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When solving a structure of a protein from single-wavelength anomalous

diffraction X-ray data, the initial phases obtained by phasing from an anom-

alously scattering substructure usually need to be improved by an iterated

electron-density modification. In this manuscript, the use of convolutional

neural networks (CNNs) for segmentation of the initial experimental phasing

electron-density maps is proposed. The results reported demonstrate that a

CNN with U-net architecture, trained on several thousands of electron-density

maps generated mainly using X-ray data from the Protein Data Bank in a

supervised learning, can improve current density-modification methods.

1. Introduction

Density modification is a crucial step in the determination of

macromolecular crystal structures by experimental phasing

from the X-ray anomalous signal. The density-modification

procedure aims to improve an initial electron-density map,

obtained by phasing from a previously determined anomalous

substructure, by incorporating prior information into the map.

The prior information consists of features that are expected to

be present in a well resolved electron-density map: flatness of

the solvent regions (Wang, 1985), similarity of regions related

by noncrystallographic symmetry, if present (Bricogne, 1974),

or similarity of the density histogram to histograms of electron-

density maps of deposited proteins (Lunin, 1988; Zhang &

Main, 1990).

A partitioning of the electron-density map into protein and

solvent regions, usually denoted as a ‘solvent mask’ or a

‘molecular envelope’, is typically used by the solvent-

flattening and histogram-matching algorithms. In early appli-

cations, this partitioning was performed using local averaging

of the density (Wang, 1985; Leslie, 1987). Later, solvent-mask

determination using a local variance of the density (Abrahams

& Leslie, 1996) was found to provide better results and has

remained the state-of-the-art method for solvent-mask deter-

mination in classical density modification until today, as

implemented, for example, in Parrot (Cowtan, 2010). The

method of local variance has also recently been found to

provide the best results in density modification for ab initio

X-ray data phasing with large solvent contents (Kingston &

Millane, 2022). The solvent content is an important parameter

in the density-modification procedure and is traditionally

estimated by estimation of the Matthews coefficient (Matthews,

1968), which was later updated using statistical inferences

based on data from the PDB (Kantardjieff & Rupp, 2003;

Weichenberger & Rupp, 2014).

In this manuscript, I propose density-map partitioning into

solvent and protein regions using supervised deep learning

with a 3D convolutional neural network (CNN) and its use for

solvent-content parameter estimation. Although deep learning
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has revolutionized ab initio protein structure prediction using

tools such as AlphaFold2 (Jumper et al., 2021) and RoseTTA-

Fold (Baek et al., 2021), the number of deep-learning appli-

cations in the X-ray protein structure-determination metho-

dology remains rather limited. Several CNN or attention-

based architectures have been implemented for the prediction

of protein crystallization propensity and for crystallization

monitoring (see, for example, Yann & Tang, 2016; Khurana et

al., 2018; Elbasir et al., 2020; Jin et al., 2021; Wang et al., 2023).

A deep CNN has been implemented for the classification of

2D X-ray diffraction images (Ke et al., 2018; Souza et al.,

2019). Miyaguchi et al. (2021) used a 3D CNN to predict local

electron-density map correlations. Godo et al. (2022) have

suggested the use of a CNN-based approach for model

building, and Chojnowski et al. (2022) used deep learning for

sequence prediction from the electron density. A multilayer

CNN has been suggested for ab initio X-ray data phasing from

Patterson maps, with promising results obtained on synthetic

data for small peptide fragments (Pan et al., 2023). A detailed

overview of existing machine-learning applications in X-ray

methodology, including ‘shallow’ machine learning, can be

found in Matinyan et al. (2024). Furthermore, there have been

numerous successful applications of 3D image segmentation

using a deep CNN in other fields, such as medical imaging (see,

for example, Chen et al., 2020; Saood & Hatem, 2021).

