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The expansive scientific software ecosystem, characterized by millions of titles

across various platforms and formats, poses significant challenges in maintaining

reproducibility and provenance in scientific research. The diversity of inde-

pendently developed applications, evolving versions and heterogeneous

components highlights the need for rigorous methodologies to navigate these

complexities. In response to these challenges, the SBGrid team builds, installs

and configures over 530 specialized software applications for use in the on-

premises and cloud-based computing environments of SBGrid Consortium

members. To address the intricacies of supporting this diverse application

collection, the team has developed the Capsule Software Execution Environ-

ment, generally referred to as Capsules. Capsules rely on a collection of

programmatically generated bash scripts that work together to isolate the

runtime environment of one application from all other applications, thereby

providing a transparent cross-platform solution without requiring specialized

tools or elevated account privileges for researchers. Capsules facilitate modular,

secure software distribution while maintaining a centralized, conflict-free

environment. The SBGrid platform, which combines Capsules with the SBGrid

collection of structural biology applications, aligns with FAIR goals by enhan-

cing the findability, accessibility, interoperability and reusability of scientific

software, ensuring seamless functionality across diverse computing environ-

ments. Its adaptability enables application beyond structural biology into other

scientific fields.

1. Introduction

Researchers in various scientific fields have access to a soft-

ware ecosystem with millions of titles accessible through

websites and repositories (Dey et al., 2021; Pietri et al., 2019).

An example is the Elixir ‘bio.tools’ registry (Ison et al., 2019),

which lists over 43 000 software applications for life sciences in

2023. As a result, biologists are frequently confronted with the

challenge of navigating an array of applications and complex

systems when selecting software tools that are suitable for a

particular project. Access to adequate software metadata as

well as the ability to rapidly install the latest version of the

most suitable application are critical and can minimize non-

scientific factors that influence scientists’ selection of software.

Software applications for biomedical research are devel-

oped globally primarily by scientists (Morin & Sliz, 2013) who

are embedded at research institutions. Typically these appli-

cations evolve through many versions over time, and have

diverse underlying components. They are implemented in
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various programming languages, libraries and frameworks,

each with its own set of dependencies (Mayer & Bauer, 2015;

Tomassetti & Torchiano, 2014). The complex web of depen-

dency management that results must be approached carefully

to guarantee compatibility and reproducibility (Baresi et al.,

2024; Fan et al., 2020; Babinet & Ramanathan, 2008; Belgui-

doum & Dagnat, 2007), and to prevent excessive support

overhead, which can consume up to 30% of the time spent in

computational projects (Kumfert & Epperly, 2002; Hochstein

& Jiao, 2011). The variability of computational resources

deployed in support of biomedical research adds a significant

layer of complexity; software applications are rarely distrib-

uted in a format that can be immediately executed on

researchers’ computers. Before each software application is

used it typically needs to be compiled and configured, as well

as tested on a specific operating system (OS) and hardware

configuration. In particular, many recently developed appli-

cations that rely on artificial intelligence (AI) approaches

(Pandey et al., 2022) must also be optimized to support parallel

computing and graphics processing unit (GPU) acceleration.

The challenges faced in navigating the complex landscape of

scientific software highlight the need for systematic approa-

ches to versioning, compatibility and performance optimiza-

tion (Morin & Sliz, 2013).

Navigating the landscape of scientific software is further

complicated by a lack of uniformity in software access (Morin

et al., 2012). Software applications can be distributed through

various channels such as package managers, port systems,

container registries, laboratory or project websites, and

development version-control repositories, each with its own

set of requirements and limitations. For example, containers

provide isolated environments for applications while sharing

the host OS kernel (Bakshi, 2017; Casalicchio & Iannucci,

2020), but can be complex to orchestrate and require specia-

lized knowledge to secure, manage and run (Bui, 2015; Combe

et al., 2016). Project websites and version-control repositories

often provide access to the most recent versions of applica-

tions, whereas software is often distributed as a source code,

which necessitates a complicated, OS-specific compilation

process that requires technical expertise beyond the capability

of many scientists. System packages and port systems handle

dependencies and versioning, but software installation is

managed at the OS level (Gamblin et al., 2015) and often there

is a delay before the most recent version of an application is

included.

The complexity of software maintenance and distribution

can make it even more problematic to address the needs for

computational reproducibility and provenance in scientific

research. Inconsistencies in computational platforms, such as

software, databases, compilers, external libraries, hardware

and OSs, can lead to different results even when identical

versions of software are used under different settings

(Tommaso et al., 2017; Harris et al., 2008; Ivie & Thain, 2018;

Heil et al., 2021; Vitek & Kalibera, 2011; Morin et al., 2012).

