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The interpretation of cryo-EM maps often includes the docking of known or

predicted structures of the components, which is particularly useful when the

map resolution is worse than 4 Å. Although it can be effective to search the

entire map to find the best placement of a component, the process can be

slow when the maps are large. However, frequently there is a well-founded

hypothesis about where particular components are located. In such cases, a local

search using a map subvolume will be much faster because the search volume

is smaller, and more sensitive because optimizing the search volume for the

rotation-search step enhances the signal to noise. A Fourier-space likelihood-

based local search approach, based on the previously published em_placement

software, has been implemented in the new emplace_local program. Tests

confirm that the local search approach enhances the speed and sensitivity of the

computations. An interactive graphical interface in the ChimeraX molecular-

graphics program provides a convenient way to set up and evaluate docking

calculations, particularly in defining the part of the map into which the

components should be placed.

1. Introduction

Over the past decade, improvements in cryo-EM hardware

and algorithms have led to an explosion of new maps, many

(but not all) at resolutions that permit the atomic modeling of

proteins and other biological macromolecules. When atomic

models of the same or closely related components are avail-

able, either from the Protein Data Bank (PDB; Berman et al.,

2007) or from structure-prediction algorithms such as Alpha-

Fold (Jumper et al., 2021) or RoseTTAFold (Baek et al., 2021),

docking techniques can quickly yield an initial model.

Docking is particularly important when the quality of the

reconstruction is limited (for example by an overall or local

resolution poorer than 4 Å), so that an atomic model is diffi-

cult to build ab initio. In such cases, docking success will

depend on making the best possible use of the signal in the

data.

For this reason, we have pursued a likelihood-based

approach to docking, which accounts for the effects of errors

in the cryo-EM reconstruction and in the search model.

Likelihood also has the advantage that the likelihood score

itself allows one to infer a level of confidence in a docking

solution. Specifically, a likelihood score of 60 or more is

extremely unlikely to be random, so it indicates a correct, or at

least partially correct, solution (McCoy et al., 2017).

The likelihood target for docking is expressed in Fourier

space, similar to the approach of modern likelihood-based
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cryo-EM reconstruction algorithms such as RELION (Kima-

nius et al., 2021). Previous papers have described the theore-

tical background (Read et al., 2023) and the implementation

and testing (Millán et al., 2023) of the docking procedure in

the em_placement program, which searches globally over the

entire map to locate the molecule of interest. The test calcu-

lations covered a range of map resolutions (1.7–8.5 Å) and

model completenesses (about 5–50% of the total reconstruc-

tion), and most of them succeeded. However, some of the

model placements failed when the signal to noise in the search

over the whole map was too poor. Here, we examine why such

docking calculations fail and how some can be rescued if the

user has a correct hypothesis for the approximate location of

the component. The local search, implemented in emplace_

local, is fast enough to be run interactively through a graphical

interface, and is available in the UCSF ChimeraX framework

(Goddard et al., 2018).

2. Local search approach

Before describing the local search technique, it is useful first to

review the methodology used in the em_placement full search.

The six-dimensional problem of finding the orientation and

position of a model to fit the reconstruction can be divided

into a sequence of two three-dimensional problems: searching

for one or several plausible model orientations (rotation

function), followed by searching for positions of models in

these plausible orientations (translation function). This general

approach is used in crystallographic molecular replacement

(MR), and the Fourier-space equations and algorithms for

cryo-EM docking are closely related to the reciprocal-space

MR equivalents (Read et al., 2023).

For MR, and particularly for docking, the limiting factor for

success is the rotation search, which has intrinsically lower

signal than a translation search carried out for the correct

model orientation (Read et al., 2023). In the case of MR, the

only ways to improve signal in the rotation search are to find/

generate better models or better data/crystals. However, for

docking the availability of phase information creates another

opportunity. Consider a case, with a low-quality map and an

incomplete model, in which the signal in the rotation search is

too weak to detect the orientation of the modeled component

in Fourier terms computed from the full map. If a smaller

volume of the map containing the target component is used to

prepare Fourier terms for the search, the noise from unex-

plained map features will be reduced and the signal to noise

for the rotation search will be increased. As long as the cut-out

volume contains the target component, the signal to noise in

the rotation search, assessed using the rotation-function

expected log-likelihood gain (eLLGrot), is predicted to be

inversely proportional to the search volume (Read et al.,

2023). If the correct orientation is present in a list from the

rotation search, the correct position will be found easily in a

translation search within the cut-out volume.

The decision making in the global search procedure there-

fore relies on assessing the signal available for the rotation

function (Millán et al., 2023). If an analysis over the full

reconstruction suggests that there is sufficient signal to expect

the correct orientation to be in the list of plausible orienta-

tions (eLLGrot > 7.5), a single rotation/translation search is

performed using the Fourier terms derived from the full

reconstruction. If not, searches are performed over smaller

subvolumes, a set of spheres that cover the full reconstruction

with sufficient overlap to ensure that the full volume of the

target will be enclosed in at least one sphere. The size of the

subvolumes is chosen (based on the statistical analysis of the

full reconstruction) to be as large as possible to limit the

number of separate searches while retaining sufficient signal.

Note that the number of subvolume spheres required to cover

the full reconstruction with sufficient overlap grows rapidly if

the subvolume radius drops below about 1.15 times the model

radius, so there is a practical limit to how small these volumes

can be made.

