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A group of three deep-learning tools, referred to collectively as CHiMP (Crystal

Hits in My Plate), were created for analysis of micrographs of protein crystal-

lization experiments at the Diamond Light Source (DLS) synchrotron, UK. The

first tool, a classification network, assigns images into categories relating to

experimental outcomes. The other two tools are networks that perform both

object detection and instance segmentation, resulting in masks of individual

crystals in the first case and masks of crystallization droplets in addition to

crystals in the second case, allowing the positions and sizes of these entities to be

recorded. The creation of these tools used transfer learning, where weights from

a pre-trained deep-learning network were used as a starting point and repur-

posed by further training on a relatively small set of data. Two of the tools are

now integrated at the VMXi macromolecular crystallography beamline at DLS,

where they have the potential to absolve the need for any user input, both for

monitoring crystallization experiments and for triggering in situ data collections.

The third is being integrated into the XChem fragment-based drug-discovery

screening platform, also at DLS, to allow the automatic targeting of acoustic

compound dispensing into crystallization droplets.

1. Background and introduction

Determination of the three-dimensional structure of proteins

by X-ray crystallography is a widely adopted technique that

provides invaluable information to allow the function of

proteins to be elucidated. It is also capable of providing

empirical evidence for the binding of ligands, such as enzyme

substrates, cofactors or drug-like molecules, that may modu-

late enzymatic activity. Despite the recent revolutions in

protein structure prediction by artificial intelligence (AI) such

as AlphaFold (Jumper et al., 2021) and cryo-electron micro-

scopy (Cheng, 2018), X-ray crystallography is still the tech-

nique capable of providing the highest resolution atomic

coordinate information for these macromolecules, thereby

enabling analysis of biochemical reactions and binding inter-

actions that are not discernible using other methods.

X-ray crystallography is reliant on the ability to grow

crystals, where the constituent molecules arrange into an

ordered lattice that is both regular enough and large enough

to form a measurable diffraction pattern when interacting with

a beam of high-energy (short-wavelength) photons. Since it

is generally energetically unfavourable for large, soluble,

macromolecules to pack into an ordered lattice in aqueous

solutions, protein crystallization is a rare event. Finding the

correct combination of protein concentration, temperature

and added chemical components to make this process
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favourable takes much trial and error (Ng et al., 2016). As a

consequence, protein crystallographers perform hundreds,

if not thousands, of experiments, thereby increasing their

chances of success. This, in addition to the difficulty and high

cost of producing a pure protein solution, leads to experiments

being set up on a small scale (with a total volume of a few

hundred nanolitres), often with the aid of a liquid-dispensing

robot.

In a typical vapour-diffusion crystallization experiment, a

solution containing the protein is mixed with a ‘cocktail’ of

chemical components in order to form a crystallization drop.

Collections of these drops are grouped together on crystal

microwell plates that can contain 96 (or multiples thereof)

cocktail conditions. Initially, the cocktails are selected from

commercial collections that have been collated based upon

what has been reported in the literature to have been

successful for other proteins (Jancarik & Kim, 1991). Once an

initial ‘hit’ condition has been found, further optimization

experiments in the chemical space around this set of compo-

nents can then be used to improve crystal quality and allow

scaling-up of the experiments for subsequent studies.

Knowledge of reproducible conditions for protein crystal

growth underpins methods such as fragment-based drug

discovery (FBDD; Douangamath et al., 2021) and macro-

molecular room-temperature X-ray crystallography (RTX;

Fischer, 2021; Moreno-Chicano et al., 2022). In FBDD, large

numbers of consistent crystals are required for soaking

experiments in which large libraries of low-molecular-weight

compounds are trialled as binders to the protein in question.

These compounds are added to the crystallization drops after

the crystals have grown and, after a set time period, X-ray

diffraction data are collected for each combination of

compound and crystal. This allows the discovery of compound

class, binding mode and binding location for compound series

that can be subsequently developed into drug leads. For RTX

experiments, however, large numbers of smaller crystals are

grown in the same droplet or vessel and data collected across

multiple crystals are often merged together. Growth of these

crystals can be achieved using a variety of methods, for

example batch crystallization (Beale et al., 2019). RTX enables

the study of proteins under near-physiological conditions,

giving insight into protein dynamics and ligand binding in an

environment that is free from cryoprotectants and crystal

imperfections caused by the cooling process itself (Thorne,

2023).

Regardless of the end goal of the experiment, protein

crystallization trials can be monitored periodically, either

manually or via the use of a robotic imaging microscope. In the

case of vapour-diffusion experiments, these robotic ‘imagers’

incubate the experimental plates of crystallization drops,

identified by a unique barcode, and extract them from storage

using a motorized arm before capturing images of the drops

using a digital microscope camera. Collection of these images

(or micrographs) takes place on a schedule of predefined

timepoints that may cover a period of days or months. The

combination of a large number of experiments (drops) and

a number of imaging timepoints leads to the creation of

hundreds of microscope images that need inspection either by

an expert or by an automated system that is able to achieve the

accuracy of an expert.

Once crystals have been grown, the subsequent process of

data collection for macromolecular X-ray crystallography

(MX) has become increasingly automated, particularly at

synchrotron experimental stations. In the case of single-crystal

experiments, crystals are first mounted onto standardized

pins (normally by humans), and robotic arms are then used

to change samples that are stored in cryo-cooled dewars

(Cipriani et al., 2006; Lazo et al., 2022; McAuley et al., 2015;

Wasserman et al., 2015); this removes the need to approach the

X-ray beam shutter during the allocated experimental time

and perform subsequent safety checks before opening the

shutter again. This, when coupled with faster, more sensitive

detectors, leads to higher sample throughput as well as the

ability to collect data remotely. To aid this automation, a

number of semi-automated as well as fully automated solu-

tions have been created to centre the crystal in the X-ray

beam; these include X-ray-based centring approaches (Song et

al., 2007) and image-based approaches (Pohl et al., 2004), some

of which use deep learning (Ito et al., 2019; Schurmann et al.,

2019). For RTX a different approach can be taken, with data

collection taking place in situ within the environment where

the crystals are grown (Healey et al., 2021; Ren et al., 2020;

Sanchez-Weatherby et al., 2019); this removes the need to

manipulate the samples, which in turn reduces the need for

human intervention to collect data.

At DLS, the automated VMXi beamline facility (Sanchez-

Weatherby et al., 2019) allows RTX experiments to be run in a

fashion that minimizes the need for any intervention by the

scientific users of the beamline in the data-collection process.

Crystallization experiments are set up by a liquid-handling

robot and the resulting crystallization microplates are stored

in an imaging incubator that is located at the beamline itself.

The plates are then imaged periodically on a predefined

schedule. Firstly, crystal location coordinates for data collec-

tion are determined from these images and recorded in the

ISPyB laboratory information-management system (LIMS;

Delagenière et al., 2011). Then, after the user has selected

from the list of points and chosen a recipe for data collection,

the crystallization plate is automatically transferred to the

beamline imaging hutch. Data collection is performed in situ,

with the microplate mounted directly on a goniometer. Any

resulting diffraction patterns are then processed by way of

automated software pipelines that include the capability to

merge data sets from multiple crystals (Gildea et al., 2022).

Prior to the work described in this study, both the classification

of experimental outcomes and the identification of coordi-

nates for data collection required the scientific user to log into

the SynchWeb interface to ISPyB (Fisher et al., 2015) and

browse through all of the microscope images before marking

the location of points for data collection manually; a time-

consuming task.

At the XChem facility, which is also located at DLS in

addition to the Crystallisation Facility at Harwell, FBDD

campaigns are run on proteins of interest using hundreds of
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low-molecular-weight compounds (fragments; Douangamath

et al., 2021). Rather than co-crystallizing the compound with

the protein, many crystals of the same protein are grown in the

absence of compounds and the fragments are subsequently

soaked into the crystals. Generally, after a compound has been

dispensed into one drop that contains one or more crystals,

the molecule is allowed time to diffuse into the crystal lattice

before the crystals are manually mounted on pins and cryo-

cooled for X-ray data collection. The compounds are

dispensed in the form of high-concentration solutions in

dimethyl sulfoxide (DMSO) and precisely targeted into the

crystallization drop using acoustic dispensing. The targeting

location is manually determined upon the inspection of a

micrograph of the crystal drop by the scientist, who will try to

choose a point within the drop that is far enough from crystals

of interest to prevent damage, either from a high local

concentration of DMSO or from the physical stresses asso-

ciated with bombardment of the crystal with a drop of foreign

liquid.

In this study, alongside providing source code and training

data (see the Data availability section), we describe the

creation of two deep-learning tools for the DLS VMXi

beamline that simplify the task of browsing images and

selecting coordinates for data collection. These tools can

potentially replace the need for any user intervention at all,

thereby removing a major bottleneck in the workflow. The first

is an image-classification network given the name the CHiMP

(Crystal Hits in My Plate) Classifier, which outperforms the

best classifier network from the literature (Bruno et al., 2018)

on our in-house images. The second is an image object-

detection and instance-segmentation network named VMXi

CHiMP Detector. Additionally, we describe a third software

tool, XChem CHiMP Detector, an image object-detection and

instance-segmentation network that allows automated calcu-

lation of coordinates for acoustic dispensing of compound

solutions into crystallization drops. XChem CHiMP Detector

facilitates the automated dispensing of high-concentration

fragment compounds for FBBD campaigns that can involve

thousands of compound and crystal combinations.

1.1. Background on the automated classification of

experimental images

Over the past 40 years, a wide variety of techniques have

been investigated to automate the monitoring of crystal-

lization trials, with the methodology used reflecting changes

in hardware and software capabilities during this period.

Comparisons of the effectiveness of these analyses are often

difficult, with each institution having its own scoring system

for experimental outcomes, which then leads to an arbitrary

number of categories (for example different types of protein

precipitation, different sizes and classes of crystals, and other

phenomena such as phase separation or clear drops) that each

image is labelled with. In addition, human expert scorers often

disagree on the categories assigned to the same set of images,

with a reported rate of �70% agreement between 16

crystallographers in one study (Watts et al., 2008) and an

agreement rate of between 50% and 70% between three

researchers in another (Milne et al., 2023). This disagreement

not only reflects the difficulty of categorizing a continuum of

outcomes (for example ‘Light Precipitate’ versus ‘Heavy

Precipitate’), but also the convention of only assigning one

label to an image which may represent multiple outcomes

(for example, an image of a drop containing spherulites and

contamination by a clothing fibre could be labelled as either

‘Spherulites’ or ‘Contaminated’).

1.1.1. Classification metrics

A range of metrics are used to report the effectiveness

of algorithms that automate the classification of images.

Accuracy is widely used, but can be a misleading metric for

unbalanced data sets such as those from crystallization

experiments. Images that record successful crystallization may

be a minority class in the raw data; however, conversely, they

are often the majority class in images that have been scored.

This is because scientists will tend to label images that contain

crystals and ignore those that do not. Here, we will focus on

the precision, the recall and the F1 measure of correctly

classifying images into the ‘Crystals’ class to compare classi-

fication performance across the literature as well as to assess

the performance of the tools described in this study. This class

is a superset of all categories of crystalline outcomes excluding

crystalline precipitate.