Addressing these issues is a necessity for transparent and

validated models, particularly in critical fields such as health-

care, where outcomes are paramount (Eddy et al., 2012). A

survey in the journal Nature, with 1576 researchers, revealed

that reproducibility continues to be an ongoing challenge for

scientists. Notably, 52% of participants admitted that they

could not reproduce their own experiments, and more than

70% failed to replicate the work of others (Baker, 2016).

While technology has enabled large data collection and

sophisticated algorithms, it also poses challenges for the

independent verification of findings (National Academies of

Sciences, Engineering and Medicine, 2019; Peng & Hicks,

2021). There is still a need for standardized and reproducible

ways to deploy software to further improve research repro-

ducibility (Mesirov, 2010; Joppa et al., 2013).

Structural biology is a field of research that is conducted

through the intersection of several scientific disciplines:

biology, physics, mathematics and computer science. It relies

on many specialized software tools, each designed to solve

specific aspects of structure-determination problems (Morin &

Sliz, 2013). The SBGrid initiative (or SBGrid) develops a

platform that simplifies software use in structural biology

(Morin et al., 2013). It started in 2001 to support X-ray crys-

tallography at Harvard University (Jin et al., 2003; Sliz et al.,

2001, 2003) and by 2005 had expanded to support cryogenic

electron microscopy (cryoEM) research at Harvard Medical

School (Gonen et al., 2004; Fotin et al., 2004). The SBGrid

platform was developed to install and upgrade a growing

collection of structural biology software on on-premises and

cloud-based computing resources supporting hundreds of

structural biology laboratories: all members of the SBGrid

Consortium. Under the original SBGrid Monolithic Software

Execution Environment (MSEE), all applications in the

SBGrid collection could be immediately executed without

further configuration (Morin et al., 2013). Additionally, the

SBGrid team has established services to help researchers cite

software (Socias et al., 2015), execute large computational

workflows on opportunistic resources of the Open Science

Grid (O’Donovan et al., 2012; Stokes-Rees & Sliz, 2010),

access and archive data from synchrotron facilities (Stokes-

Rees et al., 2012) and publish experimental data sets through

the SBGrid Data Bank (Meyer et al., 2016). While developing

these additional support modalities, the SBGrid team

continued to address the challenges of scientific software

management and use.

This manuscript details our recent efforts to further

enhance the scalability and usability of the SBGrid platform.

To address the evolving complexity and volume of structural

biology software, we have developed and implemented a more

scalable approach to scientific software management: the

Capsules Software Execution Environment (CSEE) system,

also known as Capsules. Capsules isolate each software

application along with its dependencies, environment settings

and configurations into a singular package. This design is

underpinned by the Environment Definition (ED) files, which

specify software dependencies, the Capsules Executable

Mapper (CEM), which resolves namespace conflicts, and the

Capsules Runtime (CR) scripts, which instantiate the envir-

onment and run the executable. Capsules are packaged with

the SBGrid collection, thereby providing users with an out-of-
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the-box solution that requires no system-administration access

and operates consistently across all hardware platforms. The

implementation of Capsules facilitated the development of a

new, modular SBGrid installation manager as well as the

extension of SBGrid to support computational biology more

broadly through the new BioGrids collection. Additionally

and importantly, Capsules provide a foundation for additional

improvements in the areas of research reproducibility and

security, and align with FAIR software principles (Wilkinson et

al., 2016) at the installation and execution level.

2. Methods and results

2.1. SBGrid collection of scientific applications

Since our previous report (Morin et al., 2013), we have

developed SBGrid into a comprehensive platform focused on

the nuanced demands of structural biology scientists (Fig. 1a).

The SBGrid collection has expanded to over 530 encapsu-

lated, ready-to-run software titles, nearly doubling the size of

the SBGrid collection (Fig. 1b). These titles are distributed

among Crystallography (87), NMR (48), CryoEM (144),

Computational Chemistry (76), Structure Visualization and

Analysis (105), and additional supporting applications (95).

The SBGrid collection comprises two active branches,

supporting 64-bit Linux and Intel/ARM macOS, as well as

three older branches that are still preserved but are no longer

maintained (32-bit Linux, PowerPC-based Mac OS X and the

original SGI IRIX OS). Moreover, the 64-bit branch is used by

Windows users through the Windows Subsystem for Linux

(WSL) environment.

With the help of the SBGrid installation manager, the

SBGrid collection is seamlessly installed and upgraded on on-

premises and cloud-based computers supporting the SBGrid

Consortium laboratories, where end users have zero-

configuration access to multiple versions of software titles

(Fig. 1c). The growth trend of the SBGrid collection reflects

the ongoing development of and updates to structural biology

software applications, emphasizing the dynamic nature of

structure-determination methods in the continually evolving

and adapting field of structural biology.