The strategy of performing the search on subvolumes

depends on the implicit assumption that the quality of the

reconstruction is similar over the whole map, so that the

overall signal is distributed equally over all ordered parts of

the reconstruction. If the component being sought is in one

of the more poorly ordered parts of the reconstruction, the

strategy calculations will be overly optimistic and the signal

may be inadequate. Note that although the statistical analysis

of signal and noise is carried out separately for each sub-

volume, em_placement does not currently readjust the sizes of

the subvolumes in response.

When there is a reasonable hypothesis for the location of

the target component, then the search can be optimized based

on the principles above. The search can be restricted to the

smallest possible subvolume, thereby improving the signal to

noise compared with using larger subvolumes in a global

search. Carrying out a local search allows further simplifica-

tions that cannot be applied for a global search. Setting up a

search over multiple subvolumes requires some knowledge of

which regions of the full map contain ordered parts of the

reconstruction, so that time is not wasted carrying out

computations on the relatively large volumes for disordered

solvent regions. Ordered regions of the map can be deduced

by computing local averages of the map variance, but this time

can be saved if we assume that a local search is carried out in

a relevant region. One slight disadvantage of omitting the

ordered volume calculation is that only a rough estimate can

be made for the fraction of the signal from the search sphere

that is accounted for by the model, and the likelihood scoring

is thus less well calibrated. After a series of test calculations,

we have chosen by default to estimate the ordered volume in

the search sphere as 1.5 times the volume of the search model

(meaning that the model is assumed to account for 2/3 of the

signal). The ordered volume calculation can still be invoked

if half-maps are available, but test cases, including those

discussed below, suggest that the more precise score calibra-

tion that this allows is not essential for success.

Since 2022, the deposition of half-maps (i.e. maps obtained

from semi-independent reconstructions that each use a

random selection of half of the particle images) has been

mandatory for new entries in the Electron Microscopy Data

Bank (EMDB; Lawson et al., 2016). Such half-maps are
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required for the analysis of signal and noise in the

em_placement procedure, as well as for calculating the ordered

volume. As a result, the global docking approach cannot be

applied to legacy EMDB entries lacking half-maps. For the

local docking approach, the intrinsically higher signal to noise

can often compensate for a less optimal calculation, so we

pursued an approximation to the analysis of signal and noise

when half-maps are not available.

The docking likelihood target (Read et al., 2023) depends

on a value for each Fourier term, Dobs, which summarizes the

effect of the variation in Fourier space of both signal power

and noise power. Dobs can be thought of as the equivalent of

FSCref (the Fourier shell correlation expected between the

observed and true maps) for a single Fourier term rather than

a whole shell in Fourier space. In the absence of directional

information from half-maps, we use the nominal resolution

limit, dmin, to calibrate a very simple approximation, in which

we assume that the Dobs values decrease isotropically with

resolution to a value of 0.1 at the resolution limit.

Dobs ¼ expð� Bfalloffs
2=4Þ; ð1aÞ

where Bfalloff ¼ � 4d2
min lnð0:1Þ ð1bÞ

and s is the reciprocal of the resolution.

3. Implementation of algorithms

3.1. Emplace_local

Using functionality previously described for em_placement,

the emplace_local program implements the local search

described above. Either a pair of half-maps (preferred) or a

single full map must be provided. The search is performed

within a sphere, the radius of which is computed automatically

by finding the distance to the atom furthest from the center of

mass of the search model. The center of the sphere can either

be specified as xyz coordinates in the 3D space of the map or,

if the search model has been placed approximately in the

target location, it can be computed from the center of mass

of the model. The local resolution of the map in the search

volume can be specified (preferred), or a suitable value can be

estimated automatically if half-maps have been provided

(Millán et al., 2023). Suitable values for local resolution can be

estimated using programs such as ResMap (Kucukelbir et al.,

2014) or phenix.local_resolution in the Phenix package

(Liebschner et al., 2019).

Because the presumed location of the component being

sought will generally be only approximately correct, the best

potential solutions are evaluated in a final rigid-body refine-

ment step where a sphere centered on each placement being

tested is cut out. This also ensures that the likelihood scores do

not depend significantly on the precise location specified by

the user.

3.2. Availability in Phenix

The emplace_local program is available in the 1.21 release

of Phenix and later, and is scheduled to be available in an

upcoming release of CCP-EM (Burnley et al., 2017). The

program can be run from the command line via the

phenix.voyager.emplace_local command. With the

newer, standard, command-line interface for Phenix programs,

the researcher can provide the required information listed

above through the parameters available to the program. The

new interface also provides a standard command-line flag,

--json, that will write the output of the program in the

standard JavaScript Object Notation (JSON) format that can

be easily parsed by other software packages. This approach is

used to simplify how the output from this program is inter-

preted by visualization tools such as ChimeraX.

3.3. ChimeraX plugin

UCSF ChimeraX (Goddard et al., 2018; Pettersen et al.,

2021; Meng et al., 2023) is a popular program for the visuali-

zation and analysis of biological structural data ranging from

atomic level to cellular or organism level. Recently, the

atomic-level visualization has been enhanced by the addition

of the ISOLDE plugin (Croll, 2018) for interactive molecular

dynamics and building into cryo-EM maps and crystallo-

graphic electron density. ChimeraX is now increasingly used

for atomic structure display and manipulation and has

extensive capabilities for handling cryo-EM maps, making it

ideal for presenting a user-friendly front end to the emplace_

local program. ChimeraX installers for Linux, MacOS or

Windows can be downloaded from the ChimeraX website at

https://www.cgl.ucsf.edu/chimerax/.