Precision is defined as

true positives

true positives þ false positives
: ð1Þ

Recall is defined as

true positives

true positives þ false negatives
: ð2Þ

The F1 measure is the harmonic mean of precision and

recall:

F1 ¼ 2�
precision � recall

precision þ recall
: ð3Þ

As shown in equation (1), precision is the ratio of correctly

predicted positive observations to the total predicted posi-

tives, which means that when a methodology with a high

precision score predicts a positive result, it is likely to be

correct. A high precision can also be obtained when the

method is conservative in its positive predictions, missing the

true positives in order to avoid false positives. The recall

metric (equation 2), however, measures the fraction of

correctly predicted positive instances retrieved by the method

(the sensitivity). Methods with higher recall values capture a

larger portion of the true positives, minimizing false negatives.

There is a trade-off between optimizing a method for each of

these two measures, with a more precise method missing some

actual positive instances, resulting in a lower recall, and a

method with a high recall capturing more false positives along

with the true positives, reducing precision. The F1 score

(equation 3) is a harmonic mean of precision and recall and

balances both measures in one metric.
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1.1.2. Previous investigations of automated classification

The first investigations applied image convolutions to

enhance vertical and horizontal edges (Ward et al., 1988)

before further interpretation that used a nearest-neighbour

line-tracking algorithm, or a Hough transform (Hough, 1962),

to detect straight lines (Zuk & Ward, 1991). Feature extraction

from images coupled with statistical techniques such as linear

discriminant analysis (Cumbaa et al., 2003; giving a precision

of 0.24, a recall of 0.66 and an F1 of 0.35 for ‘Crystals’) or self-

organizing feature maps (Kohonen, 1982; Spraggon et al.,

2002) were subsequently explored.

Several studies focused on extracting image-texture infor-

mation for feature generation (Cumbaa & Jurisica, 2010; Liu et

al., 2008; Ng et al., 2014; Watts et al., 2008). Machine-learning

classifiers were trained using these features. For example,

Cumbaa & Jurisica (2010) used 1492 features to train a ten-

category random forest ensemble that achieved a classification

precision of 0.64, a recall of 0.71 and an F1 of 0.67 for the

‘Crystals’ class. Another method involved convolution with a

bank of filters to assign ‘texton’ (texture prototype) values to

pixels, creating histograms of texton frequencies (Ng et al.,

2014). These histograms were used to train a random forest

ensemble and the posterior probability output by the

ensemble was used to rank images based on the likelihood of

containing ‘interesting’ features, aiding scientists in efficient

image selection.

The rise of convolutional neural networks (CNNs),

especially deeper models (with more trainable layers), has

removed the need for the extraction of human-designed

features since the model is able to adapt or ‘learn’ new

convolutional kernels which can extract appropriate features.

The pioneering CNN for classifying crystallization trial

images, CrystalNet, was a seven-layer custom network (Yann

& Tang, 2016). It was trained on a set of 68 155 images (Snell

et al., 2008) in order to classify images into ten classes. The

resulting precision, recall and F1 metrics on the validation set

were 0.81, 0.77 and 0.79, respectively, for the ‘Crystals’ class.

The subset of data used for training consisted of images from

microbatch-under-oil experiments where three experts inde-

pendently agreed on the image class. This differs from a real-

world data set, where the image class is often ambiguous.

In a subsequent investigation by Ghafurian et al. (2018),

CrystalNet was tested on an internal data set of 486 000

images at Merck. They found that the accuracy of the model

was 73.7% on these data, as opposed to the 90.8% reported in

the original study. The authors then went on to train a number

of different CNN architectures on their data set, again using

ten image categories. During training, they compensated for

the class imbalance: images containing crystals were a

minority class, with nine times more images that did not

contain crystals (since successful crystallization is a rare

event). This compensation was performed using image

augmentations to increase the size of their training data,

generating images in inverse proportion to the size of each

class of image. The final training data set had over a million

images. They found that a deep ResNet model (He et al., 2016)

with 56 trainable layers gave the best results, with a recall of

0.94 when classifying the test set of >200 000 images.

The next, and arguably the most high-profile, CNN to be

created for crystallization-micrograph classification was that

from the Machine Recognition of Crystallization Outcomes

(MARCO) initiative (Bruno et al., 2018; https://marco.ccr.

buffalo.edu/). In this work, a customized variant of the 42-

layer Inception v3 CNN architecture was trained on a set of

415 990 images that were collected from several organizations,

including GSK and Merck. Rather than a ten-class classifica-

tion system, the MARCO network outputs one of four labels,

namely ‘Crystals’, ‘Clear’, ‘Precipitate’ or ‘Other’. For the

‘Crystals’ class, MARCO achieves a precision of 0.94, a recall

of 0.91 and an F1 measure of 0.93 on the validation set of

images. In addition, the authors also created a test set of

images of sitting-drop experiments solely from their institu-

tion that had been hand-scored by an expert. In this set of

images, the network achieved a precision of 0.78, a recall of

0.87 and an F1 score of 0.82. MARCO has been seen as the

state of the art in recent years and has been incorporated into

commercial software for crystal plate imagers (Formulatrix,

2019).

The MARCO data set is openly available (https://marco.ccr.

buffalo.edu/) and has been used to train and evaluate the

models in other studies. One approach used two CNNs (Miura

et al., 2018): a U-Net model (Ronneberger et al., 2015) to

segment the liquid droplets followed by an Inception v3

architecture CNN (Szegedy et al., 2016) to classify the

experimental outcomes. The classifier network was pre-

trained on a subset of the ImageNet database of images

(Russakovsky et al., 2015), which consists of 1.2 million images

from 1000 mutually exclusive classes. Pre-training in this

fashion results in a model that has already learnt a feature

representation for extracting information from images. The

weights from this network are then fine-tuned to perform a

new classification task; the advantage of this strategy over

training a model with randomized weights is fewer training

epochs are required and there is less chance of overfitting the

model when the training data set is small. The data set used in

this particular study was a small subset of the MARCO data

set (150–450 images for the U-Net and 99 images for the

Inception v3 network). The authors concluded that using their

two-CNN approach was superior to using one classifier

network; however, the final precision and recall metrics for

classifying the images are not given.

In another study, an EfficientNet CNN architecture (Tan &

Le, 2019) was trained on the full MARCO data set (Edwards

& Dinc, 2020). In this case, the same validation set was chosen

as used by Bruno et al. (2018), but a separate test set of images

was also created, comprising 10% of the original training set.

The images were classified into the same four categories as

MARCO. On the validation set they reported a precision of

0.87, a recall of 0.87 and an F1 score of 0.87 for the ‘Crystals’

class. On their test set they reported a precision of 0.95, a

recall of 0.97 and an F1 metric of 0.96 for ‘Crystals’. This

finding is somewhat unexpected, given that these data

originally came from the same pool of images as the training
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and validation sets. For comparison, the authors then used the

original MARCO model to classify the same test set (which

had formed part of the training set for this particular model),

resulting in a precision of 0.94, a recall of 0.91 and an F1 of

0.92 for ‘Crystals’; these metrics correspond to the published

results in Bruno et al. (2018). The rationale behind utilizing

this test set for comparisons rather than the original validation

set is unclear.

As part of a study which carried out a further investigation

into the structure of the MARCO data set, Rosa et al. (2023)

trained a ResNet50 network on the data. They achieved a

slight improvement in overall accuracy (94.63% versus the

original MARCO score of 94.5%). The authors also found that

supplementing the MARCO training data with local images

(images from their own equipment in their institution) helped

to improve the accuracy by as much as 6% when classifying

these local images as opposed to using the MARCO data set

alone. In addition, they examined the reasons behind the

poorer performance of models trained on the MARCO data

set alone when classifying images from sources that are not

part of the original data. These reasons include data redun-

dancy (duplicate images), the resolution of images included in

the data, mislabelling of images, plate and imager types, and

the inclusion of a small number of images from lipid cubic

phase (LCP) experiments; these particular images can have

a dramatically different appearance to images of standard

sitting-drop vapour-diffusion experiments.

In their study, Milne et al. (2023) fine-tuned four different

CNN architectures on their own data set of 16 317 images. The

classifiers were pre-trained on ImageNet and were chosen to

be trainable with more limited computational resources. The

authors found that they achieved better performance by only

using their own images and not supplementing them with

those from the MARCO data set. Each model was found to

have its own strengths and weaknesses at categorizing images

into the eight categories that they had defined. For example,

for images containing crystals, the Xception architecture

(Chollet, 2017) was found to have the highest precision, at

0.96; however, the recall was 0.75, giving an F1 of 0.84. As a

result of this, they opted to combine multiple classifiers into

an ensemble of models, where majority voting was used, to

achieve an accuracy comparable to that of MARCO. This was

possible even when excluding the Xception network and just

using the other three architectures, namely Inception v3,

ResNet50 and DenseNet121 (Huang et al., 2017).

Thielmann et al. (2023) trained four different CNN archi-

tectures on a data set generated by their own robotic imaging

microscopes. These were AlexNet (Krizhevsky et al., 2012),

VGGNet (Simonyan & Zisserman, 2014), ResNet50 and

SqueezeNet (Iandola et al., 2016). They chose to adopt an

approach similar to Miura et al. (2018), and first trained a

U-Net network to detect the experimental droplets. After

detection, the droplet region of interest (ROI) was further

subdivided into image patches that were used to train a

separate CNN model to classify the images into 12 classes.

Their initial data-set size was 33 872 images and their process

of subdividing the images led to >324 000 patches (the authors

did not state the split between training and validation sets). In

order to classify the images, it was again necessary to divide

the image into patches and then classify each patch individu-

ally before arriving on a class for the parent image using a

ranking system. They achieved the best overall success with

the SqueezeNet architecture, although AlexNet gave the

highest success for the ‘Crystals’ class.

1.2. Background on crystalline object detection in images

Despite many years of research effort dedicated to classi-

fying experimental micrographs into categories, it is only more

recently that the possibility of detecting the locations of

protein crystals and/or drops within the images has been

investigated. Object-detection techniques define a bounding

box for the entity in the image and assign a class label, giving

an approximate measure of size as well as the (x, y) coordi-

nates. For more accurate sizing of entities in the image,

instance segmentation can be used. Instance segmentation is

the process in which individual objects in an image are sepa-

rately identified before all of the pixels in the object are given

a label. This allows the counting of, as well as the measurement

of, crystals from images to give size distributions.

Crystal object detection and instance segmentation have

been investigated most thoroughly in the context of batch

experiments on proteins and small molecules in the field of

chemical engineering. The use of reproducible procedures

means that the resulting crystal morphology is often known,

which allows model-based approaches to be used (Larsen et

al., 2006; Pons & Vivier, 1990). The size distributions measured

by these techniques can be used to characterize the end

products of industrial processes as well as to monitor the

crystallization process over time.

1.2.1. Object-detection metrics

To assess the performance of object-detection networks, the

mean average precision (mAP) metric is most commonly used.