Applications in the SBGrid collection can come with a

plethora of individual executables with associated libraries,

documentation and data. The total number of executables

in the SBGrid collection exceeds 56 000, requiring approxi-

mately 2.3 TB of storage for Linux and 0.8 TB for macOS.

The SBGrid collection of titles is linked to over 510 000

dynamic libraries tailored to the requirements of the indivi-

dual application. Titles in the SBGrid collection are governed

by their developer’s licensing terms, and the SBGrid collection

includes over 220 titles under open-source licenses. These

licenses include the Lesser General Public License (LGPL),

the GNU General Public License versions 2 and 3 (GPLv2 and

GPLv3, respectively), the Massachusetts Institute of Tech-

nology (MIT) License, the Creative Commons Restricted

License and the Academic Free License (Supplementary

Table S1). The remaining titles are licensed under a variety of

academic licenses, and a few commercial titles are included as

well (Morin et al., 2012; Morin & Sliz, 2013). This extensive

assortment reflects a commitment to accommodating various

licensing requirements. Our unified licensing agreement

simplifies licensing processes, which reduces the potential legal

complexity for research-use purposes. SBGrid’s licensing

strategy and its collaboration with developers from diverse
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Figure 1
SBGrid platform and growth of the SBGrid collection. (a) The SBGrid
platform was developed to install and upgrade a growing collection of
structural biology software on computers in hundreds of academic and
industrial structural biology laboratories, as well as their corresponding
cloud computing resources. (b) Cumulative growth of software titles and
(c) software versions in the 64-bit Linux and Intel/ARM macOS branches
of the SBGrid collection. The 64-bit Linux and Intel/ARM macOS
branches were established in 2003 and 2006, respectively, and gradually
replaced the earlier 32-bit Linux, PowerPC-based Mac OS X and original
SGI IRIX branches. Data for January 2024 were collected in February
2024, showcasing the most recent expansion of the collection.
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backgrounds underscore our commitment to expanding

impact, simplifying software distribution and ensuring licen-

sing compliance for the software used in scientific research.

Structural biology software supported through the SBGrid

collection has predominantly been developed in the US

(52%), with significant contributions from the EU (25%), the

UK (13%) and other regions (Fig. 2, Supplementary Table S1).

Notably, the large and widely utilized application CCP4

(Agirre et al., 2023), which has greatly influenced structural

biology software-development efforts, was developed in the

UK. The titles in the SBGrid collection were written in a

variety of programming languages, such as C/C++, Fortran,

Java, Python, Perl, R, Matlab and Tcl/Tk. The ten most

frequented titles by unique users in 2023 utilize C++ (four

titles), Python (four titles), C (one title) and Fortran (one title)

for their core functionality (Supplementary Table S1).

The SBGrid team monitors for new versions, receives user

requests and produces a monthly update of the SBGrid

collection. In 2023, SBGrid released 16 titles per month on

average, which include 12 new versions of existing applications

and four new software titles. Applications are sourced from

a diverse range of channels, including research websites, cloud

storage solutions such as Google Drive, various package

managers and version-control repositories such as GitHub,

SourceForge and Bitbucket. The applications come in various

formats, including tarballs, zip, jar, bin, install scripts and

.git links pointing to specific Git repositories. In a

systematic review of 50 titles randomly selected from the 345

used in the first eight months of 2023, we observed a distri-

bution of download sources: approximately 50% of these titles

provided links to research websites, 44% to GitHub reposi-

tories, 4% to package managers and 2% to Google Drive. It is

important to note that many titles provide multiple download

options; some titles use different download options for

installable artifacts and the large data libraries required to use

the software. Therefore, these percentages reflect the promi-

nence of each source in the download instructions rather than

in the strict exclusivity to a single download method. Addi-

tionally, the packaging formats of these 50 titles consisted of

44% in tarballs, 38% as Git repositories, 8% in package

manager-specific formats, 6% in zip format and 2% each as jar

and executable image formats (Supplementary Table S1). The

diversity of formats and structural biology software distribu-

tion channels that SBGrid manages highlights the technical

challenge that structural biologists without access to SBGrid

must overcome.

2.2. Capsules

To support streamlined, zero-configuration access to all

software in the SBGrid collection, we developed the Capsules

Software Execution Environment (CSEE), also referred to

as Capsules. In the SBGrid collection, software is organized

within OS- and architecture-specific software branches (Fig. 3).

Two branches are continuously developed, one for 64-bit

Linux and one for Intel/ARM Mac, and three older branches

are still available for legacy OS. Within each SBGrid branch,

each application is contained within a software title-specific

directory, which is referred to as an Application Directory.

Each Application Directory typically contains several Version

Directories, which contain the executables, libraries, docu-

mentation and data files required to run the specific version.