The plugin architecture of ChimeraX not only allows

plugins to enhance its capabilities in many ways, but also

allows users to browse and easily install desired plugins from

within ChimeraX itself. The PhenixUI plugin, which offers

access to emplace_local (among other Phenix capabilities),

adds an entry to the ChimeraX Tools menu (‘Local EM

Fitting’) for launching the graphical front end to emplace_

local, and adds a command equivalent (phenix emplace

Local) that could be useful for scripting operations. The

Phenix software package must be installed separately (https://

phenix-online.org), and the Phenix installation then needs

to be linked to ChimeraX via the phenix location

command. For convenience, this command can be added to the

ChimeraX Startup items.

The Local EM Fitting tool (Fig. 1) allows the user to specify

the structure and cryo-EM map (or preferably half-maps) to

use, the local resolution of the map (which can be estimated

automatically from half maps) and where to initially center the

search sphere. If interactive adjustment of the search sphere is

enabled in the dialog, then choosing the OK (or Apply) button

will show the search sphere (illustrated in Section 4.1.3) and

allow its position to be interactively adjusted with the mouse.

Clicking OK on a secondary dialog will then run an appro-

priate phenix emplaceLocal command, which will in

turn run the Phenix emplace_local program. In addition, the

user is offered an option to detect any symmetry that has been

imposed on the reconstruction (using the ‘measure symmetry’

function in ChimeraX) and to expand the top-placed model

over that symmetry (‘sym’ function) without requiring
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additional searches. The fully automated symmetry detection

in ChimeraX is limited to point-group symmetry, so user input

for helical or approximate symmetry is planned for a future

version of this software.

At the end of the run, the search model is moved to the

position found by emplace_local and a ‘locally sharpened’

version of the map is opened. This map is computed from the

Fourier coefficients ½2=ð1 � D2
obs�

2
AÞ�Dobs�AEmean arising from

the local map analysis (Millán et al., 2023). It provides some

visual intuition about the likelihood score, which is roughly

proportional to the correlation coefficient between this map

and a sharpened map computed from the docked model; even

more approximately, the likelihood score would be propor-

tional to the sum of the map values at atomic positions in the

model.

4. Results

4.1. Improved sensitivity and speed of local docking

We reported earlier on the results of global docking tests

with em_placement on 18 different combinations of docking

models and target maps (Millán et al., 2023). By re-examining

two of these cases and analyzing a new example, we demon-

strate some of the advantages of the local docking search in

both speed and effectiveness when one has a reasonable idea

of where a component is located.

4.1.1. Chain L of the Escherichia coli respiratory complex I.

Some of the most challenging tests were derived from the

structure of conformation 2 of the E. coli respiratory complex

I: PDB entry 7nyu, EMDB entry EMD-12654 (Kolata &

Efremov, 2021). Not only is the overall resolution relatively

low for ab initio modeling at 3.8 Å, but the local resolution

varies widely, with the map quality dropping dramatically for

parts of the membrane domain furthest from the peripheral

domain. The poorest local resolution, estimated by the

original authors to be in the range 9–11 Å, is for chain L. The

map quality improves for the neighboring chain M and even

more for the next neighbor, chain N. Since chains L, M and N

are homologous, with about 26% pairwise sequence identity, it

is possible to obtain nonrandom but suboptimal mismatched

placements of the models for these chains.

A global search using chain L of PDB entry 3rko (Efremov

& Sazanov, 2011) as a model for the corresponding chain of

PDB entry 7nyu failed to find the correct placement; instead,

two incorrect placements were found superimposed on chains

M and N. An attempt to dock chain M of PDB entry 3rko

succeeded, but the search also yielded an additional incorrect

placement superimposed on the more well ordered map

region for chain N. We wished to see whether the emplace_

local program could be used to match the models of chains L,

M and N to their correct sites in the reconstruction, in parti-

cular chain L, which failed in the global search. Table 1 shows

the results of local searches pairing each of these models with

the three map regions, all carried out at the nominal resolution

of 3.8 Å. Note that each of the searches took from 25 to 45 s

(using a Linux workstation with a 3.8 GHz Intel Core i7-

9800X CPU with eight cores but running primarily on a single

thread), whether carried out from the standalone Phenix

program or the ChimeraX plugin. By comparison, the unsuc-

cessful global search for chain L took 616 s on the same

computer (Millán et al., 2023). In each case, a search with the

model matched to the map region succeeded. However,

searches for the mismatched model in the poorest, chain L,

map region failed. Searches for the mismatched model in the

intermediate-quality chain M region detected part of the map

sphere coming from the better-ordered chain N region; as

a result, the final rigid-body refinements were no longer

centered on the original map region (Table 1a). Carrying out

the searches at lower resolution might have been expected to

reduce the sensitivity to the local map quality. However, when

the set of searches was repeated using data limited to either 5,
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Table 1
Docking results for alternative pairings of density and model for PDB
entry 7nyu/EMDB entry EMD-12654.

(a) Results of using emplace_local to dock chains from PDB entry 3rko to
spheres centered on the corresponding region of the cryo-EM reconstruction.
Each letter in the table indicates the map region into which the emplace_local

docking placed the model.