The basis of the mAP metric is the precision and recall (as

described in Section 1.1.1, equations 1 and 2) as used for

classification tasks. However, in the context of object detec-

tion, where a bounding box is predicted for each object, the

definition of what constitutes a correct classification is

dependent on the degree of overlap between the predicted

bounding box and the actual ‘ground-truth’ bounding box.

This degree of overlap is measured using the intersection over

union (IoU) metric, which is defined in equation (4). When

considering instance segmentation, IoU is calculated in the

same manner but with the intersection and union of the

segmented areas as the equation terms.

IoU ¼
area of bounding box intersection

area of bounding box union
: ð4Þ

To calculate mAP, it is first necessary to plot a precision–

recall curve for each class. This is a plot of how these

two metrics change at different confidence thresholds for a

classifier. The average precision, defined as the area under

this curve, is then calculated for a range of IoU thresholds
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(although in some cases at just one IoU threshold). The mean

average precision is the mean of these calculated average

precision values when also averaged across all of the classes

detected. In addition to defining the average precision by IoU

threshold, evaluation can be split by object size to allow a

comparison of performance on ‘small’ (<32� 32 pixels) versus

‘large’ (>96 � 96 pixels) objects, for example.

Due to the complexities of mAP, to compare scores with

one another it is important to be sure that the mAP has been

calculated across the same range of IoU thresholds and also

calculated on the same model output (bounding boxes versus

segmentation masks). Although a higher mAP score means

more accurate detection and localization of objects in images,

there is no notion of what constitutes a good score. In all but

one of the previous studies described here, no metrics were

reported. In our study we report the mAP achieved so that it

may serve as a benchmark for future work.

1.2.2. Previous investigations of automated crystal detection

Gao et al. (2018) trained a network to perform object-

instance segmentation of crystals of l-glutamic acid. The Mask

R-CNN architecture that they used (He et al., 2020) has a

backbone network (often ResNet50 or similar) that extracts

features as part of a feature-pyramid network (FPN). The

levels within the FPN contain features at different resolutions,

allowing the network to be able to detect objects at different

scales in the image. The feature maps from the FPN are then

passed to a region-proposal network (RPN), which predicts

bounding-box proposals for regions of interest within the

image. The underlying features are aligned with the region

proposals before being passed on to parallel network

components which output bounding-box coordinates, a class

label for the object and a segmentation mask. The trained

network was able to predict instance-segmentation masks for

both the � and � crystal forms and allowed crystal size

distributions for both populations to be determined from

images. No performance metrics are given for this network,

however.

Bischoff et al. (2022) trained a single-shot alignment object-

orientated detection network (S2A OOD-Net; Han et al.,

2022) on simulated images of protein crystals in suspension.

Rather than outputting bounding boxes of a fixed orientation,

which was previously standard for object-detection networks,

this network can orientate the boxes to achieve the best fit

to crystals. The synthetic images were generated using ray-

tracing algorithms, with the size and alignment of the crystals

determined from a statistical distribution and the crystal shape

chosen at random from a collection of 1851 models. This

resulting training set contained 332 558 images. The model

was evaluated by calculating size distributions of crystals in

experimental images of Lactobacillus kefir alcohol dehy-

drogenase which had been grown in stirred-tank batch reac-

tors. No metrics were calculated for precision of detection

(such as mean adjusted precision).

In order to apply object-instance segmentation to sitting-

drop protein crystallization micrographs, Qin et al. (2021) used

a Mask R-CNN with a ResNet101 backbone network. This

backbone had been pre-trained on the Common Objects in

Context (COCO) data set (Lin et al., 2014). The COCO data

set contains 2.5 million labelled segmentation instances, and

utilizing a model pre-trained on this data has the same

advantages as utilizing classification networks pre-trained on

the ImageNet data set. The images used for training their

network were taken from the MARCO data set, but since

these data are annotated solely with classification labels,

instance-segmentation masks had to be created first. The

masks were created manually on the images using a drawing

tool named Labelme (Wada, 2023). The authors do not

disclose how many images were annotated or the size of their

training set, but they did report mAP scores of 0.47 (calculated

on 100 images at an IoU threshold of 0.65) and 0.70

(calculated on ten images at an IoU threshold of 0.5). An

improvement in the performance of their model was achieved

when including an image pre-processing step, namely the

Contrast Limited Adaptive Histogram Equalization (CLAHE)

algorithm (Pizer et al., 1987). A network trained on images

which were not processed using CLAHE had lower mAP

scores of 0.30 at an IoU threshold of 0.65 and of 0.67 at an IoU

threshold of 0.5. This localized image enhancement potentially

allows crystals in the shadow areas at the edges of drops to be

discerned more easily and could also reduce reflection arte-

facts from the surface of the drops.

2. Justification for the creation of new, in-house, tools

To enable further automation of the VMXi robotic in situ

macromolecular crystallography beamline at DLS, automatic

categorization of experimental micrographs alongside detec-

tion of crystal positions for fully automated data collection

was desired. The initial solution implemented for categorizing

the images was to use the MARCO classifier network (Bruno

et al., 2018), as described in Section 1.1.2. The network was

deployed in November 2019 and was tasked with classifying all

images collected by the Formulatrix Rock Imager machines at

the experimental facility. The predicted label probabilities and

the resulting image labels were added into the ISPyB LIMS

database and could then be viewed on a schematic plate

overview in the SynchWeb interface by beamline users (shown

in Supplementary Fig. S1). After an initial period of use,

however, the feedback from those using the new feature was

mixed, with mistrust that the images were being classified

correctly. As a result of this, a small-scale experiment was then

performed to evaluate the performance of the MARCO

classifier on micrographs captured in-house. This work (on a

limited set of 80 images) found that the F1 score for the

MARCO network when categorizing images from VMXi as

‘Crystals’ (0.76) was slightly lower than reported for the same

network on an independent test set of images (0.82; Bruno et

al., 2018). The main finding, however, was that the MARCO

classifier tended to classify images as ‘Precipitate’ at the

expense of other classes, with a recall of 1.0, a precision of 0.48

and a false-positive rate of 37%. This bias towards categor-

izing images as ‘Precipitate’ is understandable since �48% of
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the MARCO training data set is made up of images that were

given this label and these images outnumber the images

labelled as ‘Crystals’ by a ratio of �4:1. The methodology and

more detailed results of this experiment are described in

Section S1.

As was later confirmed by Rosa et al. (2023), we hypothe-

sized that training with local images would be needed in order

to achieve better classification performance since the images

in the MARCO training data set come from different imagers

and the experiments are set up in different plates to those used

in our facility. Difficulties associated with adding training to

the existing MARCO model, along with advances in the field

and the need to perform object detection as well as image

classification, led us to carry out experiments on training our

own networks.

Automation of finding the (x, y) coordinates of any crystals

present in the experimental images was desired for two

different use cases. In the first, on the VMXi beamline, human

intervention was required to locate each crystal and add it to

a queue for data collection. At the time, this was performed

using a web-based point-and-click interface in SynchWeb,

which then added the coordinates to the ISPyB LIMS system.

In the second case, as part of the XChem project at DLS,

high-throughput fragment-based drug-discovery workflows

required the acoustic dispensing of low-molecular-weight

compounds into the experimental drops after crystals had

grown. High levels of the solvent DMSO in the direct vicinity

of the crystals can disrupt their structure and ability to diffract.

Because of this, dispensing of the compounds is targeted

within the drop but in a region away from the crystals to be

mounted for data collection, thereby allowing the compound

and associated DMSO to diffuse through the drop gradually

towards the crystals of interest. At the time, this targeting step

was performed via a manual point-and-click interface in a

modified version of the TeXRank software (Ng et al., 2014),

but automation of this targeting was desired in order to

increase the throughput of the screening pipeline.

3. Methods

The procedures used to collate the data and to train and

evaluate the classification as well as the detection networks

are described here.

3.1. Creating the CHiMP Classifier models

The data used to train the crystal-micrograph classification

networks comprised two sets of images. The first, henceforth

referred to as the VMXi Classification Data Set, is described

in more detail in Section 3.1.1. The second set of images was

obtained from the Machine Recognition of Crystallization

Outcomes project (Bruno et al., 2018) and is henceforth

referred to as the MARCO Data Set (this data set was

introduced in Section 1.1.2 and is further described in Section

3.1.2.

The initial work on classification networks used the VMXi

Classification Data Set alone. This resulted in a ResNet50

classification model given the name CHiMP (Crystal Hits in

My Plate) Classifier v1 (further details of the training of this

classifier are given in Section 3.1.3). This network was put into

production on the VMXi beamline for a period of three years.

Although the feedback from use of this classifier was positive

(to the extent that image classification by the MARCO clas-

sifier was eventually switched off), further work was started to

investigate replacing the network. This was performed for two

main reasons. Firstly, there was a software dependency on

version 1 of the fastai package. The second version of the

package had an API that was not backwards-compatible and

development of the first version was stopped. Secondly,

although the ResNet50 model weights could have been

transferred to a purely PyTorch ResNet50 implementation,

significant progress had been made in CNN architectures in

the meantime. A more modern model architecture, namely

ConvNeXt (Liu et al., 2022), was chosen. As well as utilizing

increased kernel sizes, ConvNeXt networks use some inno-

vations commonly found in Vision Transformer (ViT) models,

such as a reduced use of activation functions and normal-

ization layers, and applies these modifications to a CNN to

improve performance. The ConvNeXt-Tiny version of the

model was chosen because it has a similar number of para-

meters to ResNet50. This model was trained on both the

MARCO Data Set and the VMXi Classification Data Set,

because it was hypothesized that this would lead to a model

with improved classification performance when compared

with one that had been fine-tuned on VMXi data alone. Once

trained, this new model, named CHiMP Classifier v2, was put

into production on the VMXi beamline in March 2023 (further

details of the training of this classifier are given in Section

3.1.4).

3.1.1. Curation of the VMXi Classification Data Set

Details of the collection and manual categorization of the

images at the VMXi beamline experimental facility are given

in Section S2.1.

At VMXi, a ten-class classification system is used to label

the outcomes (see Table 1). The initial set of images that make

up the VMXi data set were found by querying the ISPyB

LIMS for images which had associated scores and that had

been collected up to the query date (March 2020). The set of

images was also further restricted to those from experiments

belonging to beamline users who were not from commercial/

industrial organizations in order to abide by intellectual
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Table 1
Mapping of VMXi image-scoring labels to a four-label system.

Score VMXi label Mapped label

0 Clear Clear

1 Contaminated Other
2 Light Precipitate Precipitate
3 Heavy Precipitate Precipitate
4 Phase Separation Other
5 Spherulites Other
6 Microcrystals Crystals
7 1D Crystals Crystals

8 2D Crystals Crystals
9 3D Crystals Crystals

http://doi.org/10.1107/S2059798324009276
http://doi.org/10.1107/S2059798324009276


property restrictions and agreements. This resulted in a set of

18 782 images. To remove redundancy in the data caused by

the inclusion of similar images from multiple inspections of

the same subwell, the data were grouped by subwell and

the inspection numbers were analysed. The majority of the

subwells only had one image with an associated score (11 167

images); these were included in the final data set. In the cases

where subwells had images with scores for more than one

inspection, the image and the associated label from the second

of these inspections was added to the data set (2784 images).

