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The detection of specific biological macromolecules in cryogenic electron

tomography data is frequently approached by applying cross-correlation-based

3D template matching. To reduce computational cost and noise, high binning is

used to aggregate voxels before template matching. This remains a prevalent

practice in both practical applications and methods development. Here, the

relation between template size, shape and angular sampling is systematically

evaluated to identify ribosomes in a ground-truth annotated data set. It is shown

that at the commonly used binning, a detailed subtomogram average, a sphere

and a heart emoji result in near-identical performance. These findings indicate

that with current template-matching practices macromolecules can only be

detected with high precision if their shape and size are sufficiently different from

the background. Using theoretical considerations, the experimental results are

rationalized and it is discussed why primarily low-frequency information

remains at high binning and that template matching fails to be accurate because

similarly shaped and sized macromolecules have similar low-frequency spectra.

These challenges are discussed and potential enhancements for future template-

matching methodologies are proposed.

1. Introduction

Cellular cryogenic electron tomography (cryo-ET) has

emerged as a key method to unravel the structural and spatial

complexity of the cell. The 3D volume of a cellular region,

called a tomogram, is reconstructed from 2D projection

images acquired using a transmission electron microscope in

many different orientations (Pyle & Zanetti, 2021; Volkmann,

2010). Macromolecular complexes can be identified in the

tomogram, their spatial arrangement can be analyzed in the

native environment, and their structure can potentially be

determined to near-atomic resolution by subtomogram aver-

aging (Mahamid et al., 2016; Pfeffer et al., 2017; Wilfling et al.,

2020; Lučić et al., 2013; Xue et al., 2022; Hoffmann et al., 2022).

However, the identification of individual macromolecules

in tomograms is challenging due to the missing wedge, which

results from limitations on the possible tilt angles of the

specimen, a low signal-to-noise ratio due to the use of low

electron doses during acquisitions, and the crowded cellular

environment of the cell. Because of these complications,

segmentation and subsequent analysis of tomograms is still a

difficult task and a major bottleneck for fully automated high-

throughput analysis of large cryo-ET data sets (Lučić et al.,

2013; Pyle & Zanetti, 2021; Wu et al., 2019; de Teresa-Trueba et

al., 2023).

A commonly used approach to identify macromolecules

within tomograms is so-called template matching, in which a

reference density of a macromolecule is used to localize the
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corresponding candidate positions within the tomogram

(Frangakis et al., 2002; Böhm et al., 2000). To date, various

packages have been developed to perform template matching,

such as PyTom (Hrabe et al., 2012), STOPGAP (Wan et al.,

2020, 2024), EMAN2 (Tang et al., 2007), DYNAMO (Castaño-

Dı́ez et al., 2012) and pyTME (Maurer et al., 2024). All of these

packages use cross-correlation-based scoring metrics to iden-

tify macromolecules in tomograms (see Section 3.4). The

templates used for template matching range from simple

shapes such as spheres, cylinders and rectangles, which have

previously been used to detect various cellular structures

(Engel et al., 2015; Cai et al., 2018; Nickell et al., 2007; Lebbink

et al., 2007), to detailed maps obtained from experiments or

generated from atomic structures (Frangakis et al., 2002; Beck

et al., 2009; Kühner et al., 2009). A common use case is the

ribosome, which is abundantly found in tomograms and can

often be identified by eye due to its size. However, even for a

particle as large as the ribosome, template matching has

suboptimal precision (Zhang et al., 2023; de Teresa-Trueba et

al., 2023). For smaller or less abundant macromolecules, the

method often fares even worse and requires manual curation.

These points raise the question of what the requirements and

limitations are for the reliable use of template matching for

macromolecules in in situ cryo-ET.

Although tomograms are usually collected at �2 Å per

voxel, they are typically binned 4–8 times to a coarse voxel size

in order to improve the computational efficiency and signal-

to-noise ratio (de Teresa-Trueba et al., 2023; Xue et al., 2022;

Engel et al., 2015; Cai et al., 2018; Frangakis et al., 2002;

Chaillet et al., 2023; Wan et al., 2024; Rice et al., 2023; Genthe

et al., 2023; Hoffmann et al., 2022). However, binning removes

high-frequency information from the tomogram and makes it

difficult to distinguish macromolecules if the differences in the

low-frequency components are not sufficiently large (Böhm et

al., 2000). Therefore, template matching under such settings is

prone to have low precision, and manual curation or other

means of refinement are required to improve the results. The

issue of low precision has been hinted at previously, and one

suggested solution is template matching in 2D (Lucas et al.,

2021; Rickgauer et al., 2017). However, to our knowledge

there has been no published study that systematically explores

how the choice of an exact template, its size and the degree of

angular sampling affect in situ template-matching results.