Map target region

Model Chain L Chain M Chain N

Chain L L N† N
Chain M ‡ M N
Chain N ‡ N† N

(b) Log-likelihood-gain (LLG) and map correlation scores for models in
correctly and mismatched regions of the EMD-12654 map. Map correlations to
the weighted map for the subvolume are given in parentheses.

Map target region

Model Chain L Chain M Chain N

Chain L 49.9 (0.315) 88.6 (0.272)x 104.6 (0.279)

Chain M 4.8 (0.245)x 241.8 (0.371) 141.5 (0.276)
Chain N � 1.4 (0.213)x 57.8 (0.240)x 486.9 (0.467)

† A mismatched model was placed in the overlapping map region from the better-

ordered neighboring chain, not the original target region. ‡ Docking calculation

failed. x Rigid-body refinement was required to enforce the desired solution.

Figure 1
ChimeraX interface to the Local EM Fitting tool, illustrating a case
discussed in Section 4.2.3 where only a single map is provided and the
local resolution is specified.



7 or 9 Å, the same calculations failed, with one set of excep-

tions: using data to between 5 and 9 Å resolution, the chain L

model could successfully be docked into the chain M map

region.

To obtain docking scores for the desired mismatched pairs,

rigid-body refinements were carried out in em_placement,

starting from a superposition on the target chain from PDB

entry 7nyu. The results are shown in Table 1(b), with the

entries flagged for cases where emplace_local failed to yield

the desired solution. Likelihood is based on the consistency of

a model with a set of data, so it can be used to choose among

competing hypotheses for the same data (columns in Table 1b)

but not among different data sets for the same hypothesis

(rows in Table 1b). With this in mind, it is clear that the model

of chain N is the most consistent with the data obtained from

the chain N region of the cryo-EM maps, even though non-

random scores are obtained for the other models. In contrast,

the model of chain L gives the highest score for docking in the

chain N region of the map, an intermediate score for docking

in the chain M region and the lowest score for docking in its

own region. This does not imply that chain L should really be

placed in the chain N position, but just arises because the full

map has higher signal to noise in the chain N region, enough to

overcome the deficiencies of the chain L model in the overall

score.

Fig. 2(a) shows the result of docking chain L of PDB entry

3rko into the chain L region of the target map. The poor

quality of the fit to the map is in accordance with a value for

the LLG that is close to the level required for confidence.

Fig. 2(b) shows the good superposition of the docked model

on the deposited structure in PDB entry 7nyu, along with the

deposited reconstruction. We note that the initial fit to this

map (Kolata & Efremov, 2021) used models derived from

PDB entries 3rko (Efremov & Sazanov, 2011) and 4hea

(Baradaran et al., 2013), both of which show the same rela-

tionship among the components of the membrane arm seen in

PDB entry 7nyu. In addition, the authors reported carrying

out focused refinement, although the resulting map was not

deposited.

4.1.2. AlphaFold model of a megabody bound to the GABA

receptor. The structure of the pentameric human �-amino-

butyric acid (GABA) receptor bound to a megabody (PDB

entry 7a5v, EMDB entry EMD-11657) was determined at a

high overall resolution of 1.7 Å (Nakane et al., 2020), and

models of the GABA receptor monomers are placed easily.

However, the local order of each megabody bound to the

periphery of the pentamer is significantly worse than that of

each GABA receptor monomer, dropping to a local resolution

of about 3 Å at the periphery as judged by phenix.local_

resolution. To prepare a search model for the megabody (for

which there is no independent structure), its structure was

predicted using the community ColabFold version (Mirdita et

al., 2022) of AlphaFold (Jumper et al., 2021), and the model

was processed through phenix.process_predicted_model to

remove very low-confidence residues and downweight the

lower-confidence remaining residues (Oeffner et al., 2022).

The overall reconstruction has fivefold symmetry, but only two

of the five copies were placed in the global search. We note

that this search took more than 30 min, longer than any of the

other global search test cases (Millán et al., 2023).

We wished to understand why the global search failed to

find all five copies and to explore whether emplace_local

would be an effective alternative to the global em_placement

search in similar situations. In this particular case, missing
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Figure 2
Model derived from chain L (magenta) of PDB entry 3rko, docked into the region of the map corresponding to chain L of PDB entry 7nyu (EMDB entry
EMD-12654). Chain M of PDB entry 7nyu is shown in light blue. (a) The map is computed using the Fourier coefficients ½2=ð1 � D2

obs�
2
AÞ�Dobs�AEmean

arising from analysis of the local map volume (Millán et al., 2023). (b) Chain L of PDB entry 7nyu is shown in light green, and the map is the full map
from EMDB entry EMD-12654.



copies can easily be generated by applying the fivefold

symmetry to one or other of the two placements, but in the

general case the symmetry may be inexact or unknown. Local

searches centered at each of the five megabody positions gave

similar results (Table 2): each search took about 55 s, correctly

placing a copy of the megabody with an LLG score above 500.

In each case, the correct orientation was the top hit in the

rotation search of around six trial orientations. When run from

the ChimeraX interface with the symmetry option enabled,

the solutions were correctly expanded over the fivefold

symmetry.