2. Methods

2.1. Data preparation

The Protein Data Bank (PDB; Berman et al., 2000) was

searched using a PDBe REST API query by modifying the

scripts provided by Bond & Cowtan (2022). The query asked

for protein-containing data sets solved by X-ray crystallo-

graphy with either the phasing method or the structure-

solution method specified as single-wavelength anomalous

diffraction (SAD), excluding data sets that were already

present in the local collection. To the query date (20

December 2022), 10 891 items satisfying these criteria were

returned by the API. After the exclusion of data sets for which

the anomalous data had not been deposited, data sets for

which the cell in the deposited structure differed considerably

from the cell in the deposited data and data sets for which the

anomalous signal was considered to be too weak, 2544 data

sets remained (Table 1).

A cell was considered to be considerably different if a

relative cell-axis difference was 3% or larger or if an angle

difference was 3� or larger. The anomalous signal was

considered to be too weak if the average phase difference

between the phases constructed from the deposited protein

model and the phases provided by REFMAC5 (Nicholls et al.,

2018) phasing from the deposited anomalously scattering

substructure was larger than 85� (random phases correspond

to an average phase difference of approximately 90�), or if the

correlation of the estimated E-values with the deposited

substructure E-values in the lowest resolution shell was 0.1 or

worse. The correlation of the estimated E-values with the

deposited substructure E-values was calculated in the same

way as reported in Pannu & Skubák (2023): the deposited

substructure E-values were calculated by ECALC (Ian Tickle,

unpublished work) from the amplitudes provided by

REFMAC5 for the deposited anomalously scattering sub-

structure and their correlation with the estimated E-values

was calculated using the SFTOOLS utility (Bart Hazes,

unpublished work), which calculated the correlations in 20

resolution bins. Typically, structures with an anomalous signal

that was too weak were originally solved by SAD phasing, but

only the native data set without a significant anomalous signal

was deposited in the PDB.

For each of the 2544 data sets, a complete Crank2 (Skubák

& Pannu, 2013) SAD structure-solution run was performed

using the default pipeline and default parameters: SHELXC/

D (Schneider & Sheldrick, 2002) was used for anomalous

substructure determination and REFMAC5 (Nicholls et al.,

2018), Parrot (Cowtan, 2010), Buccaneer (Cowtan, 2008) and

SHELXE (Usón & Sheldrick, 2018) were used in the subse-

quent combined phasing, density modification and model

building. The programs were used in versions corresponding

to CCP4 (Agirre et al., 2023) 8.0.008, except for Crank2, where

a more recent version, 2.0.330, was used, and a bugfix in

REFMAC5 implemented by me was used to prevent the

program from crashing for very large data sets. The input to

Crank2 consisted of the SAD data set (including information

about the unit cell and space group) and protein sequence

downloaded from the PDB and specification of the X-ray

wavelength and the main anomalously scattering atom type,

with anomalous scattering coefficients automatically derived

from the wavelength by Crank2. Automatic heuristics were

used to set the main anomalous scatterer from the atom types

present in the PDB deposition, manually checked and

potentially corrected for data sets where issues or bad

performance were observed.

The default Crank2 pipeline built a model with an Rfree

smaller than or equal to 0.45 for 2163 data sets. For another

117 data sets the substructure was ‘correctly’ determined but

the Rfree was larger than 0.45; 107 of these also had a phase

error after phasing of better than 85�. The anomalous sub-

structure was considered to be ‘correctly determined’ if at

least one third of atoms in the final anomalous substructure

had a matching atom (within 2 Å distance) in the obtained

substructure after transformation by SITCOM (Dall’Antonia

& Schneider, 2006).

The remaining 264 data sets for which the Rfree was larger

than 0.45 and the substructure was not obtained by the default
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Table 1
Numbers of SAD data sets downloaded from the PDB, excluded and used
for training.

The exclusions were performed consecutively in the order of the rows (for
example, if no anomalous data were present for a data set it was excluded and
no other exclusion criteria were evaluated for that data set).