Here, we investigate the pitfalls of 3D template matching

with the commonly used four-times binned tomograms and

rationalize the observed issues. We assess the precision of

detecting ribosomes in a previously annotated tomogram by

de Teresa-Trueba et al. (2023) using a detailed subtomogram

average of a ribosome, a sphere, a heart emoji and a structure

of hemagglutinin at different sizes as templates. We find that at

this binning the size and approximate shape are the major

determinants of precision, and the exact template choice or

angular sampling has little impact on the template-matching

results. We then rationalize these observations theoretically by

inspecting the Fourier transforms of simple geometric shapes

and show that when low-frequency components dominate in

the tomogram, similarly sized and shaped templates result

in nearly identical template-matching precision. Finally, we

discuss the implications of these results for the development

and benchmarking of template-matching algorithms as well

as requirements for data processing. A further aim of our

analysis is to guide optimal experimental design in practical

applications and the development of new template-matching

methods.

2. Methods

All template-matching experiments were performed using

PyTom (Hrabe et al., 2012; version 1.0) and cross-validated

using pyTME (Maurer et al., 2024; version 0.1.7) on an

annotated reconstructed 3D tomogram (EMPIAR-10988,

TS_037; Iudin et al., 2022) reported by de Teresa-Trueba et al.

(2023). For this sample tomogram, 1646 ribosomal and 22

fatty-acid synthase (FAS) positions were previously identified

using PyTom (Hrabe et al., 2012) and subsequently manually

refined by an expert user. Template matching was performed

for four different template classes that were provided at

varying sizes, as shown in Fig. 1. Firstly, a previously reported

3D map of the Saccharomyces cerevisiae 80S ribosome

(EMDB entry EMD-3228; Bharat & Scheres, 2016) was used

as a baseline reference (Fig. 1a). Secondly, a sphere with

varying radius r (1� r < 20) and homogenous density (Fig. 1b)

was used. The third template was the heart emoji from the

Apple Color Emoji font. The 2D bytemap was converted to a

volume with homogenous density by axial symmetrization

sampling 360 equidistant angles and was subsequently blurred

using a Gaussian filter (scipy.ndimage.gaussian_filter, version

1.11.1) with � = 1 (Fig. 1c). The heart emoji was scaled from

the initial 160 � 160 bytemap to 20 � 20 using linear spline

interpolation. As an additional control template with a clearly

distinct shape, a structural model of the hemagglutinin trimer

was used. The atomic structure was obtained by modeling with

AlphaFold2-multimer (Jumper et al., 2021) using the A/Hong

Kong/1/1968 H3N2 strain. The default parameters were used,

with the exception of the number of refinement cycles being

increased to 6. The best model was chosen based on the lowest

overall predicted aligned error. All templates were placed in

the center of a cubic volume with an edge length of 51 voxels

and a voxel size of 13.48 Å, corresponding to the voxel size of

the used tomogram. The 3D ribosome map and atomic

structure were resampled from their respective grids to match

the sampling rate of the tomogram (Supplementary Fig. S1a).

The template contained in each of the four created volumes

was assigned a radius of 10, which is approximately equal to

the radius of their respective bounding spheres. We simulated

different radii of each template by resampling these initial

volumes to a sampling rate computed as (10 � 13.48)/radius,

i.e. a radius of 11 voxels corresponds to 1.1 times the voxel size

of the tomogram and results in a 10% larger template.

Although principally arbitrary, the factor of 10 was chosen

because it is the radius of the bounding sphere of the ribosome

at the considered voxel size, i.e. at a radius of 10 the ribosome

map should exactly represent ribosomes in the tomogram. The

sphere template was not obtained by resampling but instead
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was created directly using the respective radius. The 3D map

or structure was not directly sampled on grids of varying voxel

sizes to avoid introducing additional detail for higher radii.

As a mask, a sphere with a radius two voxels larger than the

template radius was used, which is in good concordance with

the 337 Å diameter mask used by de Teresa-Trueba et al.