Varying the center of the search sphere had a substantial

effect on the efficiency of the search. Since the megabody on

the periphery is less well ordered than the GABA receptor in

the center of the reconstruction, it seemed reasonable to

consider that varying the search center could alter the degree

to which the GABA receptor component contributed to the

search volume, adding strong signal that could not be

explained by the megabody model and thus contributing to

noise in the search. Moreover, when noise from the unex-

plained signal extends to higher resolution than the target

signal, the likelihood target is mis-calibrated to expect more

signal and less noise at high resolution. This reasoning

accounts very well for what was observed when the search

sphere for the first copy of the megabody was systematically

moved nearer and farther from the fivefold symmetry axis,

thereby including more or less of the GABA receptor density,

respectively. The search sphere was moved in 3 Å steps from

9 Å nearer to 9 Å farther. The range of tested positions for the

search sphere is illustrated in Fig. 3, with Fig. 3(a) showing

how much of the GABA receptor structure was contained

within the sphere when it was 9 Å closer to the fivefold

symmetry axis and Fig. 3(b) showing how little of it was

contained when the sphere was 9 Å farther from the axis. With

a sphere radius of 25.7 Å, two spheres offset by as much as 9 Å

still share 74% of the same volume. Nonetheless, when the

search sphere was shifted 9 Å closer to the rotation axis

(� 9 Å) the search failed because the correct orientation was

not found in the default rotation search. When the search

sphere was moved farther from the rotation axis, the search

succeeded and the statistics (clarity of rotation search, run

time) continued to improve as the search sphere was shifted

outwards to include less overlap with the GABA receptor

region of the map (Table 2). The expected log-likelihood-gain

(eLLG) score increases as the search sphere moves closer to

the rotation axis, because there is more ordered density to

contribute to the signal that is detected in the eLLG calcula-

tion. However, because the most well ordered density largely

arises from parts of the map that are not explained by the

megabody model, it actually contributes additional noise to

the search, leading to lower and even negative rotation LLG

values for the spheres closest to the rotation axis. Note that

negative LLG values for both rotation and translation sear-

ches arise when the model predicts the data less well than

expected from the presumed quality of the model and data.

The variation in the final LLG score for the successful sear-
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Figure 3
Range of placements of the search sphere when searching for the megabody component. The GABA receptor structure is shown in blue and the
megabody is in magenta. (a) Sphere center placed 9 Å closer to the fivefold symmetry axis than the center of the correctly placed megabody component,
substantially overlapping the GABA receptor component. (b) Sphere center placed 9 Å farther from the axis, minimally overlapping the GABA
receptor component.



ches for the first copy of the megabody was unexpected but

arises from a stochastic difference of one grid spacing in the

centers chosen for the spheres used for the final rigid-body

refinement; the lower scores correspond to grid centers that

are slightly nearer the fivefold axis.

The sensitivity of the rotation search to the presence of

more strongly ordered density from the GABA component

explains the limited success of the global search. In the global

search, the reconstruction was covered by six overlapping

spheres with radii of 58.2 Å, which did not follow the fivefold

symmetry. These spheres are likely to overlap significantly

with the GABA component. In addition, because the expected

LLG for the rotation search scales inversely with the sphere

volume (Read et al., 2023), only about 1/12 of the signal

expected for the local search sphere would be expected in the

subvolumes for the global search.

4.1.3. Constant region of Fab bound to a3b4 ganglionic

nicotinic receptor. The structure of the �3�4 ganglionic

nicotinic receptor bound to the ligand AT-1001 and to the Fab

fragment from a monoclonal antibody (PDB entry 6pv8,

EMDB entry EMD-20488) was determined by cryo-EM at a

resolution of 3.87 Å (Gharpure et al., 2019). Copies of the Fab

fragment bind to the two �3 subunits in the heteropentamer.

In the published structure, only the variable domains directly

contacting the receptor were fitted, because the map quality is

poor for the constant domains (Fig. 4a). As judged using

phenix.local_resolution, the local resolution is about 5.0–5.5 Å

in this region. Unfortunately, the box chosen for the map

deposition has a boundary very near to the constant domains.
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Figure 4
Searching for the Fab constant domains in the complex with the �3�4 ganglionic nicotinic receptor (EMDB entry EMD-20488). (a) The published
structure is shown in the deposited map. The modeled part of the Fab fragments consists of the variable domains of the heavy chain (light orange) and the
variable domains of the light chain (light green). The map is of much poorer quality for the constant domains of these chains, at the bottom of the image.
(b) The search sphere, corresponding to the uninterpreted map region in the lower right panel (a), is indicated by the yellow sphere. (c) The placed
model for the constant domain from chain D of PDB entry 4wfe is shown as a blue cartoon, while the model derived from chain H of PDB entry 3mxv is
shown in pink.

Table 2
Results of emplace_local searches for megabody in complex with GABA
receptor.