Total downloaded from the PDB 10891
Excluded due to no anomalous data deposited 7612
Excluded due to a different cell for the data and model 3
Excluded due to no or unusable anomalous signal 732
Total used from the PDB after exclusions 2544



Crank2 pipeline were inputted into an ‘advanced’ Crank2

pipeline, which used Afro (Pannu & Skubák, 2023) for the

calculation of multivariate normalized anomalous substruc-

ture amplitudes (denoted as E-values) and PRASA (Skubák,

2018) for substructure determination. Furthermore, in some

cases multiple runs were performed manually adjusting

substructure-determination parameters such as high-resolution

cutoff ranges, number of trials, number of peaks or their

special positions. Using this approach, the substructures of

another 194 data sets were found, of which 141 led to a built

model with Rfree � 0.45.

Finally, 70 data sets for which the substructure was not

obtained were inputted into phasing from the deposited

substructure. Furthermore, a further 23 data sets for which the

substructure was obtained but led to a phase error worse than

85� (ten from the default pipeline and 13 from the advanced

pipeline) after the initial phasing were also phased from the

deposited substructure. Phasing from the deposited substruc-

tures was performed in the same way as phasing from deter-

mined substructures, i.e using the program REFMAC5, which

included refinement of the substructure.

Another 266 data sets were added from a local database of

data sets, composed of 159 data sets from Skubák (2018) for

which the substructure was obtained and 107 JCSG data sets

(Elsliger et al., 2010) phased from the final substructure. Thus,

a total of 2810 data sets were used for training and validation

of the neural network. A summary of the used data sets is

provided in Table 2.

Approximately 5% of the data sets were randomly assigned

to a validation set. The structure of the validation set from the

preparation point of view is shown in Table 3. In total, 137 data

sets were in the validation set and the remaining 2673 data sets

were in the training set.

In all of the preparation runs, initial phasing from the

determined or the deposited anomalous substructure was

performed using the SAD function implemented in

REFMAC5 (Skubák et al., 2004). Estimates of amplitudes and

phases after the initial phasing calculated by the SAD function

(FB and PHIB) were converted to phasing-map grids using a

Shannon sampling rate corresponding to high resolution of the

data, performed by the Python version of the GEMMI library

for structural biology (Wojdyr, 2022). The phasing-map grids

were used for the generation of input to the neural network

model.

2.2. Model and training

The input to the binary classification neural network model

is a vector of 48 � 48 � 48 windows from the phasing-map

grids. The 48 � 48 � 48 input windows were randomly

sampled from all of the prepared phasing-map grids. Since the

sampling was random, their potential overlaps were not

excluded and the unit cell did not have to be completely filled.

Furthermore, data augmentation was used by flipping around

a random number of unit-cell axes and rotating by 90� in a

random direction to each of the input windows. In total, 36 462

training windows and 1895 validation windows were used, all

of which were generated by random sampling and augmen-

tation on the fly in each epoch. The GEMMI library was used

for manipulation of the maps and the data sets.

The neural network model is a 3D convolutional U-net

(Ronneberger et al., 2015) using residual connections between

layers (He et al., 2016), implemented in the frameworks of

TensorFlow (Abadi et al., 2015) with Keras (Chollet, 2015).

The U-net architecture is composed of four encoding convo-

lution blocks followed by three decoding (upsampling) blocks

and a final 3D convolution layer for the reduction of the

number of filters to the number of classes. The output is a

vector of 48 � 48 � 48 binary windows containing a classifi-

cation of each window point as 0 or 1, corresponding to

protein or solvent, respectively. The training and validation

are performed against 48 � 48 � 48 windows from the ‘true’

solvent masks. The ‘true’ solvent masks were obtained by

solvent/protein masking of the deposited protein models using

the GEMMI framework, with its parametrization set to the

van der Waals atomic radii set and the parameters for small

solvent islands removal kept at their default values.

Each encoding convolution block consists of two 3D

convolution layers with 3 � 3 � 3 kernels, both followed by

batch normalization and ReLU activation. In the first three

convolution blocks, a max pooling layer with a kernel size of

2 � 2 � 2 follows, reducing the dimensions by a factor of 2.

The number of filters is set to 24 at the input to the first

encoding block and is doubled in each of the following three

encoding blocks.