This resulted in a final data-set size of 13 951 images.

The labels assigned to the images were mapped from the

ten in-house categories to a four-class system (as used by

MARCO): ‘Crystals’, ‘Precipitate’, ‘Clear’ and ‘Other’. This

mapping can be seen in Table 1. A breakdown of the number

of images in each category at this stage can be found in

Supplementary Table S2.

This data set was used as the starting point for fine-tuning a

ResNet50 network that had been initialized with weights from

training on ImageNet. Further details of the training method

can be found in Section 3.1.3. During the initial rounds of

training, it became apparent that the training labels associated

with the images were not always accurate, so a strategy to

clean the image labels was implemented. Details of this

method can be found in Section S2.2. A total of 904 labels

were changed during this process (6.5% of those in the data

set); an overview of the changes broken down by image class

can be seen in Supplementary Table S2. After cleaning, the

data were again split at random into a training set comprising

80% (11 161) of the images and a validation set of 20% (2790

images). The final number of images in each category can be

seen in Table 2. Example images from each class can be seen

in Fig. 1. The data set is available to download from https://

doi.org/10.5281/zenodo.11097395.

3.1.2. The MARCO data set

As described in Section 1.1.2, the Machine Recognition of

Crystallization Outcomes (MARCO) initiative (Bruno et al.,

2018) collated 493 214 labelled images from five different

organizations to create a data set for training their CNN

classification model. Ambiguous labels were cleaned in a

similar fashion to that described for the VMXi Classification

Data Set in Section S2.2, with the top 5% of images (ranked by

classification loss) revisited by expert crystallographers. In this

5% of the images, 42.6% were relabelled, which highlights the

‘label noise’ present in the data set.

After cleaning, the authors divided the data into training

and validation sets comprising �90% and �10% of the

images, respectively. In their paper, Bruno et al. (2018) give a

table summarizing the breakdown of image classes in the

MARCO Data Set (with 442 930 training and 50 284 valida-

tion images); however, the data set that they used for training

is described as having 415 990 training images and 47 062

validation images. The numbers of images in the data set that

they released publicly differs slightly again. A summary of the

number of images in each category in this publicly released set

is given in Table 3, since this is the one used in our investi-

gations. A detailed exploration of the MARCO Data Set can

be found in Rosa et al. (2023). Example images from each class

can be seen in Fig. 2.
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Table 2
Breakdown of image classes in the cleaned VMXi Classification Data Set.

Label Training set Validation set Total

Crystals 6752 1654 8406

Clear 1247 282 1529
Precipitate 2430 671 3101
Other 732 183 915
Total 11161 2790 13951

Figure 1
Examples from the VMXi Classification Data Set. Two images from each category were selected at random from the training data set. (a, b) Images from
the ‘Clear’ class. (c, d) Images from the ‘Crystals’ class. (e, f ) Images from the ‘Other’ class. (g, h) Images from the ‘Precipitate’ class.

http://doi.org/10.1107/S2059798324009276
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http://doi.org/10.1107/S2059798324009276
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3.1.3. Training of CHiMP Classifier v1

This initial work on classification networks used the fastai

Python library (Howard & Gugger, 2020), which is a high-level

interface to the PyTorch machine-learning framework (Paszke

et al., 2019).

A ResNet50 convolutional neural network (CNN; He et al.,

2016) that had been initialized with weights from a model

trained on the ImageNet database (Russakovsky et al., 2015)

was the starting point for our experiments. This model was

fine-tuned on the VMXi Classification Data Set (described in

Section 3.1.1) in a number of phases with increasing image

dimensions. To prevent overfitting to the training data (to

make up for the relatively small number of images available),

during each phase of training the training set of 11 161 images

was augmented using a randomized range of flips, rotations,

warping and zooming as well as brightness and contrast

adjustments. Before passing the images through the network,

they were reshaped (or ‘squished’) to a square, rather than

cropped; this was performed to avoid objects at the edge of the

image, such as crystals, being excluded. In addition, the image

histograms were normalized to match those used by the

ImageNet database. In order to make up for the label imbal-

ance in the VMXi Classification Data Set (where images

labelled as ‘Crystals’ make up �60% of images, whereas those

in the ‘Other’ class make up just 6.6%), an oversampling

method was used. This method sampled the image classes in

the data set in inverse proportion to their frequency, thereby

counteracting this imbalance. In total, the model was trained

for 31 epochs with a batch size of 64; the final model had a

cross-entropy loss of 0.115 for the training set and 0.364 for the

validation set. Training was carried out on an NVIDIA Tesla

P100 GPU with 16 GB of VRAM and took around 6.5 h of

computation time. Further details of the training strategy can

be found in Section S2.3. Metrics for the validation set of

images from the VMXi Classification Data Set are given in

Section 4.1.1. Evaluation of the performance of this model on

an independent test set of images from the VMXi facility is

given in Section 4.1.2.

The network was deployed alongside MARCO to classify

all experimental images that were produced by the imagers

on the VMXi beamline. The classification labels were inserted

into the SPyB LIMS and the results were displayed on a plate-

overview schematic in the SynchWeb interface (shown in

Fig. 3).

3.1.4. Training of CHiMP Classifier v2

In a similar manner to the work on the first version of the

classifier, the starting point for training was a model initialized

with weights from ImageNet pre-training. This model was then

fine-tuned using custom PyTorch training routines. Unlike

version 1 of the CHiMP classifier, in this case the first stage

of training was performed using the MARCO Data Set

(described in Sections 1.1.2 and 3.1.2), and the final training

stages used the VMXi Classification Data Set (described in

Section 3.1.1).

The pre-trained ConvNeXt-Tiny network was obtained

from the PyTorch Image Models library (Wightman, 2019).

The standard one-layer classification head of the CNN was

replaced with a two-layer fully connected network with batch

normalization layers and a dropout of 0.4 on the last layer,

rather than using a standard, single fully connected layer. An
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Figure 2
Examples from the MARCO Data Set (Bruno et al., 2018). Two images from each category were selected at random from the training data set. (a, b)
Images from the ‘Clear’ class. (c, d) Images from the ‘Crystals’ class. (e, f) Images from the ‘Other’ class. (g, h) Images from the ‘Precipitate’ class.

Table 3
Breakdown of image classes in the publicly released MARCO Data Set.

The data set is available from https://marco.ccr.buffalo.edu/download.

Label Training set Validation set Total

Crystals 53044 6200 59244
Clear 139865 15659 155524
Precipitate 199567 22360 221927
Other 23299 2810 26109

Total 415775 47029 462804

http://doi.org/10.1107/S2059798324009276
https://marco.ccr.buffalo.edu/download


initial training epoch was carried out with all convolutional

parameters frozen, training only this classification head to

start with.

Several training phases were implemented, with increasing

image dimensions in each phase, before final training epochs

on images with dimensions of 512 � 512 pixels. Images were

resized to the required input dimensions by rescaling followed

by padding to ensure that objects such as crystals at the edge

of the image were not removed by cropping. Image augmen-

tations that were used on the training set included random

flips and rotations, optical distortions, brightness and contrast

alterations, blurring and contrast-limited adaptive histogram

equalization (CLAHE). The imbalance in the number of

images in each category in the data set was counteracted by

sampling the data in inverse proportion to the frequency of

each category. After each training epoch, the model was saved

and used as the model for the next epoch only if the overall

classification accuracy on the validation set had improved in

comparison to the previous best model. To prevent over-

fitting, an early stopping safeguard was used, which terminated

model training if the validation accuracy stopped improving

after a predefined number of epochs. As for version 1 of the

classifier, the optimizer for model parameters was AdamW

(Loshchilov & Hutter, 2017), and cross-entropy loss was used.

The learning rate was again cycled during training on a ‘1cycle’

schedule (Smith & Topin, 2019).

Further details of the training phases can be found in

Section S2.4. After 12 epochs of fine-tuning on the MARCO

Data Set, the cross-entropy loss for the training set was 0.201

and that for the validation set was 0.214. After a further 24

epochs of fine-tuning on the VMXi Classification Data Set, the

final cross-entropy training loss was 0.421 and the final vali-

dation loss was 0.522. Metrics on the validation set of images

from the VMXi Classification Data Set are given in Section

4.1.1. Evaluation of the performance of this model on an

independent test set of images from the VMXi facility is given

in Section 4.1.2.

This new model, named CHiMP Classifier v2, was put into

production on the VMXi beamline in March 2023.

3.1.5. Creation of test sets of images to evaluate model

performance

A test set of images from the robotic imaging microscopes

on the VMXi beamline was created and scored by a panel

of experts to evaluate the classification performance of the

networks. At the time of creation of this test set (August 2022),

the CHiMP Classifier v1 network had been categorizing all

images collected by the imagers for more than two years, with

the results inserted into the ISPyB LIMS. The LIMS was

queried for scored image labels and returned data for around

780 000 classified images. These classifications were first

grouped by inspection number and plate subwell before

limiting the set to those with two inspections or more in order

to exclude images taken of unusual experiments that were not

being monitored over time. The remaining set consisted of

751 540 images from 69 542 subwells.

The groups of images for each subwell represent time

courses over which the experiments were monitored. To

prevent multiple similar images from the same subwell

appearing in the data set, one image was selected at random

from each of these time courses in the range of inspection 2 to

inspection 7. This population of 69 542 images with associated

classification labels was then sampled to create a final data

set of 1000 images with 250 members from each class of the

four-category system used by CHiMP Classifier v1 (‘Crystals’,

‘Precipitate’, ‘Clear’ and ‘Other’). This balancing was

performed to ensure that the data set included sufficient

numbers of images from each class to be able to draw robust

conclusions.

A panel of three experts viewed all images independently

and assigned one of the four class labels to each image. The

experts did not always agree with each other (described

further in Section 4.1.2). To accommodate this ambiguity in

labelling, two subsets of the data set were created to assess the

models against. The first, named the unambiguous test set,

consisted of the 632 images where all three experts agreed on

a label. The second, named the mostly unambiguous test set,

consisted of 949 images where at least two experts agreed on

the label. The number of images assigned to each category for

each of these data sets can be found in Table 4.

3.2. Training Mask R-CNN networks to detect objects in

experimental micrographs

Initial experiments used gradient-weighted class-activation

mapping (Grad-CAM; Selvaraju et al., 2017) to locate regions

of the image where CHiMP Classifier v1 was being activated

when predicting the ‘Crystals’ class. However, the low reso-

lution of the output maps (16 � 16 pixels) meant that this
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Figure 3
Schematic overview of classification outputs from the CHiMP Classifier
v1 CNN, as displayed in the SynchWeb interface for users of the VMXi
beamline at Diamond Light Source. The 96-plate wells are represented as
larger boxes, with the two subwells containing crystallization droplets
shown as smaller boxes within. Each subwell is assigned a colour on a
gradient from red to green that represents the probability of the asso-
ciated image being assigned to the class ‘Crystals’, with green repre-
senting a high probability.
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technique was not able to provide a positional accuracy that

was high enough for our purposes. An alternative approach of

training a CNN, such as a U-Net, to perform segmentation of

the crystals from the rest of the image was also considered.