Many structural biology software titles are complex and

additionally might depend on other specific versions of

customized software titles. Supporting this convoluted

network of dependencies eventually impaired our earlier

Monolithic Software Execution Environment (MSEE) and led

to the development of Capsules.

With Capsules (Fig. 4) all software titles are packaged

independently, isolating each from the broader system,

thereby making the SBGrid collection modular and immune

to increasing complexities. In this environment, structural

biology executables are automatically run within a carefully

optimized runtime environment, which includes libraries,
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Figure 2
(a) Distribution of software titles within the SBGrid collection by country
of origin and their percentage share within the SBGrid collection. The
total number of titles developed within each country is indicated in
parentheses. The top ten applications used from March 2023 to March
2024 were developed in the United Kingdom and the United States. The
applications are ranked as follows: UCSF Chimera/ChimeraX (Pettersen
et al., 2004; Goddard et al., 2018; US), CCP4 (Agirre et al., 2023; UK),
Phenix (Liebschner et al., 2019; US), RELION (Scheres, 2012; UK),
PyMOL (Schrödinger; US), IMOD (Kremer et al., 1996; US), ProDY
(Bakan et al., 2011; US), EMAN2 (Tang et al., 2007; US), Coot (Emsley et
al., 2010; UK) and CCP-EM (Wood et al., 2015; Burnley et al., 2017; UK).
(b) A choropleth map illustrating the distribution of software title origins
within the SBGrid collection, with color intensities reflecting the quantity
of software originating or predominantly originating from each country.
The map underscores the wide-ranging geographical origins of the soft-
ware titles compiled in the SBGrid collection.
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environment variables and access to executables that support

the particular application.

With approximately 500 software titles in each active soft-

ware branch, SBGrid supports close to 50 000 program-

matically generated CR scripts that are unique and specific to

all executables in the SBGrid collection (typically with many

executables per software title). These CR scripts (Fig. 4 and

Supplementary Fig. S1a) provide users with immediate access

to all required, version-specific libraries and other software

dependencies.

The environment supporting CR scripts is generated

through corresponding ED files (Fig. 4 and Supplementary

Fig. S1a), streamlining the setup according to the require-

ments of each title. The only exceptions are a few titles that

contain database files or code that is otherwise not executable.

The ED files are manually written, edited and tested by the
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Figure 3
Two actively developed branches of the SBGrid collection support 64-bit Linux and Intel/ARM macOS OS. Within each branch, software is organized
through application- and version-specific subdirectories.

Figure 4
Modular packaging of the SBGrid collection. Each of the approximately 500 software titles is independently packaged into Capsules, isolating them from
the broader system to prevent increasing complexity. The runtime environments are programmatically generated using ED files, ensuring a streamlined
setup tailored to the specific needs of each software title, with exceptions noted for non-executable content.
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SBGrid software curators to capture the distinct dependencies

and environment requirements of the contained executables.

The curators use information from the application developer

to determine the environment requirements of the applica-

tion. The ED files often contain constructs that initiate the

environment based on conditionals such as the OS, application

version and dependencies. Dependencies are managed either

by including the dependency as part of the title or by including

it as a separate title. If the dependency is a separate title, the

relationship is defined in the ED file and is incorporated into

the Capsules via environment variables. For example, an ED

file could define a particular application version that requires a

specific version of Python, in which case the ED file would set

the SBGrid Python version variable, which would in turn be

used to set the PYTHONPATH and LD_LIBRARY_PATH.

These variable settings would only be accessible to the

application environment. Additionally, dependency informa-

tion in the ED files feeds the SBGrid installation process,

thereby guaranteeing that the required dependency titles are

installed.

Testing by the SBGrid curators is never complete given the

magnitude of options to execute applications and interconnect

them into unique workflows. The logic within each of the ED

files has been developed over many years, and gradually

refined with feedback from the SBGrid community. After the

SBGrid collection has been distributed to SBGrid users,

application errors may still occur, but they are usually quickly

reported/flagged and resolved by SBGrid curators, often in

coordination with software developers, and the updated

versions are distributed to users. Statistics from the first 45

days of 2024 reveal that the root cause of user-submitted

tickets predominantly involved dependency and version

compatibility (26.2%), followed by installation issues (15.4%)

and usage knowledge gaps (8%). The ED files persist

throughout the life of the applications, thereby ensuring that

the corresponding corrections, if applicable, are applied to

previous and future versions of the particular title. With

approximately 500 applications in each branch of the SBGrid

collection, SBGrid maintains one ED file per title or

approximately 1000 ED files between Linux and Mac OSs.

Additionally, these ED files are not specific to particular

versions of software titles but rather contain extensive logic

that supports all versions of each software title provided

through SBGrid.