Each decoding block starts with a transposed 3D convolu-

tion layer (also called a deconvolution layer) with a 3 � 3 � 3

kernel and a stride of 2. It is then followed by a concatenation

of its output with the output of a corresponding (i.e. providing

output with the same dimensions) encoding convolution

block, thus creating the residual connections between the

encoding and decoding blocks. Finally, the concatenation is

followed by a 3D convolution layer with a 3 � 3 � 3 kernel,

batch normalization and ReLu activation. Thus, the number of

filters is halved at each decoding block, reaching the initial

value of 24 after the last decoding block. The final 3D

convolution layer uses a kernel of size 1 � 1 � 1 and reduces
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Table 2
Preparation of data sets for training, validation and testing.

No. of data sets Downloaded from the PDB Local database

Substructure used Determined Deposited Determined Deposited

Pipeline used Default Advanced Advanced

Model built† 2163 141 n.a. 154 n.a.

Model not built 107 40 93 5 107

† Rfree � 0.45.

Table 3
Data sets used for validation.

No. of data sets Downloaded from the PDB Local database

Substructure used Determined Deposited Determined Deposited

Pipeline used Default Advanced Advanced

Model built† 98 11 n.a. 9 n.a.

Model not built 8 2 4 0 5

† Rfree � 0.45.



the number of filters to the number of classes, which is set to 2

for classification into a solvent class and a protein class.

Every 3D convolution layer in the model is used with ‘same’

padding to preserve dimensionality and the ‘he_normal’

kernel initializer. Sparse categorical cross-entropy was used as

a loss function and the Adam algorithm (Kingma & Ba, 2014)

with a learning rate of 0.0001 was used as a minimizer, both as

implemented in the Keras framework. Training was performed

locally on an NVIDIA Geforce RTX 3080 12G graphical card

using the CUDA library (Vingelmann & Fitzek, 2020).

2.3. Implementation and testing

The segmentation of phasing maps into solvent and protein

regions by a deep neural network model was implemented and

tested for density modification within the Crank2 suite. The

program Parrot was modified to accept and use the solvent

masks predicted by the neural network model as its input.

Although the U-net model was trained using density maps

immediately after the initial phasing, it turned out that it was

also useful for the segmentation of biased maps within the

density-modification recycling. Thus, the implementation also

uses the U-net map segmentation for subsequent density-

modification cycles, not only for the first cycle. For each map-

segmentation prediction, the input electron-density map is cut

into 48 � 48 � 48 windows without overlaps (except for

possible overlaps at the unit-cell edges, if the cell dimensions

are not divisible by 48) and the 48 � 48 � 48 binary predic-

tions outputted by the U-net model are then put together,

providing the actual density-map segmentation.

Testing of the new Crank2 algorithm using U-net map

segmentation for density modification was performed on the

validation set of 137 SAD data sets (Table 3). It was

performed using CCP4 8.0.016 and Crank2 2.0.342, with

Parrot modified to use the solvent masks from the U-net map

segmentation as mentioned before. For each data set, Crank2

was run from the substructure determined within the data

preparation or from the deposited substructure to protein

model building. The combined model-building algorithm

(Skubák & Pannu, 2013) was used, with its density-modification

part using the solvent masks from map segmentation. The

testing compares the results of the Crank2 pipeline using the

density modification by U-net map segmentation against the

same pipeline with the ‘current’ density modification (as

implemented in Crank2 2.0.342), with all other algorithms and

parameters being the same.

The U-net map-segmentation output can be also used to

estimate the overall crystal solvent content. The ‘current’

Crank2 density modification solely uses the Weichenberger &

Rupp (2014) fit function Matthews estimation of solvent

content. The density modification using U-net segmentation

also takes into account a solvent-content estimate from the

U-net segmentation in cases where this estimate is significantly

different from the Matthews estimate (see equation 2 below).