Megabody
copy

Sphere
shift†
(Å)

Rotation
eLLG‡

Top
rotation
LLGx

Correct
rotation
LLG}

Correct
RFZ‖

Final
LLG

Run
time
(s)

1 0 54.7 � 13.4 (4) � 13.4 (1) 5.63 805 58.4
2 0 55.5 � 15.3 (11) � 15.3 (1) 5.24 536 54.7
3 0 54.6 � 11.9 (3) � 11.9 (1) 5.90 540 56.6
4 0 54.8 � 12.6 (6) � 12.6 (1) 5.62 523 56.3
5 0 54.5 � 12.1 (5) � 12.1 (1) 5.80 533 55.9
1 � 9 68.1 � 38.6 (55) — (—) — 14 182.8

1 � 6 64.7 � 32.4 (37) � 38.3 (16) 3.57 548 99.5
1 � 3 60.7 � 27.4 (33) � 27.4 (1) 4.52 547 57.9
1 +3 51.5 5.8 (1) 5.8 (1) 7.57 505 56.3
1 +6 51.3 18.6 (1) 18.6 (1) 8.81 505 55.4
1 +9 53.6 31.7 (1) 31.7 (1) 9.89 505 54.7

† Shift of the search sphere relative to the fivefold rotation axis. ‡ Expected log-

likelihood-gain (eLLG) score for the rotation search (Read et al., 2023). x Top log-

likelihood-gain score from the rotation search (number of accepted orientations in

parentheses). } Log-likelihood-gain score for correct orientation (position in search

list in parentheses). ‖ Rotation-function Z-score for the correct orientation.



This makes it difficult to extract appropriately sized spheres of

density for the docking algorithm; the map analysis assumes

that the solvent region has the same noise distribution as the

protein region, so it is not appropriate to pad the input map

with zeros.

We wished to see whether models of the constant domains

could be docked, either with the global em_placement search

or with emplace_local. In the published structure, the initial

model for the variable domain of the light chain was derived

from PDB entry 4wfe (Brohawn et al., 2014) and the variable

domain of the heavy chain from PDB entry 3mxv (Maun et al.,

2010). Our models of the corresponding constant domains

were derived from the same PDB entries. Although there are

two independent copies of the Fab bound, only that interacting

with the �3 subunit in chain D of PDB entry 6pv8 is suffi-

ciently far from the edge of the deposited reconstruction.

Global docking trials of the constant domains with

em_placement failed for reasons similar to those encountered

in the previous two test cases: strong noise from better-

ordered parts of the map that contained other components

misled the search algorithm. When docking the constant

domain from the light-chain model (chain D of PDB entry

4wfe) in the global search, three potential solutions were

found with LLG values varying from 35 to 70. The solutions

are nonrandom, but they incorrectly superimpose �-structure

from the constant domain on �-structure from the better-

ordered components. Docking the constant domain from the

heavy-chain model (derived from chain H of PDB entry 3mxv)

gave similar incorrect results, with LLG values varying from

23 to 58 for five potential solutions, which are all incorrect but

nonrandom.

In contrast, local docking with emplace_local succeeded

when care was taken to avoid searching in the part of the map

occupied by the variable domains. This was easiest to achieve

with the interactive ChimeraX interface. Fig. 4(b) shows the

positioning of the search sphere in ChimeraX to avoid the part

of the map accounted for by the variable domains of the

relevant copy of the Fab (interacting with the �3 subunit in

chain D of PDB entry 6pv8), while Fig. 4(c) shows the result of

searching within this volume for the two constant-domain

models. The light-chain constant-domain model gave an LLG

score of 159 and a map correlation of 0.473, while the heavy-

chain constant-domain model yielded an LLG of 135 and a

map correlation of 0.481.

4.2. Local searches without half-maps

Half-maps are required in em_placement to estimate the

direction and resolution dependence of the signal and noise

in the likelihood target. The approximation that we use in

emplace_local when half-maps are unavailable ignores the

direction dependence and assumes that the resolution

dependence of the signal to noise can be modeled by a simple

isotropic exponential falloff governed by the estimated local

resolution of the map, given in equation (1). These approx-

imations might be expected to limit the success of this method,

especially when the local signal is poor or the appropriate

local resolution is uncertain. For this reason, we chose to look

in detail at test cases in which the global docking search failed

and where the signal to noise was marginal even for local

docking searches.

4.2.1. Chain L of the E. coli respiratory complex I. As noted

above, the local map resolution around chain L is estimated by

the original authors to be about 9–11 Å, although the nominal

(best) resolution for the whole reconstruction is 3.8 Å. In

addition, the signal to noise for this map is highly anisotropic;

the authors noted substantial orientation bias in the particles

(Kolata & Efremov, 2021). We ran a series of local docking

tests using either half-maps or the full map, and varying the

research papers

Acta Cryst. (2024). D80, 588–598 Randy J. Read et al. � Likelihood-based interactive local docking 595

Table 3
Effect of resolution on docking searches with half-maps and full maps.

(a) Complex I chain L.

dmin (Å) Top LLG† Top incorrect LLG Run time (s)

Half-maps
3.8 49.9 — 33.4
5.0 58.8 — 25.3
7.0 90.1 — 17.8

9.0 88.3 — 16.0
11.0 78.3 — 15.6
13.0 48.6 — 15.7

Full map
3.8 104.5‡ 104.5 122.8
5.0 116.9‡ 116.9 67.7

7.0 106.5 — 13.7
9.0 83.6 — 10.2
11.0 66.3 — 10.5
13.0 53.3 — 10.5

(b) Megabody bound to GABA receptor.

dmin (Å) Top LLG Top incorrect LLG Run time (s)

Half-maps
1.7 505.4 — 57.8

3.0 608.0 — 36.3
5.0 367.3 — 27.8
7.0 218.6 — 27.8
9.0 59.2‡ 59.2 36.1
11.0 47.9‡ 47.9 27.1