With the ED files in place and before the SBGrid collection

is synchronized with all SBGrid member laboratories globally,

the SBGrid deployment scripts generate CR scripts and copy

them to a single distribution directory. The CR scripts are

generated for all executables in the SBGrid collection, but

they are derived from the title-specific ED files and are

virtually identical for all executables that map to a particular

title. Importantly, the CR scripts are not specific to a particular

version of the software titles. They contain the full version

logic included in the corresponding ED file and ultimately

execute version-specific executables when called by the end

user. Notably, the CR scripts provide immediate, zero-

configuration access to all software titles in the SBGrid

collection, allowing users to select and immediately execute

titles and versions of software as they navigate through the

complex landscape of structure determination.

The initiation of Capsules on systems that have the SBGrid

collection installed is a single-step process (Fig. 5). A user

simply executes the source command on an OS-agnostic

SBGrid startup configuration file (/programs/sbgrid.

[shrc|cshrc]). Bourne and C-shell versions of this file are

available to support widely used UNIX shell environments.
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Figure 5
Comprehensive illustration of the Capsules initiation and application
execution process on computers in SBGrid Consortium laboratories
(assuming that SBGrid has been already pre-installed with the SBGrid
installation manager). This figure showcases the streamlined, single-step
initiation method where users begin by executing an OS-agnostic SBGrid
Startup Configuration file, compatible with bash/zsh and tcsh for various
UNIX shell environments. Users can then incorporate a user-specific
configuration file (.sbgrid.conf) to fine-tune software versions and
preferences. Once the environment has been activated, users gain
immediate, zero-configuration access to an extensive collection of
executables, facilitated by the SBGrid Capsules Executable Mapper
(CEM), which efficiently resolves naming conflicts between executables
with identical names, ensuring smooth execution of the desired execu-
table. This process underscores the ease-of-use approach of the SBGrid
system to managing distributed computing resources.



The simplicity of accessing the SBGrid collection is important,

giving SBGrid users the ability to load and unload the SBGrid

environment on demand. This is particularly critical for new

users to support the transition time between their earlier

configuration and SBGrid. Initiating SBGrid environments

supersedes previous configurations; for example, variables

such as PATH and LD_LIBRARY_PATH are set to SBGrid-

specific values. However, the environment can always be reset

by initiating a new shell session.

After sourcing the SBGrid startup configuration file, users

can optionally include their custom user configuration file

(.sbgrid.conf). Within this file, users can define version

and title selection variables to further fine-tune the environ-

ment to their needs. The most widely used configuration

option is to lock a specific version of a software title. This

option is particularly useful for titles that are frequently

updated because users often wish to use just one software

version for the duration of the project, or may wish to resur-

rect a particular version to reproduce computations at a later

date.

Zero-configuration access to all SBGrid programs is facili-

tated through branch-specific executable directories, which

between the Linux and macOS branches contain 56 197 CR

scripts. Storing all executable scripts in a single location

bypasses the need to create an ever-expanding executable

PATH variable, which is limited to a theoretical value of 32 760

characters and is not adequate to support our growing SBGrid

collection. With the new Capsules environment, this constraint

is eliminated. The number of CR scripts per directory is

virtually unlimited (for example 264 under the XFS journaling

file system), and therefore users can easily access all execu-

tables in the ever-growing SBGrid collection.

CR scripts are called to run specific executables. CR script

mapping is possible because most executable programs in the

SBGrid collection have unique names and the executable

program calls map to the most recent version of a given

software title. Calling executable model_angelo, for

example, maps to the CR script model_angelo, which

executes the most recent version available for the user’s OS

and initializes the environment.

Given the size of the entire SBGrid collection, namespace

overlaps between individual executables do occur. Different

executables could originate from variations of the same

version of a given application that is packaged and optimized

by different developers, such as with Coot (Emsley et al.,

2010), which is available as a standalone title or bundled with

other software titles, such as CCP4 (Agirre et al., 2023) or

CCP-EM (Wood et al., 2015; Burnley et al., 2017). Executables

with the same name might also be different applications that

originate from different developers. For example, an execu-

table refine is distributed with BUSTER (Bricogne et al., 2023)

by Global Phasing, where it is used to refine macromolecular

coordinates against X-ray data, and a different refine is

distributed with the cryoEM application EMAN (Ludtke,

2010), where it is used to refine coordinates against cryoEM

data. Where two or more executables have the same name in

the SBGrid collection, the overlap is resolved by the Capsules

Executable Mapper (CEM; Fig. 5). CEM determines a list of

candidate titles that contain the requested executable. From

this candidate list, CEM eliminates titles based on the selec-

tion of the user, site, SBGrid’s default and ultimately directory

order.