Estimation of the solvent-content parameter is only

performed in the initial cycle of density modification, i.e. using

the map immediately after phasing, and the parameter is fixed

throughout the following cycles, since it turned out that its re-

estimation from the biased density-modification maps led to

worse results. The expected value of the solvent content from

map segmentation can be calculated as

hSsi ¼

P
Pi

N
; ð1Þ

where Pi is the probability of the ith point in the unit-cell grid

being solvent, as outputted by the neural network model, and

N is the total number of points in the unit-cell grid. To save

time, symmetry is taken into account and the summation is

restricted to the asymmetric unit grid.

The expected solvent content from the map-segmentation

prediction (equation 1) is then compared and combined with

the Matthews coefficient prediction. The Matthews coefficient

prediction provides a vector of solvent contents corresponding

to different numbers of monomers in the asymmetric unit,

together with their implied probabilities. If a high-probability

Matthews solvent-content estimate consistent with the map-

segmentation estimate exists, the Matthews prediction

solvent-content value is used in density modification. If a less

consistent match is found a combination of both estimates is

used, and in the case of inconsistency only the expected value

from the map segmentation (equation 1) is used.

SE ¼

SMjmax
if max½PMðSMjÞ � PUðSMjÞ� � 0:25

CðPM � PUÞ if 0:005<max½PMðSMjÞ � PUðSMjÞ�< 0:25

hSsi if max½PMðSMjÞ � PUðSMjÞ� � 0:005

8
<

:
;

ð2Þ

where SE is the solvent-content estimate using information

from both the U-net map segmentation and the Matthews

estimation, SMj denotes the solvent content corresponding to

the jth Matthews coefficient with nonzero probability, jmax

denotes the index of the Matthews coefficient with the largest

probability, PM(SMj) is the probability of SMj from the

Matthews prediction, PU(SMj) is the probability of SMj from

the U-net model prediction and C(PM · PU) denotes solvent

corresponding to the centroid of the kernel of a probability

distribution obtained by conflation (i.e. the product) of PM and

PU. PM is defined on h0, 1i as a linear interpolation between all

of the PM(SMj) points and the edge points (0, 1), for which it is

assumed that PM(0) = 0 and PM(1) = 0. Since it is difficult to

obtain PU theoretically from the outputted Pi values (an

assumption of independence of the Pi values is not justified as

they are strongly intrinsically related), an empirical prob-

ability distribution PU was constructed. At first, for each data

set in the training set, a logit cutoff lc was determined that led

to the ‘true’ solvent content by setting all of the grid points

with log(Pi/(1 � Pi)) > lc (i.e. if the logit of Pi is larger than the

cutoff logit) to solvent. Then, using all of the data sets in the

training set, a histogram was created, counting in bins the

number of data sets for which lc belonged to a bin logit

interval. Finally, from the histogram, the empirical bin-based

probability distribution PU was constructed by normalization

to 1.
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3. Results and discussion

Many hyperparameter and architecture adjustments were

tested for U-net training and were evaluated against the

accuracy metric as implemented in Keras. The architecture

reported in Section 2 was eventually chosen; although some

architecture or parametrization changes provided comparable

accuracy results, the reported architecture with approximately

three million trainable parameters appears to be close to a

‘sweet spot’ where adding more complexity barely improves

the accuracy further, while reducing the complexity leads to

worse results.

A total of 100 epochs were run with the reported archi-

tecture and parametrization using a batch size of 32. Due to a

relatively large number of input data and data augmentation,

overfitting was not a major problem. Yet, since the validation

accuracy stopped improving after approximately 60 epochs at

approximately 0.837 and the working accuracy kept slowly

increasing (from 0.845 around epoch 60 to 0.847 at epoch 100),

the model trained in epoch 57 was considered to be final and

was used in subsequent density-modification testing on the

validation set of data sets. The precision, recall, specificity and

F1 score of the solvent classification on the validation set were

all close to the accuracy value (0.839, 0.854, 0.818 and 0.846,

respectively).

