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During the automatic processing of crystallographic diffraction experiments,

beamstop shadows are often unaccounted for or only partially masked. As a

result of this, outlier reflection intensities are integrated, which is a known issue.

Traditional statistical diagnostics have only limited effectiveness in identifying

these outliers, here termed Not-Excluded-unMasked-Outliers (NEMOs). The

diagnostic tool AUSPEX allows visual inspection of NEMOs, where they form

a typical pattern: clusters at the low-resolution end of the AUSPEX plots of

intensities or amplitudes versus resolution. To automate NEMO detection, a

new algorithm was developed by combining data statistics with a density-based

clustering method. This approach demonstrates a promising performance in

detecting NEMOs in merged data sets without disrupting existing data-reduction

pipelines. Re-refinement results indicate that excluding the identified NEMOs

can effectively enhance the quality of subsequent structure-determination steps.

This method offers a prospective automated means to assess the efficacy of

a beamstop mask, as well as highlighting the potential of modern pattern-

recognition techniques for automating outlier exclusion during data processing,

facilitating future adaptation to evolving experimental strategies.

1. Introduction

In macromolecular X-ray crystallography, determining the

high-resolution cutoff for data processing is a decisive aspect

of structure determination. As a result, tools have been

developed to assist in identifying the optimal high-resolution

cutoff for any given data set (Diederichs & Karplus, 2013;

Karplus & Diederichs, 2012). However, the issue of selecting

an appropriate low-resolution cutoff remains largely unad-

dressed as a consequence of an unfortunately common belief

that low-angle data do not contribute significant details to the

final model. It is true that low-angle observations in reciprocal

space primarily contribute to identifying the macromolecule/

solvent boundary in real space and, assuming that perfect

phases have been obtained, low-angle data may indeed appear

to be less pertinent to the quality of the final macromolecular

model (Diederichs, 2010). Yet, achieving a (near) perfect

estimate of phases is a nontrivial task. In practice, these low-

angle or very low-angle observations play an important role

in indexing, phasing and model refinement (Wlodawer et al.,

2008). Moreover, low-angle observations are crucial to

indexing efficiency for serial crystallography (Li et al., 2019;

Nam, 2022), reciprocal-space solvent flattening (Terwilliger,

1999), bulk-solvent scaling (Afonine et al., 2013), novel

iterative ab initio phasing (Jiang et al., 2023; Yoshimura et al.,

2016) and the biological interpretation of the partially ordered
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solvent interface (Dauter & Wilson, 2012; Lang et al., 2014).

Thus, while low-angle data should not be arbitrarily discarded,

neither can the influence of systematic errors as a result of

imperfect intensity estimation due to the beamstop in the low-

angle region of the diffraction pattern be ignored.

At low angle (>10 Å), two types of outliers (Evans, 2006)

related to the beamstop emerge (Fig. 1a): (1) observations

overlapping with the noncrystallographic scattering around

the central beamstop and (2) those within the area of the

diffraction pattern shadowed by the beamstop. The former are

typically strong and detectable using Wilson statistics. As a

result, the rejection of rogue data stemming from outliers of

type 1 has been integrated into data-reduction programs,

including AIMLESS (Evans & Murshudov, 2013), DIALS

(Winter et al., 2018) and XDS (Kabsch, 2010). On the other

hand, the detection and exclusion of outliers of type 2 remains

more difficult, although the problem has long been recognized

(Read, 1999). When examining World Wide Protein Data

Bank (wwPDB) entries with available raw images, we

consistently observed clusters of weak signals in the lowest

resolution bins in AUSPEX plots of intensities (Iobs) and

structure factors (Fobs) (Fig. 1b). More detailed analysis of the

raw images of the corresponding entries suggests that the

physically obstructed areas of the beamstops are often off-

centre or possess non-circular geometries. Although it is hard

to reconstruct whether the depositors explicitly modelled the

beamstop mask during data reduction, re-integration of these

data sets reveals that these clustered low-angle weak signals

indeed originate from type 2 outliers. Importantly, type 2

outliers appear not to have been rejected by the original

depositors, suggesting the structure determination and model

building/refinement might have been attempted with this

pathology present in the data. Here, we analyse the source of

low-angle outliers, termed Not-Excluded-unMasked-Outliers

(NEMOs), propose a novel method for their automatic iden-

tification and assess their impact on refinement.