(2023). The tilt series underlying the tomogram used here was

acquired using tilt angles from � 50� to 50�, which corresponds

to a 40� wedge angle in the PyTom convention (de Teresa-

Trueba et al., 2023; Hrabe et al., 2012). PyTom was instructed

to generate a binary wedge mask based on this specification,

which is applied to the Fourier transform of the template after

each rotation, in order to introduce a missing wedge analogous

to the tomogram in the template. PyTom samples translations

exhaustively (see equation 2) and rotational degrees of

freedom uniformly with a given sampling rate using a pre-

defined set of rotations. When performing template matching,

the template is rotated, translations are sampled exhaustively

and high scores are retained. This is repeated for all rotations

in the set. PyTom outputs a score for each translation and

the corresponding sampled rotation of the template used to

acquire that score. pyTME uses the same overall approach.

For the spheres 90� (two angles) was sampled, and for the

other templates 25.25� (980 angles), 19.95� (1944 angles) and

11� (15 192 angles) were sampled, which correspond to

the angle lists angles_90_2, angles_25.25_980,

angles_19.95.25_1944 and angles_11_15192 that

are shipped with PyTom (Hrabe et al., 2012). The rotational

sampling rate of 11� is in excess of what has typically been

used for template matching in previous work (de Teresa-

Trueba et al., 2023; Hrabe et al., 2012; Pfeffer et al., 2012).

PyTom was run assuming a spherical mask, using a bandpass

filter with low-frequency and high-frequency cutoffs of 3 and

15, respectively, splitting the tomogram into three parts along

each axis and performing no further binning. The results were

cross-validated using pyTME, which can perform template

matching using a similar formulation of the cross-correlation

score (Maurer et al., 2024). pyTME was run on the same data,

with the difference that no bandpass filter and no wedge mask

were applied prior to template matching. 4000 peaks were
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Figure 1
Template classes used to match the ribosome in the previously annotated tomogram from de Teresa-Trueba et al. (2023). Different shapes with different
radii sampled at a 13.8 Å voxel size, to match the voxel size of the tomogram, were used as templates for template matching with PyTom. Specifically, the
map of the 80S ribosome (a) (EMDB entry EMD-3228), a sphere (b) and a rotationally symmetrized heart emoji (c) were used. The used radii range
from 1 to 19 voxels in one-voxel increments. Only three representative radii are shown.



called on the scores obtained from PyTom and pyTME using

skimage.feature.peak_local_max (version 0.21.0), with a

minimal allowed Euclidean distance separating peaks of 10

and a 15-voxel exclusion volume around the boundaries of the

tomogram. Subsequently, peaks were ordered by their score in

decreasing order. The precision and recall were analyzed at

decreasing score thresholds up to 4000 top-scoring peaks.

3. Results and discussion

3.1. Shape and size are the major determinants for template-

matching precision

To assess how sensitive template matching is in situ to the

specific shape and size of a template, we used PyTom (Hrabe

et al., 2012) to perform template matching with four different

templates on a four-times binned tomogram with a voxel size

of 13.48 Å reported by de Teresa-Trueba et al. (2023). This

is comparable to the voxel sizes typically used in many

previously published template-matching studies (de Teresa-

Trueba et al., 2023; Wan et al., 2024; Xue et al., 2022; Engel et

al., 2015; Cai et al., 2018; Frangakis et al., 2002; Chaillet et al.,

2023; Rice et al., 2023; Hoffmann et al., 2022). We also used

pyTME (Maurer et al., 2024) to independently cross-validate

these results. The tomogram contained 1646 ribosomes and

22 FAS particles, which were annotated by the authors using

template matching and manual curation. We consider their

annotation as a robust ground truth. As per de Teresa-Trueba

et al. (2023), we used an 80S ribosome (Bharat & Scheres,

2016) map as the initial template and scaled its radius to see

how size affects template-matching performance (Fig. 1a). We

also tested spheres and an irregularly shaped heart emoji at

various radii (Figs. 1b and 1c) to check whether the exact

properties of the template are relevant at this binning to

achieve high precision in template matching and also

compared a variety of angular sampling rates. Spheres have

already successfully been used in practice to identify

RuBisCO (Engel et al., 2015), and other basic shapes such as

cylinders for nucleosomes (Cai et al., 2018) or the proteasome

(Nickell et al., 2007) and rectangles for membranes (Lebbink

et al., 2007). However, a side-by-side comparison has been

lacking to date. Therefore, we compared the template-

matching results for the different templates and scaled radii

and angular samplings based on precision [precision = TP/(TP

+ FP)] and recall [recall = TP/(TP + FN)], where TP, FP and

FN correspond to the number of true positives, false positives

and false negatives, respectively (Fig. 2). The picked particles

were chosen from a sorted list of all scores in descending

order.