2.3. Capsules Configuration Language: CCL

The Capsules Software Execution Environment leverages

an SBGrid-developed Capsules Configuration Language

(CCL). This language consists of 41 directives that correspond

to common shell programming paradigms and can be trans-

piled into shell configurations that are compatible with either

Bourne or C-style shells (Supplementary Table S2). The

original monolithic execution environment utilized RC files, a

widely adopted convention in Linux and Unix-like operating

systems referred to as ‘Run Commands’ (Pouzin, 1965), to

generate static shell configurations for shells such as tcsh and

bash. With the move to Capsules, the CCL transpiler was

extended to support the slightly different bash syntax used for

runtime evaluation.

The Capsules framework uses the CCL and ED files during

both installation and execution. CR scripts are generated

based on requirements defined by CCL directives in the ED

files. Capsules also read the CCL configurations from ED files

during execution, which allows them to dynamically configure

and customize the software environment on a per-executable

basis. This customization can include version logic, setting or

unsetting environment variables, adding custom command-

line arguments or even invoking other executables.

2.4. Transition to Capsules

The gradual transition from the original monolithic envir-

onment to Capsules began in April 2016. By August 2019,

Capsules were the default operational mode across the entire

consortium. The development of the Capsules paradigm was

structured to maintain backward compatibility with the

monolithic paradigm. It was important to deploy Capsules

with minimal interruption and with ongoing feedback from the

structural biology community. In the early phases of the

migration, access to Capsules was offered on an opt-in basis.

Users could elect to switch to Capsules by simply setting an

environment variable before sourcing the sbgrid.shrc or

sbgrid.cshrc file. Later, this process was replaced by a

small utility application, sbcap, which was utilized to turn the

new environment on and off. In operational contexts managed

by SBGrid personnel, particularly in training scenarios,

Capsules were used to elicit tangible feedback from real-world

applications. This strategy, bolstered by a wealth of empirical

data, has conclusively established the Capsules method as

the consortium’s definitive operational paradigm, effectively

replacing the traditional deployment methods for all users.

2.5. Capsules support reporting functionality

Capsules allow SBGrid to implement features beyond

addressing user-encountered challenges with application-

required environments. Perhaps most importantly, Capsules
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introduced support for software-application monitoring and

reporting capabilities. Capsules capture various anonymized

metrics for each SBGrid executable, which allow software

curators to monitor the aggregate use of individual software

titles and versions of executables as well as the runtime and

exit status of executables. The curators can also visualize the

aggregate distribution of computational environments that are

utilized by SBGrid users, including the breakdown between

Linux and macOS, as well as more specific information about

versions of the supported OSs (Fig. 6 and 7).

Access to the aggregate reports helps SBGrid to strategi-

cally prioritize software support. More effort is directed to

optimizing and rolling out new versions or software applica-

tions that are more widely utilized by the consortium.

SBGrid’s general policy is to default to the most recent

version of the application immediately after it is released to

the structural biology community. While SBGrid users have

the option to lock their configuration to earlier versions of

updated applications, Capsules reports reveal that most users

routinely advance to the new versions of software. This finding

demonstrates one of the major benefits of SBGrid, which is to

provide the structural biology community at large with almost

immediate access to rapidly advancing software technologies.

The Capsules reporting system also has the potential to

provide individual users, local system administrators and

software developers with access to usage data. Through the

local configuration options, users and local system adminis-

trators are able to capture usage within local users’ directories,

providing an electronic diary of project progressions. Software

developers might also request reports about the use of their

software applications to support their development efforts and

applications for funding support.

2.6. SBGrid installation manager and modular distribution

The entire SBGrid collection, together with the corre-

sponding ED (Environment Definition) files, CR (Capsules

Runtime) scripts and the CEM (Capsules Execution Mapper),

continues to be distributed to the SBGrid consortium

laboratories through the SBGrid sync system (Morin et al.,

2013). Sync effectively pushes the SBGrid collection to file

servers at member institutions, which typically then provide

access over the Network File System (NFS) to Linux and Mac

computers in SBGrid-affiliated laboratories. Between all of

the monthly upgrades and additional unscheduled patching to

all 104 sites, the rsync process pushes out on average 30 TB

per month across all of the SBGrid sites, or 290 GB per site.

This includes all SBGrid pre-compiled software and supported

libraries, but would typically exclude tarballs, compressed files

and any other code that is not supportive of immediate

execution. The installation system typically runs on a regularly

scheduled basis and can upgrade local installations whenever

new changes on the SBGrid server are put into place. The

entire process is completely transparent to the end users. No

additional steps are required to run the software.