Full map
1.7 629.9 — 35.0

3.0 541.0 — 19.9
5.0 211.8 — 14.6
7.0 106.2 — 14.3
9.0 66.1 45.4 18.0
11.0 27.6‡ 27.6 13.7

(c) Fab constant domain.

dmin (Å) Top LLG Top incorrect LLG Run time (s)

Half-maps

3.87 118.0 — 20.3
5.0 158.9 — 19.9
7.0 150.1 — 20.4
9.0 140.3 — 19.1
11.0 85.8 40.3 29.2
13.0 62.9 — 18.1

Full map
3.87 156.1 — 11.1
5.0 147.0 — 10.5
7.0 91.6 — 10.8
9.0 61.1 — 10.1
11.0 47.3 34.5 16.5

13.0 34.5 26.6 11.3

† Top log-likelihood-gain score from docking search. ‡ Incorrect solution.



nominal resolution limit (Table 3). If half-maps were used,

the docking searches were successful for all resolution limits

tested, from 3.8 to 13 Å. However, when the full map was used

the docking searches failed for resolution limits better than

7 Å (i.e. when the resolution was indicated to be better than it

actually is), confirming that the method using a single full map

is indeed more sensitive to the choice of resolution limit. The

full-map docking calculation at higher resolution limits was

drawn into fitting the better-ordered map features of chain M.

Ideally, a proper calibration of the error model in the

likelihood target, based on the statistical analysis of half-maps,

should account for the lack of information in higher resolution

Fourier terms than the local resolution, effectively ignoring

them. However, we see that the inclusion of high-resolution

data degrades the performance of the docking algorithm in

this case, even when half-maps are used, indicating that there

is still room for improvement in the algorithms estimating the

signal and noise contributions.

4.2.2. AlphaFold model of megabody bound to GABA

receptor. In this case, the imposition of fivefold symmetry on

the reconstruction has helped to ensure that there is little

anisotropy in the signal or noise. As a result, the approxima-

tion used for the full-map searches is more appropriate than in

the other test cases and the success rates are very similar

(Table 3). In fact, searches imposing a resolution limit of 9 Å

fail with the half maps but succeed with the full map, although

the separation between the correct score and the top incorrect

score is relatively small.

4.2.3. Constant region of Fab bound to a3b4 ganglionic

nicotinic receptor. This test case is complicated by the fact

that the deposited reconstruction has been truncated close to

the unmodelled domains. The heavy-chain constant domain

from the Fab bound to chain D is furthest from the map

boundary, so the model derived from chain H of PDB entry

3mxv was used for the full map docking comparisons.

Both sets of searches, using half-maps or full maps, succeed

over the full range of resolution limits tested, from 3.87 to

13.0 Å. However, the half-map searches yield less ambiguous

answers and, although the full-map search at 13.0 Å resolution

succeeds, there is very little distinction between the correct

placement and the top incorrect solution.

Note that for all test cases the single-map protocol is up to

twice as fast when it succeeds, because it does not require the

likelihood-based estimation of signal and noise parameters.

In addition, in a variety of tests for cases with better signal

strength, the single-map protocol was found to be robust and

efficient (results not shown).

4.3. Comparison with the ChimeraX fitmap algorithm

The Local EM Fitting procedure complements an existing

fitmap algorithm integrated into ChimeraX. Most commonly,

fitmap is used to optimize the rigid-body fit of a model that has

already been placed approximately correctly, but it can

optionally be used to test a number of random orientations

and positions around a selected location in the map.

We tested fitmap on the test cases used for emplace_local,

initially using default settings for the random local search

where possible. The mechanisms to control the search volume

in fitmap and emplace_local differ, but we attempted to make

the search volumes roughly comparable. In fitmap, the radius

keyword is used to constrain the largest possible shift of the

search model from its starting position. In emplace_local, on

the other hand, there is no hard limit, but the initial search is

effectively limited to locations where there is significant

overlap between the model and the cut-out sphere. For fitmap

we therefore set the search radius to half the radius of the

sphere enclosing the search model; emplace_local would be

unlikely to greatly exceed this size of shift, because less than

two-thirds of the sphere enclosing the model would overlap

with the cut-out sphere. The search is carried out around the

starting position of the model, which was placed for these tests

by superimposing it on the deposited structure. (Control tests

with the position offset by a fraction of the model radius gave

similar results; not shown.) The number of random trials

(search keyword) was set initially to 1000, which made the

computing requirements comparable to those of emplace_

local. The default score that is optimized for fitting a model in

a map is the average map value at atomic positions in the

model. If the resolution keyword is supplied, then a map-to-

map search is performed, scored by the integral of the product

between a map generated at that resolution from the placed

model and the experimental map. The results of both search

methods vary with the level of smoothing or sharpening

applied to the input map, in contrast to the emplace_local

method, where the effects of noise at high resolution are

accounted for by the variation in Fourier space of the noise

power estimates. Different levels of smoothing were not

explored in this work. For fitmap, the resolution parameter

should preferably be set to the local map resolution, but a

variety of values were tested to determine the sensitivity to

this parameter.