Firstly, we compared the recall across the different

templates and with different radii calculated with respect to

the number of picked particles (Fig. 2a). Overall, the perfor-

mance of up to 4000 top-scoring picks across the templates was

comparable, with a maximal recall of around 40–50%. The

recall was optimal across templates for radii close to 10 and

decreased for smaller or larger radii. Since ribosomes in the

tomogram have a radius of 10, i.e. their bounding sphere has

an approximate radius of 10, these results indicated that all

templates are capable of matching ribosomes if scaled to the

correct radii. Hence, at the voxel size of 13.48 Å used here, a

realistic S. cerevisiae ribosome map (EMDB entry EMD-3228;

Bharat & Scheres, 2016) performs no better than a sphere or

an emoji of similar size on the same data set. Furthermore,

given the shape of the curves, it appears unlikely that the

remaining ribosomes could be recovered at reasonable

precision. Given that no template recapitulated the ground-

truth particle set beyond a recall of 50%, it becomes ques-

tionable whether using improved experimental or predicted

structures as templates will be sufficient to identify small

proteins or low-abundance proteins in cryo-ET data at this

binning. This is further substantiated by ribosomes already

requiring manual curation (de Teresa-Trueba et al., 2023). The

remaining high-scoring picks are likely to correspond to other

particles or features of similar shape and size.

Similarly, the precision for the different templates peaked at

around �750 picked particles independently of the template

choice but not the template radius (Fig. 2b). Picking more than

750 particles improved the overall recall but led to a dispro-

portionate identification of false positives, thus reducing the

overall precision. We observed this behavior consistently for

all templates, and there was little differentiation between the

correct ribosome template and the sphere or emoji template.

The precision values observed here are in line with the 19%

reported by de Teresa-Trueba et al. (2023) for all ten defocus

tomograms. The observed curve shapes could be explained by

the existence of distinct ribosome populations that differ in

their ability to be identified by template matching. While

optimal results are achieved using templates that recapitulate

the size of the ribosome, a subset of annotated ribosomes

appears to exist that can be identified with incorrect radii.

To further confirm this finding, we also ran control experi-

ments using an Influenza A virus hemagglutinin (HA)

template, which has a markedly different shape to a ribosome

(Supplementary Fig. S1a). HA is a trimer with a total mole-

cular weight of 180 kDa that has an approximately cylindrical

shape with a length of �17 nm and a width of �6 nm. We

scaled the radius analogous to the previous structures and

calculated the precision with respect to the ground-truth data.

The precision was near 0% for sizes up to 10 voxels, and only

for larger radii did the precision increase as the structure

further approaches the shape and size of the ribosome

(Supplementary Fig. S1b). This further underscores the

observation that at this level of binning, template matching is

less dependent on the structure and overall focuses on shape

and size.

When comparing the different template radii, we observed

that the radius, not the chosen template, had the largest effect

on the overall precision (Figs. 2b and 3). The template-

matching precision at 4000 picks was maximal at around 10–11

voxels, which is in line with the size of ribosomes contained in

the tomogram. Templates smaller than a radius of 10 voxels

performed considerably worse. This is likely due to the

presence of noise or additional macromolecules that are

smaller than the ribosomes but are composed of comparable
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density. This is in line with the fact that many studies perform

template matching with large macromolecules including, but

not limited to, ribosomes (de Teresa-Trueba et al., 2023;

Pfeffer et al., 2012; Hrabe et al., 2012; Chaillet et al., 2023;

Cruz-León et al., 2023), proteasomes (Frangakis et al., 2002;

Nickell et al., 2007), thermosomes (Frangakis et al., 2002) and

RuBisCO (Engel et al., 2015). We also note that these results

were independent of the software used, as PyTom and pyTME

resulted in near-identical precision (Fig. 3).

3.2. Angular sampling does not improve precision

We also tested the effect of varying angular sampling on the

result to ensure that undersampling did not affect the results

(Fig. 3). A higher angular sampling with 15 192 angles,

compared with the 1944 angles used above, did not signifi-

cantly change the differentiation between the shapes and only

increased the precision by approximately 3%. This indicates

that while for purified, in vitro samples (Chaillet et al., 2023)

higher angular sampling improves the results at a 13 Å voxel

size, in situ samples do not benefit from higher angular

sampling to the same extent. In this case, an increase in

precision by 5% does not warrant the use of approximately

15 times more computational resources. This is also to be

expected since the cross-correlation score does not scale

exponentially, and subtle increases in the score do not

necessarily increase the differentiation from similar-sized and

similar-shaped objects in the in situ sample.