Over the past few years, a new more personalized approach

to software installations has been introduced in the form of

our SBGrid installation manager. This graphical user interface

application (Fig. 8) resides on members’ computers and allows

users to pick and choose individual software titles for
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Figure 6
Capsules logging of local and global application usage. The composite figure of two pie charts illustrates the distribution of host operating systems
running SBGrid jobs in January 2024 on on-premises and cloud-based computers supporting the SBGrid Consortium laboratories. It shows operating
systems with shares over 1% and an aggregate ‘Others’ category that accounts for operating systems each under 1%. (a) The pie chart illustrates the
percentage of user-hosting operating systems, filtered by unique hosts, running approximately four million SBGrid jobs in January 2024. (b) The pie chart
shows OS usage by jobs running a molecular-visualization application in January 2024. The log analytics reveal that more users run the molecular-
visualization application on Mac than on Linux. Notably, CentOS-7 maintains the second-largest share in both (a) and (b) despite its declining usage
following the announcement that it will reach end of life (EOL) in June 2024, reflecting its prior prominence in high-performance computing and
scientific computing environments due to its long-term stability.



installation. The SBGrid installation manager has a similar

look and feel to the software listing on the SBGrid website.

Users can browse the SBGrid collection, select individual

versions for installation and perform updates of previously

installed software titles. It relies on personal credentials that

are associated with the user’s laboratory, thus ensuring access

to a selection of software titles appropriate to their institution

type. Site administrators and advanced users can also benefit

from the extensive command-line interface, which incorpo-

rates and expands on functionalities offered through the sync
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Figure 7
Monthly usage metrics for the same molecular-visualization title as reported in Fig. 6(b). This figure charts the usage of a molecular-visualization
application from January 2023 to January 2024. It shows the number of application versions used, including minor releases, and the number of unique
host OSs on which the application runs. These data points are plotted on the left y axis as solid lines. On the right y axis, the figure displays the monthly
count of sites and users engaging with the application, indicated by dashed lines.

Figure 8
The SBGrid installation manager provides an intuitive and user-friendly interface that serves as the primary platform for both individual users and
system administrators to manage SBGrid software. An efficient, secure and scalable tool for installation and maintenance tasks, it supports a variety of
functions, including the activation of new installations with provided credentials, diagnostics and installing and updating, as well as removing, software.



method. Moreover, support for software installation over

HTTPS provides encryption in transit and enables sites that

block non-HTTP ports by default.

Use of the SBGrid installation manager has rapidly

expanded over the last few years, with 3752 installations

currently supported. This new modular approach to software

synchronization streamlines the task of software management

to support the diverse range of license configurations and

tailored installation types required to meet the needs of

SBGrid laboratories. The modularity ensures that the SBGrid

deployment is capable of accommodating a repository of

thousands of software titles and versions while also offering

the flexibility to install small subsets of applications. It is

therefore particularly suited to meet the requirements of

individual users.

2.7. MultiGrid: scale-up to other domains

The software titles in the SBGrid collection are typically

limited to applications that directly or indirectly support the

unique needs of structural biology experimentalists. However,

laboratories that primarily utilize NMR, X-ray crystallography

and cryoEM in their research routinely venture to other fields

of computational biology. In those cases, they typically prefer

to reuse the existing CPU and GPU resources for computing

and the familiar SBGrid platform for software access.

To support this emerging need, we recently developed the

BioGrids collection, a separate collection of scientific software

more broadly focused on computational biology that has

rapidly expanded to over 700 titles. Providing support to

parallel scientific domains in a single software tree necessi-

tated the extension of Capsules and the development of

multigrid functionality. Using the grid membership CCL

directive setGrid, a single software title can be assigned to any

number of defined grids. The tools that operate on the ED files

were also extended to create parallel environments for all of

the defined grids. While there are only two grids supported at

this time, the enhancement was designed to allow for any

number of grids. The decision to extend rather than duplicate

SBGrid is advantageous because a software package relevant

to multiple grids is only installed once in the general build-

and-test environment and only one ED file is needed. Adding

or removing an application from a grid is performed with a

simple edit of the application.rc file. Using this system,

applications that are relevant to multiple domains are curated

once, and for sites with multiple collections installed one

software tree supplies both grids. End users can select a grid

easily by accessing the appropriate startup environment, and

switching grids is a simple environment change.

3. Discussion

In this manuscript, we have presented the new Capsules

system developed by our team, tailored specifically for struc-

tural biology. This system enhances the management and

distribution of software within the SBGrid collection. It

promotes access to essential computational tools across a

diverse range of computational resources and contributes

meaningfully to the dissemination of knowledge and tools,

improving the accessibility and usability of computational

resources in research. The adoption of Capsules over the

previous SBGrid monolithic shell environment model marks

an advancement in software management, addressing chal-

lenges with the scalability and complexity of large collections

of scientific software. The Capsules technology enables SBGrid

to support installations that range from a single application to

hundreds of applications with multiple versions in a distrib-

uted, conflict-free environment. By isolating the runtime

environments of individual applications, our method simplifies

application use and effectively addresses the environment-

and version-specific conflicts that were prevalent in the

monolithic model.