The disadvantage of this approach is that a semantic

segmentation technique such as this would divide the image

into two classes, crystals and background, but would not

separate out individual instances. Detecting individual crystal

instances would be preferable, allowing those that are over-

lapping or growing in conjoined inflorescences to be detected

and targeted individually. For these reasons, the use of an

object-detection CNN was investigated, in this case a Mask

R-CNN architecture (described in Section 1.2.2), which has

the advantage of also providing instance segmentation

alongside bounding-box suggestions, providing the potential

to allow more accurate measurement of crystal dimensions

and calculation of the centre of mass for targeting.

3.2.1. Image selection for detection networks

To obtain images to train the detection network for the

VMXi beamline, a random selection of 1000 experimental

images from different plate subwells was first taken from the

set of all images collected up to this point (March 2021),

excluding those linked to industrial experiments. These images

were then classified automatically using the CHiMP Classifier

v1 network before a data set of 250 images was sampled from

this initial selection. The sampling was performed with 50%

(125 images) coming from those images labelled as ‘Crystals’,

�25% (62 images) labelled as ‘Precipitate’,�20% (51 images)

labelled as ‘Clear’ and �5% (12 images) labelled as ‘Other’.

Since each image would need to be annotated manually, the

size of the training data set that could be created would be

limited; therefore, this split was chosen to prioritize images

with crystals present whilst also including those with a range

of different outcomes for the network to learn from. These

images were then inspected manually and similar images were

discarded, resulting in a final data-set size of 237 images. These

images were then scaled down by a factor of two to 1688 �

1352 pixels before having their histograms adjusted by the

CLAHE algorithm (Pizer et al., 1987) using the OpenCV

library (Bradski, 2000) with grid size of 12. This was performed

to enhance the visibility of crystals in shadow areas and reduce

the glare from reflections on droplets.

To obtain images to train the detection network for the

XChem Fragment-Based Drug Discovery facility, the inte-

grated database of the Rock Imager 1000 robotic imaging

system (Formulatrix, USA) located at the Crystallisation

Facility at Harwell was queried (October 2022). The images

were then grouped by plate subwell and a selection of 1000

images were chosen at random from this grouped set. These

images were then viewed individually and reduced to a set of

350 images that showed a diversity of experimental outcomes,

plate types and crystal forms. These images, with dimensions

of 1024� 1224 pixels, then had their histograms adjusted using

the CLAHE algorithm in the same manner as for the VMXi

image data set.

3.2.2. Creating image annotations for detection networks

When training a Mask R-CNN model, three sets of label

data are needed for every object contained within the image,

alongside the image files themselves. These are (i) object

masks (the outline of each object), (ii) object class labels and

(iii) object bounding-box coordinates (the coordinates of the

vertices of a rectangular selection that encloses each object).

Manually generating this information for each image can be

arduous depending on the image content, for example in the

case where there are hundreds of protein microcrystals in a

droplet. In order to generate enough high-quality image

annotations to train a network, the task of annotating was

shared amongst experts at DLS using a custom project on

the Zooniverse web platform (https://www.zooniverse.org/;

Simpson et al., 2014). A Zooniverse workflow was created with

drawing tools that could be used to create polygonal masks

on experimental droplets and on the crystals observed in the

images. The set of images to be annotated was uploaded to the

platform and each expert annotator was given access to the

project. Supplementary Fig. S2 shows an example of using this

workflow. The platform randomly selects images from the pool

of unannotated images that remain and displays them to

the expert alongside the web-based annotation tools. Once

completed, the annotations can be downloaded from the

platform in the form of a comma-separated values (CSV) file

with the data contained in JavaScript Object Notation format

(JSON) strings within this file. Methods were written in

Python to extract the data from these strings and convert them

into labels, masks and bounding boxes suitable for training a

Mask R-CNN network (available at https://doi.org/10.5281/

zenodo.11244711).

3.2.3. Training the VMXi CHiMP Detector network

The 237 images and associated annotations comprising the

VMXi Detector Data Set were split into training and valida-

tion sets, with 190 images (�80%) in the training set and 47

images in the validation set. Since only the positions of the

crystals were required, only the labels for the crystals were

used in training; this gave better metrics in initial experiments

compared with including labels for drops at the same time

(results not shown). Because of the small size of the training

data set, images (along with the associated object masks and
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Table 4
The number of images in each category for the VMXi classification test
sets.

Sets were collated after the scoring of 1000 images by three experts. Unam-
biguous: images where three experts agreed on a label. Mostly unambiguous:
images where two or more experts agreed on a label.

Test set

Label Unambiguous Mostly unambiguous

Crystals 145 179
Clear 95 182
Precipitate 230 356
Other 162 232
Total 632 949

https://www.zooniverse.org/
http://doi.org/10.1107/S2059798324009276
https://doi.org/10.5281/zenodo.11244711
https://doi.org/10.5281/zenodo.11244711


bounding boxes) were augmented using random flips and

rotations as well as random blurring, sharpening and contrast

and brightness adjustments. The model was initialized with

weights from a model pre-trained on the COCO data set.

Training was performed for 20 epochs. The learning rate was

cycled during training using a ‘1cycle’ policy (Smith & Topin,

2019) with an average learning rate of 1� 10� 4. The optimizer

used was AdamW (Loshchilov & Hutter, 2017). The different

components of the Mask R-CNN model use different loss

functions (for example mask loss, bounding-box loss and

classification loss), which are combined into one value named

multi-task loss for monitoring during training. Training was

performed with a batch size of 4 on an NVIDIA P100 GPU

with 16 GB of VRAM and took one hour and ten minutes to

complete. The final multi-task training loss was 0.7749 and the

final multi-task validation loss was 0.8335. This model was

named the VMXi CHiMP Detector network and was

deployed on the VMXi beamline in December 2021. Crystal

targeting coordinates are calculated by taking the centroid

(centre of mass) of the segmentation masks for each crystal

detected. These coordinates are then inserted into the ISPyB

LIMS database. The SynchWeb interface for the VMXi facility

was altered to display these points and to allow them to be

queued for data collection.

3.2.4. Training the XChem CHiMP Detector network

The training of a Mask R-CNN for use on images from the

XChem FBDD experiments took place approximately one

year after the training of the VMXi CHiMP Detector network.

Because of this, the strategy for training was different. In this

case, the starting model was a Mask R-CNN that had already

been fine-tuned for 20 epochs on both the crystal and drop

annotations from the 237 images in the VMXi Detector Data

Set. This model was then trained further on the 350 images

and associated annotations that make up the XChem Detector

Data Set. The data were split randomly, with 280 images

(80%) in the training set and 70 images in the validation set.

The training was performed in the same fashion as for the

VMXi CHiMP Detector, with image augmentations including

random flips and rotations as well as random blurring, shar-

pening and contrast and brightness adjustments. Once again, a

‘1cycle’ policy (Smith & Topin, 2019) was used along with an

AdamW optimizer (Loshchilov & Hutter, 2017). Training was

performed for 50 epochs with an average learning rate of

5.2 � 10� 4. The batch size used was 4 and the training was

performed on an NVIDIA V100S GPU with 64 GB of VRAM

and took 1.25 h to complete. The final multi-task training loss

was 0.7069 and the final multi-task validation loss was 0.6962.

This model was named the XChem CHiMP Detector network.

3.2.5. Using the XChem CHiMP Detector network to

calculate compound-dispensing positions

Using outputs from the Mask R-CNN trained on images

from the XChem project, an algorithm was developed to

determine a candidate position in the experimental drops for

acoustically dispensing compound fragments. The network

creates segmentation masks for drops detected in addition to

a mask for every crystal detected. The ideal position for

dispensing compound is (i) away from the edge of the drop yet

also (ii) away from where the crystals are located. A position

that meets these two criteria was calculated as follows.

The segmentation mask for every crystal detected was

subtracted from the drop mask, resulting in a single mask

which encodes the shape of the drop minus the shape of the

union of all crystals in that drop. This binary mask was then

processed using an exact Euclidean distance transform. This

transform replaces each pixel in the mask with a value

denoting the Euclidean distance to the nearest pixel outside

the mask (for further details of this transform, see Strutz,

2021). After the transform, the pixel with the highest value is

that which is furthest away from the edge of both the drop and

the crystals. The coordinates of this pixel are used as the

suggested coordinates for dispensing compound. Fig. 4 shows

an example of this process.

4. Results

4.1. Classification-network performance

After training, the performance of the classification

networks was assessed using metrics calculated on the vali-

dation data as well as on the independent test sets.

4.1.1. Performance on the VMXi classification validation set

On the validation set of the VMXi Classification Data Set,

CHiMP Classifier v1 achieved a precision, recall and F1 score

for the ‘Crystals’ class of 0.95, 0.92 and 0.94, respectively. For

version 2 of the classification network, the precision, recall and

F1 metrics for the ‘Crystals’ class were 0.97, 0.88 and 0.93,

respectively, on the same data set. The metrics for the other

image classes can be found in Supplementary Tables S5 and

S6.

4.1.2. Performance on the MARCO validation set

On the validation set of the MARCO Data Set, CHiMP

Classifier v1 achieved a precision, recall and F1 score for the

‘Crystals’ class of 0.38, 0.62 and 0.48, respectively. For version

2 of the classification network, the precision, recall and F1

metrics for the ‘Crystals’ class were 0.71, 0.83 and 0.76,

respectively, on the same data set. The metrics for the other

image classes can be found in Supplementary Tables S7 and

S8.

4.1.3. Performance on the VMXi classification test sets

As described in Section 3.1.5, a set of 1000 images from the

robotic imaging microscope at VMXi was collated. All of the

images were scored by a panel of three experts, and two sets

were created based upon either unanimous agreement

between the experts (the unambiguous set) or majority

agreement (the mostly unambiguous set). The pairwise

agreement between classifications given by the experts ranged

from 72.9% to 75.4%, showing that the experimental
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outcomes can be ambiguous to human scorers. All three

experts agreed on 63.2% of the images. One of the experts was

tasked with scoring the test set of images twice with a period

of six months between sessions and was found to agree with

themself 83.0% of the time.

The per-class precision, recall and F1 metrics for classifying

both sets of images were calculated for CHiMP Classifier v1,

CHiMP Classifier v2 and the MARCO classifier. Table 5

summarizes the per-class F1 metrics for each model on both of

these data sets.

The precision and recall values for these models can be

found in Supplementary Table S9, alongside metrics for a

number of other models trained using different strategies or

with a different architecture for comparison. Other models

trained include ConvNeXt-Tiny models trained either solely

on the MARCO data set or solely on the VMXi Classification

Data Set plus a ResNet50 model trained using the same

strategy as for the final CHiMP Classifier v2 ConvNeXt model.

4.2. Detection-network performance

As described previously (Section 1.2.1), the most widely

used metric to describe the performance of object-detection

networks is mean average precision (mAP). This metric was

calculated for various IoU thresholds on the validation set of

images for the both the VMXi CHiMP Detector and XChem

CHiMP Detector networks.