We also cross-validated these results with pyTME (Maurer

et al., 2024) to ensure that software-specific implementation

details did not affect this result. The results from both

packages were near-identical across all sampled conditions.
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Figure 2
Template-matching performance using three distinct template classes scaled to different radii (see Fig. 1). Radius scaling was performed by resampling
each template to 10 � (radius)� 1 times the sampling rate of the tomogram, starting from an initial template with an assigned radius of 10 and the same
sampling rate as the tomogram (see Section 2). (a) Ribosome-picking recall by the number of picked particles. We used linear sum assignment to achieve
an optimal one-to-one mapping between ground-truth and picked particles. A particle is considered to be correctly picked if it is within a five-voxel
distance of its assigned ground-truth particle. Consequently, all particles without assignment to ground-truth particles were considered to be false
positives. All 4000 picked particles were considered in the following figures. (b) As in (a) but showing precision instead of recall.



Based on these findings, we suggest initially filtering

candidate positions with low angular sampling, potentially

even using a simple shape-based template of appropriate size,

and sampling the same positions at a lower binning or

removing false-positive hits through classification with other

tools such as RELION (Kimanius et al., 2016). Such workflows

have previously been proposed in packages such as nextPyP

(Liu et al., 2023), TomoBEAR (Balyschew et al., 2023) and

Dynamo (Castaño-Dı́ez et al., 2017). Specifically, in this case

using a spherical template is computationally most efficient

because it is rotationally invariant and thus yields the best

time to solution as it can be run without any angular sampling.

3.3. Ribosome and fatty-acid synthase are not discernible

with conventional template matching

Finally, we assessed whether by using the ribosome, sphere

and emoji templates at different radii, we could pick the FAS

protein complex, which has a shape that differs substantially

from that of the ribosome but has a similar size. Although the
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Figure 3
Proportion of true positives out of all picked particles (precision) by radius of templates. Template-matching results obtained with PyTom are shown in
the left column and those obtained with pyTME are on the right. In each row, the sampled number of angles is shown: namely, 980, 1944 and 15 192. 4000
picks were considered when determining the precision.



number of annotated FAS in the particular tomogram is only

22, FAS particles are among the 4000 highest scoring picks

across templates and radii (Fig. 4). Although the low number

of annotated FAS impedes quantitative claims, the trends are

clear. For a sphere, as many as 40% of FAS are recovered, and

even with the ribosome as a template more than 45% of

annotated FAS instances are recovered. This finding further

highlights that molecular details play a minor role in template

matching at our voxel size of 13.48 Å. In our case FAS and

ribosomes are similarly sized, resulting in fairly similar scores

and thus poor differentiation between the two. Generally, this

indicates that low-abundance proteins cannot practically be

identified with sufficient precision if many other macro-

molecules of similar size are present.

3.4. Theory

We now aim to rationalize our empirical observations by

examining the analytical form of the Fourier transforms of

several geometric shapes and discussing them in the context

of cross-correlation calculation. Based on our assessment, we

conclude that template matching on the typically used 4–8

times binning is primarily driven by shape and size and list the

associated implications.

Most template-matching programs, including PyTom

(Hrabe et al., 2012) and pyTME (Maurer et al., 2024), use the

cross-correlation theorem to determine the similarity between

a target f and a template g at a given translation n,

ðf ? gÞ½n� ¼
P1

m¼� 1

f ½m�g½n þm�; ð1Þ

where ? is the correlation operator. Cross-correlation is the

sum of the element-wise product of the template and the

target, subject to implementation-specific normalization

procedures. In practice, this procedure is repeated for a set of

rotations of the template.

