3dll, 3dxj, 3e6l, 3fj8, 3fl2, 3fyx, 3g8y, 3hfp, 3hxf, 3ilo, 3int, 3k6n,

3l89, 3lke, 3lz7, 3n0w, 3nxs, 3oj1, 3t4x, 3tuu, 3u7s, 3uh4, 3uhr,

3vgd, 3woz, 3wpz, 3zbs, 3zg2, 4arq, 4cbc, 4ctn, 4dvn, 4e6i, 4f3x,

4fhm, 4gyk, 4j20, 4m5i, 4m97, 4o09, 4o7s, 4p9h, 4pgu, 4px8,
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Figure 16
Live X-ray diffraction-image analysis with Interceptor. (a) During data collection, the images are recorded on the file system and subsequently forwarded
to a set of parallel processing modules. The results are then forwarded to the Blu-Ice beamline-control software and user interface. (b) Users can
visualize the results in a configurable strip chart, which is updated as the data are collected. The configuration shown consists of a plot of resolution (top,
red), peak count (middle, green) and overlapping lattice probability (called ‘splitting’; bottom, black/gray) versus image number. Near the end of the run,
the ‘splitting’ trace indicated the presence of overlapping crystal diffraction. Also at this point, the number of spots (green) increased, but the resolution
remained unchanged, as expected.

https://github.com/ssrl-px/resonet
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4qxq, 4rmx, 4wd2, 4xbe, 4xxo, 4ypu, 4z40, 5al4, 5aoo, 5avi,

5dt6, 5g4e, 5g52, 5j77, 5jit, 5o99, 5p9i, 5pjt, 5v5k, 5v5v, 5vn7,

5vn9, 5wqg, 5xg2 and 6csc. These PDB files covered the set of

space groups P3, P3112, R3:H, P6, P41212, P3221, P321, P4212,

C121, P41, P42212, P3121, C2221, R32:H, P4132, P212121,

P6122, I222, P43212, P61, P1, P6522, I212121, P32, P21212,

P1211, F432, P213 and I23 and had unit cells ranging in volume

from 49 800 to 48 400 000 Å3. The crystal size was set to 25 mm

and the average mosaic domain size was randomly set to 0.05,

0.1 or 0.15 mm. For the resolution training data the angular

mosaic spread of each crystal was randomly chosen in the

interval 0.05–1�, and for the overlapping lattice training data

this range was 0.001–0.01�.

A1.2. Detector models

For resolution training data sets, each diffraction pattern

was simulated onto either an EIGER 16M or a PILATUS 6M

detector format and the detector distance was randomly

sampled in the interval 200–300 mm. For the overlapping

lattice-detection training data, a Rayonix 340 format was used

and the detector distance was fixed at 240 mm (according to

the experimental geometry that it was modeled after). It was

originally planned to retrain an overlapping lattice predictor

using other detector models (for example EIGER and

PILATUS), but the model trained on Rayonix data performed

sufficiently in practice when applied to images from other

detector models. In each simulated detector image, a

randomly sized circle of pixels (<15 mm) was masked to

simulate a beam stop. Also, for each image a random selection

of 0–5 pixels was chosen and the pixel values were set to 216

photons to simulate ‘hot’ pixels. A second random selection of

up to 124 pixels was chosen and the pixel values were set to 0

to simulate ‘bad’ pixels.

A1.3. Beam model

The total photons per simulated image was 4 � 1011

and each photon had a wavelength of 0.9795 Å. The
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Figure 17
As Fig. 8, but separate inferences are shown for each quad.



incident beam had a spot size of 30 mm and a divergence of

0.02 mrad.

A1.4. Background scattering

For each simulated image, we computed scattering from

5 mm of air, 25 mm of water and 25 mm of a randomly chosen

parasitic source (for example glycerol, sucrose, PEG, MDP,

DPM, paper, tape or ice). These background components

were summed and then added to the Bragg scattering, but with

a randomly chosen scale factor (between 0.0125 and 1.25) to

simulate different experimental conditions and background

levels.

A1.5. Simulation timing

Forward-scattering simulations were carried out at NERSC

using the Perlmutter cluster. Two batch jobs were used to

simulate the resolution training data (one per detector model).

Each job utilized 64 Perlmutter GPU nodes, each with four

A100 GPUs, and 16 physical cores per node (four cores per

GPU). In this configuration, the 200 000 PILATUS 6M images

and 125 000 EIGER 16M images were simulated in approxi-

mately 60 and 90 min, respectively.

A2. Computing dfit

In order to extrapolate the resolution d of a merged data set

to that of a single image dfit, the resolution-dependence of the

signal I, noise �I and multiplicity m of unmerged spot inten-

sities must be taken into account. Here, the value for m was

taken from the outer resolution bin of the merged data. For I

and �I individual, Lp-corrected spot-intensity data from

XDS_ASCII.HKL were fitted to straight lines on a plot of d� 2

versus ln(I) or ln(�I), which is analogous to a Wilson plot. The

point where the two lines crossed at Im1/2 = 1.5�I was found to

be in excellent agreement with the resolution d reported by

AIMLESS using the signal/noise = 1.5 criterion, and the point

where I = 1.5�I was taken as dfit, the resolution at unit

multiplicity.

A3. Details of the Interceptor data monitor for the SSRL SMB

beamlines

Interceptor is a live data-collection monitoring program that

is implemented on all SSRL macromolecular crystallography

beamlines. It was designed to (i) balance the load among many

distributed image-analysis workers, (ii) minimize disk I/O, (iii)

handle scenarios of worker shortage at peak capacity and (iv)

provide the workers with immediate access to individual

images before they are incorporated into an aggregate file

format, for example HDF5. The architecture was implemented

using the ZeroMQ messaging library, with available workers

requesting images using the ZeroMQ REQ protocol and the

data-collection software forwarding the data via the REP

protocol while images are written to disk. The original version

of Interceptor relied on algorithms implemented in DIALS

(Winter et al., 2018); recently, we have begun replacing these

algorithms with Resonet and testing this configuration during

live X-ray crystallography experiments.
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