4.2.1. VMXi CHiMP Detector

The VMXi CHiMP Detector network was evaluated on the

47 images in the validation set of the VMXi Detector Data Set

and achieved a mAP of 0.31 for bounding boxes on the

‘Crystals’ class when using the standard COCO IoU threshold

ranges from 0.5 to 0.95 (with a step size of 0.05). Full mAP

results are shown in Table 6. The detector network was also

evaluated on the VMXi classification test sets (described in

Section 3.1.5). The results of this analysis can be seen in

Table 7.
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Table 5
Per-class F1 metrics for test sets of images from the VMXi beamline.

Test set U denotes the unambiguous test set of 632 images where three experts
agreed on the label. Test set MU denotes the mostly unambiguous test set of

949 images where two experts agreed on the label.

Model Test set Crystals Precipitate Clear Other Mean

CHiMP v2 U 0.8291 0.8221 0.6286 0.4286 0.6771
MU 0.7340 0.7484 0.6823 0.4456 0.6526

CHiMP v1 U 0.7649 0.7411 0.6047 0.4710 0.6454
MU 0.6635 0.6778 0.6415 0.4547 0.6094

MARCO U 0.7759 0.7761 0.7179 0.1243 0.5986
MU 0.6947 0.7346 0.7472 0.1473 0.5809

Figure 4
Using the output from the XChem CHiMP Detector Mask R-CNN model to determine coordinates to dispense compound for fragment soaking. For the
mask images, low pixel values are depicted in blue and high pixel values are depicted in red. (a) Original micrograph of a crystallization drop. (b) The
output bounding boxes, labels and masks from the XChem CHiMP Detector network. Bounding boxes are dark blue and associated object labels are in
red. Instance-segmentation mask colours are randomized. (c) The predicted mask for the drop. (d) The mask for the drop minus the union of the
predicted crystal masks. (e) The Euclidean distance transform of the mask in image (d); red pixels are those farthest from an edge. ( f ) The original image
showing the coordinates determined by taking the maximum pixel value from image (e) as a red dot; this is the suggested dispensing coordinates.

http://doi.org/10.1107/S2059798324009276


Example outputs from the detector network can be seen

in Fig. 5. The display of VMXi CHiMP Detector results in

SynchWeb, alongside the plate schematic with a classification

overview giving CHiMP Classifier v2 results, can be seen in

Supplementary Fig. S3. An additional view of the display of

detection results on their own can be seen in Supplementary

Fig. S4.

4.2.2. XChem CHiMP Detector

The XChem CHiMP Detector network was evaluated on

the 70 images in the validation set of the VMXi Detector Data

Set and achieved a mAP of 0.380 for bounding boxes averaged

over the ‘Crystals’ class and the ‘Drops’ class when using the

standard COCO IoU threshold ranges from 0.5 to 0.95 (with a
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Table 6
Mean average precision metrics calculated for the VMXi CHiMP
Detector Mask R-CNN for the ‘Crystals’ class.

Evaluated on the 47 validation images from the VMXi Detector Data Set.

Type Threshold Size (pixels) mAP score

Bounding box 0.5 All 0.565
0.75 All 0.307
0.5–0.95, step 0.05 All 0.310

<32 � 32 0.055

32 � 32–96 � 96 0.428
>96 � 96 0.657

Segmentation 0.5 All 0.522
0.75 All 0.274
0.5–0.95, step 0.05 All 0.288

<32 � 32 0.026
32 � 32–96 � 96 0.401

>96 � 96 0.659

Figure 5
Output from the VMXi CHiMP Detector Mask R-CNN model on members of the validation set from the VMXi Detector Data Set. Red bounding boxes
denote objects in the ‘Crystals’ class. Instance-segmentation mask colours are randomized. (a, d, g) Original micrographs of crystallization drops. (b, e, h)
The corresponding bounding boxes and masks as predicted by the VMXi CHiMP Detector network. Objects were predicted with a probability of �0.6.
(c, f, i) The ground-truth bounding boxes and masks from the VMXi Detector Data Set as annotated by an expert crystallographer.
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step size of 0.05). Full mAP results are shown in Table 8. The

detector network was also evaluated on the VMXi classifica-

tion test sets (described in Section 3.1.5). The results of this

analysis can be seen in Table 9. Example outputs of the

network on members of the XChem Detector validation set

can be seen in Fig. 6.

5. Discussion

In this study, deep-learning networks were fine-tuned, either

to classify images into categories of experimental outcome

or to detect and segment objects in the images to allow the

targeting of locations for data collection or compound

dispensing. This was performed to deliver increased automa-

tion for the scientists who normally must undertake these

repetitive and time-consuming tasks.

5.1. On the classification of experimental outcomes

In order to train a network to classify the experimental

outcomes, a robust set of data is needed for training. This

study has relied on two data sets for image classification: the

VMXi Classification Data Set (described in Section 3.1.1) and

the MARCO Data Set (Bruno et al., 2018; described in Section

3.1.2). These data sets both contain labels created by experts

but this, in itself, does not mean that these labels are robust.

Firstly, as mentioned previously, the categories for classifica-

tion differ between different institutions, so when images from

multiple sources are collated (as in the case of the MARCO

Data Set) the labels need to be standardized into a system that

may not adequately describe the complexity of the outcomes,

thereby leading to ambiguity in the categorization. This

oversimplification is compounded by the fact that each image

is only given one label when, in fact, an image often contains

multiple outcomes. An image that contains both precipitate

and microcrystals will only be given the label ‘Crystals’. Multi-

label classification is commonly used in other fields of study; in

satellite remote sensing, for example, where one image may

contain forest, savanna and a river, it would be given all three

labels. Although studies do exist where a larger number of

categories have been used to capture the outcome with more

granularity, multi-label classification data sets do not exist

for protein crystallization outcomes. This is largely due to

historical precedent, where the labelling of images is made as

simple as possible to ease the burden on annotators. To further

ease the burden, annotating images is often optional, which

then leads to unbalanced data since the crystallographer is

most likely to label crystalline outcomes and to provide no

label at all to other outcomes.

The ambiguity between labels assigned by domain experts is

highlighted by the process used in this study in order to obtain

a ‘ground-truth’ test set of images for model evaluation

(described in Section 4.1.2). When categorizing 1000 images,

three experts agreed only 63% of the time, the maximum

pairwise agreement was 75% and the same expert agreed with

themself 83% of the time when reassigning labels to the same

images six months later. The fact that three experts with many

years of combined experience could not agree on a label for 51

of the images also goes to show that the boundaries between

categories are flexible. It is this ambiguity that makes the task

nontrivial, despite the fact that image classification by CNNs is

seen as something that can now be routinely performed with

super-human accuracy in other domains (He et al., 2015). The

catch-all class of ‘Other’, in particular, seems to be ambiguous.

When cleaning the labels for the VMXi data set (described in

Section S2.2), more than 15% of the images in the ‘Other’

category had their label changed by an expert reviewer. For

the models, correct classification of this class involves

capturing features in the images which encompass a wide

diversity of outcomes and therefore is also the most

problematic. Of all the models trained, CHiMP Classifier v1

achieved the best performance on the ‘Other’ class, with an F1
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Table 8
Mean average precision metrics calculated for the XChem CHiMP
Detector Mask-R-CNN averaged for the ‘Crystals’ class and the ‘Drops’
class.

Evaluated on the 70 validation images in the XChem Detector Data Set.

Type Threshold Size (pixels) mAP score

Bounding box 0.5 All 0.505
0.75 All 0.381
0.5–0.95, step 0.05 All 0.380

<32 � 32 0.101
32 � 32–96 � 96 0.214
>96 � 96 0.641

Segmentation 0.5 All 0.467
0.75 All 0.368
0.5–0.95, step 0.05 All 0.386

<32 � 32 0.081
32 � 32–96 � 96 0.155
>96 � 96 0.605

Table 7
Evaluation of the VMXi Detector network on the VMXi classification
test sets.

The four image-classification categories were collapsed into ‘Crystals’ and ‘No
crystals’ (‘Precipitate’, ‘Clear’ and ‘Other’). The model was deemed to classify
the image as ‘Crystals’ if at least one crystal object was detected in the image.

Test set U denotes the unambiguous test set of 632 images where three experts
agreed on the label. Test set MU denotes the mostly unambiguous test set of
949 images where two experts agreed on the label.

Class Test set Precision Recall F1

Crystals U 0.4177 0.9448 0.5793
MU 0.3300 0.9218 0.4860

No crystals U 0.9737 0.6078 0.7484
MU 0.9688 0.5649 0.7137

Table 9
Evaluation of the XChem Detector network on the VMXi classification
test sets.

The four image-classification categories were collapsed into ‘Crystals’ and ‘No
crystals’ (‘Precipitate’, ‘Clear’ and ‘Other’). The model was deemed to classify
the image as ‘Crystals’ if at least one crystal object was detected in the image.

Test set U denotes the unambiguous test set of 632 images where three experts
agreed on the label. Test set MU denotes the mostly unambiguous test set of
949 images where two experts agreed on the label.

Class Test set Precision Recall F1

Crystals U 0.4921 0.8551 0.6247
MU 0.3945 0.8045 0.5294

No crystals U 0.9447 0.7372 0.8281
MU 0.9401 0.7130 0.8109

http://doi.org/10.1107/S2059798324009276


score of just 0.47 on the unambiguous test set and 0.45 on the

mostly unambiguous test set. The difficulties of accurately

predicting this category are apparent in the data presented in

Table 5 and Supplementary Tables S5, S6 and S9.

When compared with the MARCO classifier, which has

been seen as the most robust model for classifying images of

crystallization droplets in recent times, in this study we were

able to achieve overall higher F1 metrics (averaged across all

classes) on both our unambiguous and mostly unambiguous

test sets of images from the VMXi beamline. This was

achieved by fine-tuning a pre-trained classifier either solely on

local images (for CHiMP Classifier v1) or with a combination

of the MARCO Data Set and local images (for CHiMP

Classifier v2); these results are shown in Section 4.1.2 and

Table 5. When considering the ‘Crystals’ class alone, however,

only the CHiMP Classifier v2 model (F1 of 0.83 on the

unambiguous test set and 0.73 on the mostly unambiguous test

set) was able to surpass the MARCO model (F1 of 0.78 on the

unambiguous test set and 0.69 on the mostly unambiguous test

set). When judging performance in this way, using the F1

scores in isolation, the MARCO classifier outperforms

CHiMP Classifier v1 on each class except ‘Other’ on both of

the test sets (Supplementary Table S9). At the time of

embarking on the work to replace the MARCO model and,

in fact, immediately after training CHiMP Classifier v1, the

model evaluation on the test sets had not been carried out and
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Figure 6
Output from the XChem CHiMP Detector Mask R-CNN model on members of the validation set from the XChem Detector Data Set. Blue bounding
boxes denote objects in the ‘Drops’ class and red bounding boxes denote objects in the ‘Crystals’ class. Instance-segmentation mask colours are
randomized. Green crosses denote candidate positions to dispense compound for fragment soaking (calculated via a distance transform). (a, d, g)
Original micrographs of crystallization drops. (b, e, h) The corresponding bounding boxes and masks as predicted by the XChem CHiMP Detector
network. Objects were predicted with a probability of�0.6. Candidate dispensing positions were calculated from output masks. (c, f, i) The ground-truth
bounding boxes and masks from the XChem Detector Data Set as annotated by an expert crystallographer.
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this performance difference was not known. In hindsight, the

poorer performance of the MARCO model on the ‘Other’

class, coupled with the lower precision of the model on

‘Precipitate’ outcomes and a lower recall of ‘Crystal’

outcomes, may have led the VMXi beamline staff to prefer

CHiMP Classifier v1 over the MARCO model despite the

higher F1 scores for MARCO on these latter classes.