The computational complexity of the cross-correlation

operation on two identical cubes with edge length N is OðN6Þ,

but in practice template-matching tools reduce the complexity

to O½N3 logðN3Þ�. This is achieved by expressing the cross-

correlation in the spatial domain as multiplication in the

Fourier domain through the cross-correlation theorem,

ðf ? gÞðtÞ ¼ F � 1fF ½f ðtÞ� � F ½gðtÞ�
�
g; ð2Þ

where F and F� 1 denote the forward and inverse Fourier

transform and * denotes the complex conjugate. To build some

intuition on how this impacts template matching, let us

consider the case g(t) = f(t � n), where g differs from f only by

a translation n,

F½gðtÞ� ¼
R1

� 1

f ðt � nÞ expð� i2�ktÞ dt

¼
R1

� 1

f ðt0Þ exp½� i2�kðt0 þ nÞ� dt0

¼ F½f ðtÞ� expð� i2�knÞ; ð3Þ

where k is the wavenumber in the Fourier domain and t is the

position vector in the real domain. From this, it becomes

apparent that a shift in the spatial domain corresponds to a

frequency-dependent phase shift in the Fourier domain. Since

|exp(� i2�kn)| = 1, the magnitude of the Fourier transform is

independent of the phase shift. The cross-correlation in the

real domain can be obtained by inverse Fourier transform of

the element-wise product of amplitudes A and the sum of

phases  ,

F� 1fF ½f � � F ½g�
�
g ¼ F � 1½Af expði�f Þ � Ag expð� i�gÞ�

¼ F � 1fAf Ag � ½cosð�f � �gÞ þ i sinð�f � �gÞ�g

¼ F � 1fA � ½cosð Þ þ i sinð Þ�g: ð4Þ

The maximum attainable cross-correlation score depends on

A, while  contains the mapping between translation and
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Figure 4
Template-matching performance on the FAS complex using three distinct templates. Picked particles were one-to-one assigned to the union of ground-
truth FAS and ribosome coordinates using linear sum assignment. Each particle is assigned to no more than one class and is considered to correctly pick
that class if it is within a five-voxel distance of its assigned ground-truth particle.



realized score. As per equation (3),  = � 2�kn, which results

in a score A at translation n.

Above, we considered the ideal case in which the template

is a shifted version of the target. In practice, this rarely holds

and the template rather approximates the amplitude and

phase spectrum of the target sufficiently well. Therefore,

previous research has seen the use of geometric shapes for

template matching, such as spheres for localization of ribo-

somes or RuBisCO (Engel et al., 2015), cylinders for nucleo-

somes (Cai et al., 2018) or proteasomes (Nickell et al., 2007),

and rectangles for membranes (Lebbink et al., 2007). Intui-

tively, geometric shapes can be used for template matching if

they approximate the structure of interest sufficiently well in

the given data. However, why this is the case has not been

shown explicitly. We aim to do so in the following and start

by deriving the Fourier transforms of the aforementioned

geometric shapes.

A sphere of radius R centered around the origin can be

defined in real space as

f ðrÞ ¼
1 if r � R

0 otherwise

n
: ð5Þ

Here, r represents the magnitude of the position vector, i.e. the

Euclidean distance from the origin. All points with a distance

less than or equal to R are occupied by the sphere. Since the

sphere is a real symmetric function, its Fourier transform is

also real and follows as (Friedman, 1997)

F½f �ðkÞ ¼
R1

� 1

d3r expð� i2�k � rÞf ðrÞ

¼
R2�

0

d’
R1

� 1

d cos �
RR

0

drr2 expð� i2�kr cos �Þ

¼
RR

0

drr2 2�

i2�kr
½expð� i2�krÞ � expði2�krÞ�

¼
2�

�k

RR

0

drr sinð2�krÞ

¼
2�

ð2�Þ
2
�k

sinð2�krÞ

k2
�

2�R cosð2�kRÞ

k

� �

¼ 4�R3 sinð2�krÞ � 2�kR cosð2�kRÞ

ð2�kRÞ
3

� �

¼ 4�R3 j1ð2�kRÞ

2�kR
; ð6Þ

where j1(x) is the spherical Bessel function of first kind and

order defined as

j1ðxÞ ¼
sinðxÞ � x cosðxÞ

x2
: ð7Þ

A one-dimensional rectangle, i.e. a box function, can be

defined in real space as

gðrÞ ¼ 1 if �
w

2
� r �

w

2
0 otherwise

�

; ð8Þ

where w is the width of the box function. The Fourier trans-

form of the one-dimensional box function g(r) is

F½g�ðkÞ ¼
R1

� 1

gðrÞ expð� i2�k � rÞ dr

¼
Rw=2

� w=2

expð� i2�krÞ dr

¼
1

�k
�

expð� �ikwÞ � expð�ikwÞ

� 2i

¼ w �
sinð�kwÞ

�kw

¼ w � sincð�kwÞ: ð9Þ

The definition of the box-function Fourier transform can be

used to synthesize the Fourier transform of three-dimensional

rectangles with width a, b and c as

F½g�ðkÞ ¼ a � sincð�akxÞ � b � sincð�bkyÞ � c � sincð�ckzÞ; ð10Þ

where kx, ky and kz are the wavenumbers corresponding to the

spatial dimensions x, y and z, respectively.