4.3.1. Chain L of the E. coli respiratory complex I. Using the

command fitmap #2 in #1 search 1000 radius

20.5, where the trimmed model from chain L of PDB entry

3rko was display item 2 and the deposited map was display

item 1, the correct placement (with an average map value

score of 1.444) was found in ten of the 1000 trials, taking a total

of 44.6 s. If either the search model was moved closer to the

position of chain M in the deposited structure or the search

radius was increased to 80 Å, the fitmap algorithm was led to

find an incorrect superposition on chain M with a higher score

of 1.796, similar to the single full-map search with emplace_

local when run at resolutions higher than 7 Å.

The fitmap procedure in ChimeraX also succeeded when a

resolution keyword was given to activate the map-to-map fit,

for a range of resolutions between 3.8 and 9.0 Å. Run times

were considerably longer than the comparable runs using the

emplace_local procedure (Table 3), taking from 46.2 s at 9.0 Å

to 186 s at 3.8 Å. When a resolution of 11.0 Å was chosen for

fitmap, the correct placement was second in the list of possi-

bilities, with a score of 0.599 compared with 0.602 for the

highest incorrect result. By comparison, emplace_local
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succeeded at resolutions as low as 13.0 Å using either the full

map or half-maps (Table 3).

4.3.2. AlphaFold model of megabody bound to GABA

receptor. Three sets of 1000 search trials were carried out

using the fitmap command with a radius of 24.0 Å, each taking

about 43 s. In one of these sets the correct placement with an

average map value score of 0.027 was found twice, but in the

other two sets of trials the search failed, yielding a top score of

0.015. A larger-scale search found the correct solution in five

of 5000 trials, taking 211 s. To be confident of finding the

correct solution in the random search for this problem, we

conclude that several thousand trials would indeed be

required. By comparison, the successful searches using the

deterministic emplace_local algorithm took about 55 s

(Table 2).

The map-to-map option was somewhat more successful,

giving 3–8 solutions per 1000 trials when the resolution was

specified in the range 1.7–5.5 Å (taking 85.2–157 s), but failing

or yielding only a single solution when the resolution was set

lower. In contrast, emplace_local succeeded when using half-

maps with the resolution specified between 1.7 and 7.0 Å and

with just the single full map at resolutions as low as 9.0 Å, with

each of these calculations taking less than a minute (Table 3).

4.3.3. Constant region of Fab bound to a3b4 ganglionic

nicotinic receptor. The ChimeraX fitmap command was tested

for docking the same copy of the heavy-chain constant domain

(derived from chain H of PDB entry 3mxv) as the full map in

emplace_local tests. A default search with 1000 trials and a

radius of 22.7 Å ran in 34.4 s; the correct solution was found

eight times with a score of 0.00805, but an incorrect solution

(superimposed on the light chain) had the slightly higher score

of 0.00820. The map-in-map option was again more successful,

with the top-scoring solution being correct for resolutions of

3.87–9.0 Å, taking from 35 to 58 s. With a resolution of 11.0 Å,

the correct solution (found five times) was third in the list with

a score of 0.734, compared with 0.756 for the top solution. At

13.0 Å the correct solution was not found, even with as many

as 10 000 trials.

5. Discussion and conclusions

Generally, it is preferable to carry out an unbiased search over

a full cryo-EM map for a component of a complex or multi-

domain protein. However, there are common situations in

which an unbiased search is unsuccessful but there are good

hypotheses for the location of a component. The emplace_

local program was built using a subset of features of the global

em_placement program, with the expectation that a local

search would be faster and could be more sensitive than a

global search. The results presented here demonstrate that

this expectation was well founded.

The local search typically takes under a minute to run,

which is in the range required for a useful interactive tool. A

new plugin for the interactive molecular-graphics program

ChimeraX (Goddard et al., 2018) has therefore been devel-

oped as part of a project to incorporate algorithms from the

Phenix package (Liebschner et al., 2019) into ChimeraX.

The local docking approach relaxes the strict requirement

for half-maps, which is very useful for legacy cryo-EM struc-

tures. The single-map protocol is somewhat less sensitive than

the protocol using two half-maps, and it is necessary to specify

the local map resolution [derived, for instance, from ResMap

(Kucukelbir et al., 2014) or phenix.local_resolution], but it can

work well in a variety of cases. In many cases, the fitmap global

fitting procedure built into ChimeraX also works, but the

emplace_local approach has several advantages. Firstly, it gives

log-likelihood-gain scores on an absolute scale that are inde-

pendent of any scaling or overall sharpening applied to the

maps; the user can be confident that scores around 60 are

plausible and scores much higher are very likely to be correct.

In contrast, the fitmap scores depend on the mode chosen,

with the absolute values depending on scaling and optimal

results depending on the choice of sharpening parameters for

the map. Secondly, emplace_local is deterministic, so that there

is no concern that a larger number of trials might have found a

solution that was randomly missed. Thirdly, there is no need to

switch modes for different cases depending on factors such as

the resolution of the map; what matters is that the model is

large enough to explain significant variations within the map

or maps.

There are substantial advantages to having the graphical

ChimeraX interface. Some of the most difficult docking

problems involve placing poorly ordered components next to

components that are more well ordered. Including well

ordered nontarget regions of the map in the search volume

adds noise to the search, but being able to visualize the search

volume makes this easier to avoid. In addition, the user gains

rapid visual feedback on the plausibility of the docking result

to complement the numerical likelihood and map-correlation

scores. An alternative and potentially powerful approach to

handling noise from well ordered neighboring components

would be to account for what has already been learned from

placing models in that region, and this will be explored for

future versions of em_placement and emplace_local.
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