As it is for other disciplines, software is essential for modern

structural biology research. The FAIR principles (Findable,

Accessible, Interoperable and Reusable; Wilkinson et al.,

2016), and their current adaptation into FAIR4RS (Barker et

al., 2022), can serve as an impetus to treat scientific software as

scholarly objects in their own right and to advance research

effectiveness. The Capsules environment has a foundational

role in the SBGrid technology stack in implementing these

principles. The ‘Findable’ principle is addressed through the

SBGrid website that serves pages to human visitors. When

community standards for machine-readable metadata become

available, this information can be added to software ‘landing

pages’, similar to the way that data-set pages were added to

the SBGrid Data Bank. The ‘Accessible’ principle is addressed

by the SBGrid installation manager, which was developed

specifically to make software in the SBGrid collection acces-

sible to consortium members broadly. Although archived

software versions are no longer provided by SBGrid and are

not immediately accessible, SBGrid software curators can

reinstall them upon request. The Capsules environment

supports the ‘Interoperable’ principle by allowing the incor-

poration of different software components into scientific

workflows or pipelines and by isolating and controlling

dependencies; however, support for community-standard file

formats and APIs (application programming interfaces)

remains the domain of application developers. The principle

of ‘Reusability’ is illustrated in the Capsules environment and

its capacity to allow software installation and usage on systems

other than those on which it was developed, with minimal

effort from researchers.

Security of software is increasingly critical in the face of

sophisticated cybersecurity threats that have impacts on

educational and research institutions. Ransomware attacks on

institutions like that on the UCSF School of Medicine, which

resulted in a substantial ransom payment to regain access to

encrypted files (Tidy, 2020), underscore the direct threats to

academic research integrity and data security. The increasing

prevalence of ransomware-as-a-service further complicates

the cybersecurity landscape, making robust software security

measures an essential component of any education and

research computational infrastructure (Government Account-

ability Office, 2021; Koomson, 2021). Two basic factors of the
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current Capsules implementation are relevant to security: (i)

all titles and dependencies are installed outside the context of

the base OS, so vulnerability present in the SBGrid collection

would not impact system services (for example, if the recent

XZ CVE-2024-3094 had been present in the SBGrid collec-

tion, it would not have resulted in a vulnerable SSHD service),

and (ii) all titles are tested, and known to work, when run

under an account without elevated system permissions or

privileges. Although Capsules were not initially designed to

address security concerns, the self-contained execution envir-

onment designed for reliable and reproducible research

computing could be used as an entry point to enhance the

security of scientific computations. OS-level application-

sandboxing technologies allow sub-account-level execution

restrictions (for example, allowing read/write access to a

processing directory but blocking read access to other areas of

a user’s home directory and arbitrary network access). Tools

for sandboxing can be complex to configure, and require

detailed knowledge of how a program behaves during normal

operation; future development of the Capsules environment

could allow end users to run in the context of a sandbox

determined during software curation. Although it would

require additional infrastructure and development, the

Capsules environment could also perform out-of-band verifi-

cation of pre-calculated code signatures, blocking the execu-

tion of modified software.

The ability of Capsules to capture anonymized and aggre-

gate information about software use can support efforts

aiming to improve the research-software ecosystem. SBGrid

already uses aggregate software-utilization information to

prioritize software updates, elevate popular titles and effec-

tively manage the retirement of unused applications or

outdated versions. These detailed insights into application

usage patterns also inform the SBGrid team and facilitate

the development of customized educational content such as

webinars, workshops and seminars that evolve with the

changing needs and preferences of the scientific community.

These global software usage metrics are also available to

contributing software developers upon request and could

support future refinement of tools to address real-world usage.

Looking ahead, the possibility of capturing the provenance of

software execution for completed projects, in alignment with

features implemented in software suites such as CCP4 (Agirre

et al., 2023) and Phenix (Liebschner et al., 2019), addresses

the ongoing crisis in reproducible research and positions

Capsules as a viable solution in enhancing scientific rigor,

offering one challenging but potentially impactful develop-

ment opportunity.

Taken together, Capsules are now an integral part of the

SBGrid platform, supporting streamlined access to the

research-software ecosystem within the SBGrid collection in a

range of computational environments. Initially developed for

the discipline of structural biology, the development of the

BioGrids collection demonstrates the generalizability of this

approach. The versatility of Capsules allows their adoption

across different scientific domains, potentially transforming

software management and accelerating scientific research on a

much larger scale. This expansion could influence how

biomedical research is conducted, offering tailored solutions

that meet the specific needs of various disciplines.
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