The cylinder is essentially a combination of a circle and a

box function and can be defined as

f ðr; zÞ ¼ 1 for r � R and jzj �
h

2
,

0 otherwise

(

: ð11Þ

where R is the radius of the circle and h is the width of the box

function. We can make use of the cylindrical symmetry and the

separability of the Fourier transform to derive the closed form

of the cylinder Fourier transform as follows:

F½f �ðkr; kzÞ ¼
R2�

0

RR

0

R
h
2

� h
2

exp½� i2�ðkrr cos � þ kzzÞ� dr r dz d�

¼
R2�

0

RR

0

exp½� i2�ðkrr cos �Þ� dr r d�

�
R

h
2

� h
2

expð� i2�kzzÞ dz

¼ 2�
RR

0

j0ð2�krrÞ dr r
R

h
2

� h
2

expð� i2�kzzÞ dz

¼
R

kr

j1ð2�krRÞ h sincð�kzhÞ: ð12Þ

The Fourier transforms of the sphere, rectangle or cylinder

either contain a Bessel function, a sinc function or a combi-

nation thereof. Therefore, these geometric shapes concentrate

most of their Fourier energy in low-frequency components and

dampen with a shape-specific rate towards higher frequencies.

Böhm et al. (2000) have already hinted at the fact that low

frequencies are essential for particle identification and have

discussed the detection limits related to high binning.

To use geometric shapes in template matching, the macro-

molecule of interest within tomograms would also need to

concentrate the majority of Fourier space energy in low-

frequency components in a similar manner to yield a high

cross-correlation score. Since low-frequency components

generally recapitulate the shape and size of the analyzed

object in real space, macromolecules have been template-
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matched by geometric shapes with similar sizes (Engel et al.,

2015; Cai et al., 2018; Lebbink et al., 2007; Nickell et al., 2007).

The voxel size of the tomogram used in this study was 13.48 Å,

following common practices in the field (de Teresa-Trueba et

al., 2023; Xue et al., 2022; Engel et al., 2015; Cai et al., 2018;

Frangakis et al., 2002; Chaillet et al., 2023; Wan et al., 2024;

Rice et al., 2023; Genthe et al., 2023; Hoffmann et al., 2022).

Therefore, no features smaller than�27 Å can be represented

without artifacts according to the Shannon–Nyquist sampling

theorem (Shannon, 1949). 27 Å is in excess of most detailed

structural features in a macromolecule. Consequently, the

majority of Fourier space energy is also concentrated in low-

frequency components, analogous to the discussed geometric

shapes.

We computed the radially averaged Fourier magnitude

spectrum for three templates at a radius of 10 voxels and

compared them with the theoretical curve of a sphere (Fig. 5).

The average magnitude of a template g at a Euclidean distance

d from the zero-frequency component of the Fourier trans-

form was computed as

jjF½g�ðvÞjj j v 2 fv 2 voxels j djjv � centerjje ¼ dg: ð13Þ

We observed that the templates used here are primarily

composed of the same low-frequency components. This

matches the theoretical assumption that template matching

using geometric shapes is possible if the majority of the

Fourier space energy is concentrated similarly. Accordingly,

we see little differentiation in the total precision achieved for

varying templates with the same radius and most variation

between the same template with varying radii. While the

templates assessed here approximate the phase spectrum of

the ribosome sufficiently well to avoid cancelation and serve

as a template, the phase difference must be considered in

practice (see equation 4).

These theoretical considerations have three important

implications for template matching. (i) Since template

matching at this binning is primarily about matching object

size, macromolecules of similar size to the macromolecule of

interest will be identified as false positives. (ii) Small macro-

molecules would mainly be represented through high

frequencies, which overlap with noise in the data. This relation

makes template-matching small macromolecules at this

binning near-impossible. (iii) More accurate templates are

unlikely to improve the template-matching performance

because high-resolution information cannot be accurately

represented at the typically used 4–8 times binning.