To enable comparison with other studies, the two classifier

models were evaluated against the 47 029 validation images in

the MARCO Data Set (full results are shown in Supplemen-

tary Tables S7 and S8). As described by Rosa et al. (2023), this

data set may contain labelling errors, contamination from lipid

cubic phase images and image redundancy. Given that our

study focused on optimizing performance for local DLS data,

our primary evaluation emphasizes the independent test sets

from the VMXi beamline rather than this set. However, it is

of note that CHiMP Classifier v2, unsurprisingly, performed

better (F1 of 0.76 for ‘Crystals’) on this set of images when

compared with CHiMP Classifier v1 (F1 of 0.48 for ‘Crystals’),

as it was trained on both the MARCO and VMXi data sets. It

is also of note that the low F1 scores for ‘Other’ highlight the

potential discrepancy between how institutions define this

ambiguous class. Conversely, the poor performance of CHiMP

Classfier v1 on these data underscores the relatively strong

performance of the MARCO classifier on VMXi images

(Supplementary Table S9) despite none of these data having

been used to train the model.

The improved performance of CHiMP Classifier v2 over

CHiMP Classifier v1 on the ‘Crystals’ class was not apparent

when solely observing statistics on the VMXi validation set

(shown in Supplementary Tables S5 and S6); in fact, the

precision, recall and F1 were all lower for the newer model.

The superior performance of CHiMP Classifier v2 only

becomes clear when measuring against the independent test

sets. This again reinforces the importance of having a set of

images categorized by experts to give a reliable measure of

performance.

For the first version of the CHiMP classifier, the effective-

ness of the ResNet50 model architecture and the training

strategy used in this study are highlighted by the fact that

the data set used to train the CHiMP Classifier v1 model

comprised <2.7% of the number of images used to train the

MARCO model. For the second version of the CHiMP clas-

sifier, a pretrained ConvNeXt-Tiny network was fine-tuned

on the 415 775 training images from the MARCO Data Set

before transfer learning was performed using the VMXi

Classification Data Set, with the hypothesis that the extra

training would yield an improvement over fine-tuning on

VMXi data alone. This resulting improvement can be seen

when comparing the ConvNeXt-V model (fine-tuned on

VMXi data only) with CHiMP Classifier v2 in Supplementary

Table S9; the model trained on less data achieved an average

F1 metric of 0.58 on the unambiguous test set and 0.59 on the

mostly unambiguous test set, whereas as CHiMP Classifier v2

achieved F1 metrics of 0.68 and 0.65, respectively, on the same

test sets. When a ResNet50 model was fine-tuned with this

additional data, in the same manner as the CHiMP Classifier

v2 model, an improvement was also seen in the average F1

metric over the MARCO model, as well as for the ‘Crystals’

class, where the model achieved an F1 metric of 0.82 on the

unambiguous test set and 0.71 on the mostly unambiguous test

sets. This shows that it is not the ConvNeXt architecture alone

that is able to outperform the MARCO model. After a

ResNet50 model or a ConvNeXt-Tiny model has been trained

on the MARCO Data Set alone, it achieves marginally higher

average F1 metrics on the VMXi test sets than the MARCO

classifier. Because the training strategies were different,

including using weights from models pre-trained on ImageNet,

this improvement cannot be put down to the model archi-

tecture alone. As a result of the strategy used here, the total

number of training epochs required to train these models

(nine epochs) is much lower than that used to train the

MARCO classifier (260 epochs). This shows that using pre-

trained weights has the advantage of achieving comparable

model performance whilst using fewer computational

resources and less energy.

5.2. On the detection of objects in experimental micrographs

Whereas the quality of label data from, sometimes ambig-

uous, experimental outcomes was often an issue when training

classification networks, the quantity of label data was more of

an issue when creating a tool to detect and segment instances

of objects in the images. The effort involved in creating the

inputs required to train a Mask R-CNN network, namely

masks, labels and bounding boxes for every object in the

images, were far greater than the single label per image input

required for classification. As a result of this, a collaborative

approach using the citizen-science platform Zooniverse was

used (described in Section 3.2.2). Using this platform was a

relatively straightforward way to create a web interface that

allowed annotation of images by utilizing pre-existing drawing

tools and allowed multiple annotators to work on the same

data set simultaneously whilst maintaining data integrity. Even

with the combined effort of several annotators, however, the

size of the resulting data sets was small, with 237 images in

the VMXi Detector Data Set and 350 images in the XChem

Detector Data Set.

Much as for the classification networks, the limited amount

of training data meant that a strategy of fine-tuning a set of

pre-trained weights was used, along with the use of image

augmentations to prevent overfitting to the data. The final

mAP metrics (reported in Section 4.2.1 for the VMXi CHiMP

Detector network and in Section 4.2.2 for the XChem CHiMP

Detector network) show that the XChem CHiMP Detector

achieved a higher mAP on both bounding boxes (0.38 versus

0.31) and segmentation (0.39 versus 0.29) for all objects when

averaged over the standard IoU thresholds (0.5–0.95, with a

step of 0.05). However, the mAP performance of the VMXi

CHiMP Detector network was higher for large objects (>96 �

96 pixels) for both bounding boxes (0.66 versus 0.64) and

segmentation (0.66 versus 0.61) over the same IoU thresholds

than for the XChem Detector network. It is important to bear

in mind that the mAP for the XChem Detector is averaged
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over two classes, ‘Crystals’ and ‘Drops’, whereas the VMXi

Detector only predicts the ‘Crystals’ class.

The complexities of calculating mAP values mean that it is

hard to make a direct comparison with the performance of the

only other protein crystal detection network in the literature

which also has associated metrics. Qin et al. (2021) reported a

mAP score of 0.70 at an IoU threshold of 0.5 for their Mask

R-CNN (presumably for bounding boxes, although this is not

specified), which detects solely ‘Crystals’ class images from the

MARCO Data Set. This is higher than the score that was

achieved by the VMXi CHiMP Detector network using the

same metric (0.57 for bounding boxes and 0.522 for segmen-

tation). The figure reported in the study was calculated on just

ten images and no breakdown of performance on different

IoU thresholds and different object sizes is given, which

further complicates a direct comparison.

The detector networks were evaluated on VMXi test data

sets to calculate metrics comparable to those of the classifier

networks (Tables 7 and 9). The F1 scores for classifying images

into the ‘Crystals’ class (one or more crystals detected) are

lower for these networks (0.58 for the VMXi CHiMP

Detector, 0.62 for the XChem CHiMP Detector on the

unambiguous set and 0.47 and 0.53, respectively, for the same

networks on the mostly unambiguous set) than for the clas-

sifier networks (0.83 for CHiMP Classifier v2, 0.76 for CHiMP

Classifier v1 and 0.78 for MARCO on the unambiguous set

and 0.73, 0.66 and 0.69 for the same networks, respectively, on

the mostly unambiguous set). However, the recall values are

similar, or even better (for example, a ‘Crystals’ recall of 0.94

for the VMXi detector on the unambiguous set versus 0.90 for

CHiMP Classifier v2), with low precision scores affecting F1

due to overdetection of crystals. It is worth noting that the

VMXi CHiMP Detector was fine-tuned on just 180 images

from the beamline, while the XChem CHiMP Detector was

further trained on 281 images from the XChem facility,

whereas the VMXi classification networks were fine-tuned on

11 161 images. Although these metrics provide insight, they

are secondary since detection and classification networks

serve different purposes. Detection involves labelling and

segmenting potentially overlapping objects at various loca-

tions in the image. These candidate positions are subject to

a thresholding selection, according to assigned confidence

scores, and are also subject to overlap-suppression algorithms.

Classification, meanwhile, focuses on recognizing the overall

theme of an image without regard to object location or

multiplicity. Different metrics, such as mAP, are more suitable

for object detection. Future work might explore combining

classifier and detector outputs for better crystal detection.

Currently, both outputs are displayed alongside each other

in the SynchWeb interface to allow scientists to view them

simultaneously (Supplementary Fig. S3).

The utility of the VMXi CHiMP Detector network and the

XChem CHiMP Detector network, in isolation, can be judged

by viewing examples of their predicted output on images from

their validation sets and comparing the output with the

annotation provided by expert crystallographers. Figs. 5 and 6

show some of these examples for each of the detector

networks. The predicted objects [panels (b), (e) and (h)] in

these figures broadly agree with the expert annotation [panels

(c), ( f) and (i)]. There are some instances where crystals

annotated by experts are missed (for example, Figs. 5b, 5c, 6h

and 6i); however, there are also some instances where the

network has annotated crystals that have been missed by the

human (for example, Figs. 5e and 5f plus 5h and 5i). For the

XChem CHiMP Detector, using the predicted drop and crystal

masks to calculate a candidate position for dispensing

compound appears to provide coordinates that are at a loca-

tion away from the bulk of mountable crystals and also away

from the edge of the drop.

6. Conclusions

The ultimate value of the automatic classification of images

into categories of experimental outcome is realized when the

model is integrated into the software interface that scientists

use to monitor their experiments. In this case, a schematic

overview of the subwells in the crystallization plate in the

VMXi SynchWeb interface (Fig. 3) allows the locations of

various outcomes to be quickly found along with a general

overview of the proportion of experiments that resulted in

each outcome. This overview of outcomes can then be used as

the entry point to view images that are likely to be of interest

and that have been further annotated by an object-detection

network to pinpoint any crystals that are present. An example

of this interface can be seen in Supplementary Fig. S3. The fact

that the classification tool created in this study has been shown

to achieve performance metrics that surpass those achieved by

the MARCO tool (itself seen as one that could be trusted by

crystallographers weary of missing important results) hope-

fully means that many hours otherwise spent performing

manual inspection of images will be saved by this work.

Integrating the VMXi CHiMP Detector tool into the

SynchWeb interface has meant that human interaction is no

longer required to mark the location of the crystals and add

them to a queue for X-ray data collection. This in turn means

that the experimental station at the beamline has the potential

to work fully autonomously, with setting up the experiments

in the crystal plate and adding the information to the ISPyB

database being the only steps that require human intervention.

After this has been performed, plate inspections, data collec-

tion and protein structure determination can now take place

fully automatically.

By using the XChem CHiMP Detector network, candidate

positions for the dispensing of small-molecule fragment solu-

tions into the droplets can now be calculated automatically,

thereby speeding up the process of setting up soaking

experiments during screening campaigns, where hundreds of

such compounds are soaked into crystals prior to X-ray data

collection.