As Fig. 1(a) shows, the phase errors after density modifi-

cation were substantially reduced overall when the U-net map

segmentation was used to generate solvent masks for density

modification. The phase error after density modification was

worse than the current methods for approximately 9% of the

tested data sets (12 out of 137) and better for the remaining

91% of the data sets. The regressions were typically tiny, with

less than 1� of phase error. If we consider phase differences of

less than 1� as approximately the same performance, then a

phase-error improvement was observed for 105 data sets, a

regression for two data sets and approximately the same result

for the remaining 30 data sets.

The largest phase-error improvements were typically

obtained for data sets where the default Matthews coefficient

estimation provided a substantially different solvent-content

estimate from the solvent-content estimate also utilizing the

U-net prediction, proving that information from the U-net

segmentation of experimental phasing maps can reliably be

used for an improved solvent-content estimation. However, it

should be noted that although the solvent-content estimation

is substantially improved, it still does not guarantee an optimal

solvent-content value for density modification. This can be

demonstrated by the largest phase-error regression (2�), which

was obtained for the data set with PDB code 5v63: the

Matthews coefficient estimate of 0.4 turned out to provide

slightly better density-modification results (using either

solvent masks generated by the current methods or by the

U-net) than the estimate of 0.22 obtained from the centroid of

the conflated distributions, even though the solvent content

obtained from the deposited model was 0.26, i.e. closer to the

centroid estimate.

However, Fig. 1(a) also shows that the improvements were

not limited to an improved solvent-content estimate: density

modification also provided consistently better results when

using the U-net-generated masks over the masks generated by

the current methods in cases where the solvent-content esti-

mate was the same. While an incorrect default solvent-content

estimate could be curated by manual or automated testing of

various solvent-content values, the improved prediction of

solvent masks shows that the new method can significantly

enhance the experimental phasing structure solution in

general.

As Table 3 indicates, models for the majority of the vali-

dation data sets were already successfully built using the
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Figure 1
(a) Phase error after density modification. (b) Rfree after model building
using the current methods (x axis) and using deep-learning map
segmentation (y axis) for each of the 137 data sets in the validation set.
The data sets for which the inputted solvent content to density modifi-
cation using both methods was equal (absolute value of the difference
smaller than 0.01) are displayed as green squares, modest differences in
the determined solvent content (absolute value of the difference between
0.01 and 0.1) are displayed as orange stars and large differences (absolute
value of the difference of 0.1 or larger) are displayed as blue dots.



current methods. Since the new methods described in this

paper provide density-modification enhancements, it is not

surprising to observe that the good-quality models obtained

using the current pipeline could not be further improved: as

Fig. 1(b) demonstrates, the data sets for which an Rfree better

than approximately 0.35 was obtained using the current

pipeline end up with a similar Rfree when the U-net

enhancements are used. However, large improvements were

observed for partial models and even for data sets where no

sensible model was built using the current methods with the

default parametrization, including several data sets for which

the solvent-content estimate was the same as when using the

current methods. These results demonstrate that automated

structure solution from experimental phases can be consider-

ably improved by the use of neural network map segmenta-

tion.

The successful use of deep neural networks for electron-

density map segmentation in experimental phasing density

modification, as demonstrated by this paper, suggests further

application opportunities in X-ray protein structure-solution

methods. Density modification is also used in some protocols

after molecular replacement of PDB or AlphaFold2 models;

for example, to reduce the model bias when rebuilding the

molecular-replacement model at lower resolutions. Further-

more, density modification is essential for ab initio X-ray

protein structure solution using large solvent contents

(Kingston & Millane, 2022). For both of these potential

applications, it is unclear whether the reported U-net model

for map segmentation would be sufficiently generic and

robust, or whether retraining of the model against the specific

data and possibly with a different architecture or hyper-

parameters would be needed. Another density-modification

improvement may be achieved by implementing a model that

does not output the segmentation of the density map but

rather the actual density modification itself. The experimental

phasing-map segmentation and its confidence may also be

useful for estimation of the quality of the phasing map and the

related problems of the prediction of substructure-determination

success and model-building success from the initial phasing

map. Finally, an extended multiclass electron-density map

segmentation (including classes such as missing or incorrect

ligands, waters, ions etc.) may also be useful in the final stages

of structure solution and its validation.
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