4. Conclusions and outlook

In this article, we explored the effect of shape, size and angular

sampling on the precision of matching ribosomes in an

annotated S. cerevisiae tomogram at the commonly used four-

times binning (de Teresa-Trueba et al., 2023; Xue et al., 2022;

Engel et al., 2015; Cai et al., 2018; Frangakis et al., 2002;

Chaillet et al., 2023; Wan et al., 2024; Rice et al., 2023; Genthe

et al., 2023; Hoffmann et al., 2022). We showed that using a

ribosome subtomogram average, a sphere and a heart emoji

as a template resulted in near-identical performance in our

benchmark data set, highlighting the shortcomings and

limitations of using highly binned tomograms for template

matching. We show, based on theoretical arguments, that

because highly binned tomograms primarily consist of low-

frequency information, geometric shapes such as spheres,

cylinders or rectangles of appropriate size can be used to

identify macromolecules equally well as detailed structural

templates. Therefore, cross-correlation scores are primarily

driven by the shape and size of the template, rather than its

internal structure, as seen in our practical experiments. This

has important implications when moving to more complex

data sets or smaller target structures in the future. At high

binning, macromolecules of similar size will often be identified

as false positives over the macromolecule of interest, regard-

less of how detailed the template is. Importantly, this issue will

be more pronounced for small molecules, where the high

frequencies will overlap with noise, and template quality will

not improve the performance either.

Based on these considerations, we suggest the following

moving forward. Firstly, cross-correlation-based scoring

methods appear to be a suboptimal measure of similarity in

tomograms. This is particularly apparent for high binnings.

Therefore, different, perhaps nonlinear, similarity metrics

such as those used in machine learning can enhance template-

matching performance (Moebel et al., 2021; de Teresa-Trueba

et al., 2023; Rice et al., 2023; Genthe et al., 2023). However, for

small macromolecules, generating adequate training data sets

could be highly challenging, as manual curation would be

limited by noise levels and the visibility of macromolecules by

eye. Secondly, analyzing lower binned tomograms can poten-

tially improve cross-correlation-based template matching. The
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Figure 5
Fourier magnitude spectrum averages by ‘distance’ and template.
‘Distance’ was computed as the Euclidean distance from the zero-
frequency component and was rounded to the nearest integer. Templates
used for template matching at a radius of 10 voxels are shown (Fig. 1).
‘Sphere (theory)’ refers to the theoretical derivations made in Section 3.4
with R = 10 (Friedman, 1997). Magnitude spectrum averages were line-
arly scaled to the interval [0, 1] to facilitate curve-shape comparison.



first developments have recently emerged in both 2D and 3D.

2D template matching (Rickgauer et al., 2017; Lucas et al.,

2021) avoids the high computational cost associated with

exhaustive sampling, and high-resolution matching at low

binning in 3D has recently been reported and demonstrated to

give fewer false-positive results (Cruz-León et al., 2024). It

also becomes evident that at such high binning it is compu-

tationally most efficient to first use shape-based filtering,

ideally with a spherical mask to filter candidate positions

broadly (Liu et al., 2023), and then further refine them locally

with high-resolution template matching or by filtering false

positives by classification in programs such as RELION

(Kimanius et al., 2016). To make shape-based picking easily

accessible, we provide a Napari plugin via our software

package pyTME (Maurer et al., 2024) which enables the

generation of spherical, cylindrical or ellipsoid templates and

masks.

The high computational cost associated with 3D template

matching at low binning will be overcome in the future by

further developing template-matching software for efficient

use on GPUs without needing to bin the reconstructed

tomograms (Maurer et al., 2024; Chaillet et al., 2023). Similarly,

higher angular sampling at lower binning might also be

beneficial in specific cases (Chaillet et al., 2023; Cruz-León et

al., 2024). Future developments will also need to tackle

additional challenges such as noise and specimen motion

resulting from problems with tilt alignment, sample defor-

mation and errors in CTF correction (Voortman et al., 2014;

Lucas et al., 2021).

Lastly, we suggest broadening benchmark entities beyond

large and highly abundant globular structures such as the

ribosome when evaluating new template-matching algorithms.

In particular, providing test sets of particles that have similar

low-frequency information is necessary to determine the

discriminatory power of novel template-matching methods,

score functions or processing approaches. Novel methods

should also be validated against the simple geometric shapes

considered here to ensure that they perform better and justify

the higher computational cost.

5. Data availability

The tomogram and ground-truth picks are freely available

from EMPIAR (EMPIAR-10988, TS_037). The scaled maps

for the ribosome (EMDB entry EMD-3228), sphere, emoji

and HA at various radii, the resulting picks, the raw data for

plots and the scripts used are freely available on GitHub at

https://github.com/maurerv/ribosomeTemplateMatching.
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