It is anticipated that sharing the training data, as well as the

model weights and the code for model training and prediction

of the networks described here, will aid other researchers to

take advantage of these tools. The models can be used as

shared, otherwise the model weights can be a starting point for
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transfer learning on local data. In order to make full use of

these tools, work will, of course, need to be done to integrate

the input images and model outputs into the existing software

environment at the host institution.

Ultimately, it is hoped that this work will lead to faster

structural discoveries that will have the potential to further

our understanding of disease processes and how to treat them.

7. Related literature

The following references are cited in the supporting infor-

mation for this article: Huang et al. (2016), Wang, Lee et al.

(2022) and Wang, Sun et al. (2022).

Acknowledgements

We would like to thank the VMXi beamline staff, particularly

Juan Sanchez-Weatherby, for helpful discussions and for time

spent annotating images, and Halina Mikolajek for her role at

the Crystallisation Facility at Harwell, for setting up crystal

plates and commenting on the manuscript. We would like to

thank Urszula Neuman, Stuart Fisher, Victor Nwaiwu and

Emma Dixon for their work on integrating the classification

and detection networks into the beamline software pipeline

and Richard Gildea and Graeme Winter for discussions on

how to do so. We would also like to thank the XChem staff,

particularly Ailsa Powell for promoting the ideas around

automated compound dispensing and those who spent time

annotating images to produce training data for the object-

detection network, namely Daren Fearon, Charlie Tomlinson,

Peter Marples, Isabel Barker and Alexandre Dias. Thanks also

go to Tim King for checking through the paper draft.

Conflict of interest

The authors declare that there are no conflicts of interest.

Data availability

We provide the set of 18 782 images from VMXi resulting

from the initial database query (described in Section 3.1.1),

alongside CSV files containing labels for the 13 951 images

that make up the cleaned VMXi Classification Data Set. These

can be found at https://doi.org/10.5281/zenodo.11097395 along

with the 1000 VMXi images and the corresponding expert

labels that form the test sets of images used to evaluate model

performance. The images that make up the VMXi CHiMP

Detector and XChem CHiMP Detector Data Sets, along with

the corresponding image masks for drops and crystals, are

available at https://doi.org/10.5281/zenodo.11110372. The

model weights for the ConvNeXt-Tiny CHiMP Classifier v2

network are available at https://doi.org/10.5281/zenodo.

11190973. The model weights for the Mask R-CNN VMXi

CHiMP Detector network are available at https://doi.org/

10.5281/zenodo.11164787. The model weights for the Mask

R-CNN XChem CHiMP Detector network are available at

https://doi.org/10.5281/zenodo.11165194. The software reposi-

tory containing methods used for training and inference of the

classification and detection networks discussed in this study is

available at https://doi.org/10.5281/zenodo.11244711.

References

Beale, J. H., Bolton, R., Marshall, S. A., Beale, E. V., Carr, S. B.,
Ebrahim, A., Moreno-Chicano, T., Hough, M. A., Worrall, J. A. R.,
Tews, I. & Owen, R. L. (2019). J. Appl. Cryst. 52, 1385–1396.

Bischoff, D., Walla, B. & Weuster-Botz, D. (2022). Anal. Bioanal.
Chem. 414, 6379–6391.

Bradski, G. (2000). Dr Dobb’s J. Softw. Tools, 120, 122–125.
Bruno, A. E., Charbonneau, P., Newman, J., Snell, E. H., So, D. R.,

Vanhoucke, V., Watkins, C. J., Williams, S. & Wilson, J. (2018). PLoS
One, 13, e0198883.

Cheng, Y. (2018). Science, 361, 876–880.
Chollet, F. (2017). 2017 IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), pp. 1800–1807. Piscataway: IEEE.
Cipriani, F., Felisaz, F., Launer, L., Aksoy, J.-S., Caserotto, H., Cusack,

S., Dallery, M., di-Chiaro, F., Guijarro, M., Huet, J., Larsen, S.,
Lentini, M., McCarthy, J., McSweeney, S., Ravelli, R., Renier, M.,
Taffut, C., Thompson, A., Leonard, G. A. & Walsh, M. A. (2006).
Acta Cryst. D62, 1251–1259.

Cumbaa, C. A. & Jurisica, I. (2010). J. Struct. Funct. Genomics, 11, 61–
69.

Cumbaa, C. A., Lauricella, A., Fehrman, N., Veatch, C., Collins, R.,
Luft, J. R., DeTitta, G. & Jurisica, I. (2003). Acta Cryst. D59, 1619–
1627.

Delagenière, S., Brenchereau, P., Launer, L., Ashton, A. W., Leal, R.,
Veyrier, S., Gabadinho, J., Gordon, E. J., Jones, S. D., Levik, K. E.,
McSweeney, S. M., Monaco, S., Nanao, M., Spruce, D., Svensson, O.,
Walsh, M. A. & Leonard, G. A. (2011). Bioinformatics, 27, 3186–
3192.

Douangamath, A., Powell, A., Fearon, D., Collins, P. M., Talon, R.,
Krojer, T., Skyner, R., Brandao-Neto, J., Dunnett, L., Dias, A.,
Aimon, A., Pearce, N. M., Wild, C., Gorrie-Stone, T. & von Delft, F.
(2021). J. Vis. Exp., e62414.

Edwards, D. W. II & Dinc, I. (2020). CSBio’20: Proceedings of the
Eleventh International Conference on Computational Systems –
Biology and Bioinformatics, pp. 54–60. New York: Association for
Computing Machinery.

Fischer, M. (2021). Q. Rev. Biophys. 54, e1.
Fisher, S. J., Levik, K. E., Williams, M. A., Ashton, A. W. & McAuley,

K. E. (2015). J. Appl. Cryst. 48, 927–932.
Formulatrix (2019). Protein Crystallization Software Update: ROCK

MAKER 3.15. https://formulatrix.com/life-science-automation-blog/
protein-crystallization-software-update-rock-maker-3-15/.

Gao, Z., Wu, Y., Bao, Y., Gong, J., Wang, J. & Rohani, S. (2018). Cryst.
Growth Des. 18, 4275–4281.

Ghafurian, S., Orth, P., Strickland, C., Su, H., Patel, S., Soisson, S. &
Dogdas, B. (2018). arXiv:1805.04563.

Gildea, R. J., Beilsten-Edmands, J., Axford, D., Horrell, S., Aller, P.,
Sandy, J., Sanchez-Weatherby, J., Owen, C. D., Lukacik, P., Strain-
Damerell, C., Owen, R. L., Walsh, M. A. & Winter, G. (2022). Acta
Cryst. D78, 752–769.

Han, J., Ding, J., Li, J. & Xia, G.-S. (2022). IEEE Trans. Geosci.
Remote Sensing, 60, 5602511.

He, K., Gkioxari, G., Dollár, P. & Girshick, R. (2020). IEEE Trans.
Pattern Anal. Mach. Intell. 42, 386–397.

He, K., Zhang, X., Ren, S. & Sun, J. (2015). 2015 IEEE International
Conference on Computer Vision (ICCV), pp. 1026–1034. Piscat-
away: IEEE.

He, K., Zhang, X., Ren, S. & Sun, J. (2016). 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 770–778.
Piscataway: IEEE.

research papers

762 Oliver N. F. King et al. � CHiMP Acta Cryst. (2024). D80, 744–764

http://doi.org/10.1107/S2059798324009276
http://doi.org/10.1107/S2059798324009276
https://doi.org/10.5281/zenodo.11097395
https://doi.org/10.5281/zenodo.11110372
https://doi.org/10.5281/zenodo.11190973
https://doi.org/10.5281/zenodo.11190973
https://doi.org/10.5281/zenodo.11164787
https://doi.org/10.5281/zenodo.11164787
https://doi.org/10.5281/zenodo.11165194
https://doi.org/10.5281/zenodo.11244711
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nj5327&bbid=BB1
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nj5327&bbid=BB1
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nj5327&bbid=BB1
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nj5327&bbid=BB2
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nj5327&bbid=BB2
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nj5327&bbid=BB3
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nj5327&bbid=BB4
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nj5327&bbid=BB4
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nj5327&bbid=BB4
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nj5327&bbid=BB6
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nj5327&bbid=BB7
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nj5327&bbid=BB7
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nj5327&bbid=BB8
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nj5327&bbid=BB8
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nj5327&bbid=BB8
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nj5327&bbid=BB8
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nj5327&bbid=BB8
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nj5327&bbid=BB9
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nj5327&bbid=BB9
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nj5327&bbid=BB10
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nj5327&bbid=BB10
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nj5327&bbid=BB10
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nj5327&bbid=BB11
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nj5327&bbid=BB11
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nj5327&bbid=BB11
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nj5327&bbid=BB11
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nj5327&bbid=BB11
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nj5327&bbid=BB12
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nj5327&bbid=BB12
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nj5327&bbid=BB12
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nj5327&bbid=BB12
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nj5327&bbid=BB76
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nj5327&bbid=BB76
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nj5327&bbid=BB76
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nj5327&bbid=BB76
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nj5327&bbid=BB13
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nj5327&bbid=BB14
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nj5327&bbid=BB14
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nj5327&bbid=BB15
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nj5327&bbid=BB15
https://formulatrix.com/life-science-automation-blog/protein-crystallization-software-update-rock-maker-3-15/
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nj5327&bbid=BB16
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nj5327&bbid=BB16
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nj5327&bbid=BB17
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nj5327&bbid=BB17
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nj5327&bbid=BB18
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nj5327&bbid=BB18
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nj5327&bbid=BB18
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nj5327&bbid=BB18
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nj5327&bbid=BB19
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nj5327&bbid=BB19
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nj5327&bbid=BB20
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nj5327&bbid=BB20
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nj5327&bbid=BB21
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nj5327&bbid=BB21
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nj5327&bbid=BB21
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nj5327&bbid=BB22
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nj5327&bbid=BB22
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nj5327&bbid=BB22


Healey, R. D., Basu, S., Humm, A.-S., Leyrat, C., Cong, X., Gole-
biowski, J., Dupeux, F., Pica, A., Granier, S. & Márquez, J. A.
(2021). Cell Rep. Methods, 1, 100102.

Hough, P. V. C. (1962). US Patent US3069654A.
Howard, J. & Gugger, S. (2020). Information, 11, 108.
Huang, G., Liu, Z., Maaten, L. V. D. & Weinberger, K. Q. (2017). 2017

IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 2261–2269. Piscataway: IEEE.

Huang, G., Sun, Y., Liu, Z., Sedra, D. & Weinberger, K. Q. (2016).
Computer Vision – ECCV 2016, edited by B. Leibe, J. Matas, N.
Sebe & M. Welling, Part IV, pp. 646–661. Cham: Springer.

Iandola, F. N., Han, S., Moskewicz, M. W., Ashraf, K., Dally, W. J. &
Keutzer, K. (2016). arXiv:1602.07360.

Ito, S., Ueno, G. & Yamamoto, M. (2019). J. Synchrotron Rad. 26,
1361–1366.

Jancarik, J. & Kim, S.-H. (1991). J. Appl. Cryst. 24, 409–411.
Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronne-

berger, O., Tunyasuvunakool, K., Bates, R., Žı́dek, A., Potapenko,
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