1.1. NEMOs: the outliers escaping outlier rejection

The conventional approach to identify an outlier intensity

is to collect data of high multiplicity. In cases of multiple

measurement of symmetry-related observations, the funda-

mental assumption is that the majority of these observations

are reliable. However, this assumption may fail for low-angle

data obstructed by beamstop shadows (Evans, 2011). Fig. 2

shows an example in which, of four symmetry-equivalent

observations, three are behind the unmasked portion of the

beamstop. Such a set of symmetry-equivalent observations

leads to the exclusion of the sole correctly recorded reflection

during scaling. Consequently, the merged data point becomes

the average of the three improperly estimated reflection

intensities.

Upon merging, detection of NEMOs is possible using CC1/2,

as both off-centred and noncircular beamstops can introduce

non-isomorphism into observations and CC1/2 detects this.

However, this approach may fail in certain cases where

NEMOs and strong observations coexist within the same

selected resolution shell (Supplementary Fig. S1). In this case,

the variance of the data is much larger than the variance of the

multiple observations, resulting in a CC1/2 close to 1 in the low-

resolution shell. Similar challenges can be encountered with

other statistical tools where binning is imperative.

The persistence of NEMOs as clusters of weak signals is

exacerbated as a result of applying the French–Wilson method

when estimating the structure factors from the intensities

(French & Wilson, 1978). Given the high likelihood of weak

intensities in the Wilson distribution, the posterior distribution

for weak reflections with significant errors, such as NEMOs,

tends to be dominated by the prior Wilson distribution (Read,

1999; Read & McCoy, 2016). For amplitudes that are inferred

from the Wilson distribution, the minimum ratios of the

French–Wilson posterior amplitude and standard deviation

for centric and acentric data are 1.324 and 1.913, respectively

(Read & McCoy, 2016). Upon inspecting Protein Data Bank
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Figure 1
(a) Two types of low-angle outliers related to the beamstop. Predicted locations of reflections are circled. The blue circle and red circles highlight the type
1 and type 2 outliers, respectively. (b) AUSPEX plot of Iobs versus resolution. Unexcluded type 2 beamstop shadow outliers with intensity values near 0
cluster at the low-resolution end, indicating that the beamstop was either not masked or not masked completely prior to integration.
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(PDB) entries, all NEMO clusters slightly surpass these lower

limits.

NEMOs can be marked as outliers at the end of each

structure model-refinement cycle using model-based �2

distributions (Read, 1999). phenix.refine (Adams et al., 2010)

has implemented this functionality. However, despite being

flagged, the effects may persist in subsequent refinement

stages, potentially undermining the accurate understanding

of biological activity at the partially ordered solvent interface

(Yu et al., 1999; Dauter & Wilson, 2012).

The cctbx package offers a probability test to reject weak

observations below 10 Å based on Wilson statistics, employing

a loose threshold (i.e. 10� 2) as opposed to the recommended

criteria of 10� 6 (Read, 1999). This empirical criterion may

pose issues in detection accuracy and specificity, leading to an

unwanted loss of information related to the low-angle data.

1.2. AUSPEX plots can be used to identify NEMOs

Traditionally, the assessment of diffraction data quality

relies on statistical indicators, which are effective in evaluating

either the overall data quality or the data quality within

specific resolution bins, presuming that most data conform to

an expected behaviour. Based on established conventional

ad hoc criteria, particular subsets of the data set are then

discarded as they are deemed to be non-informative or highly

uncertain. However, the presence of outliers can significantly

skew the behaviour of these quality indicators (Dalton et al.,

2022). This issue is particularly pronounced for low-angle data,

where reflections tend to be sparse.

AUSPEX is a graphical diagnostic tool for identifying

diffraction data pathologies and is commonly used, for

example, to automatically detect ice rings (Thorn et al., 2017;

Nolte et al., 2022). It exploits the fact that systematic errors

consistently bias observations, thereby manifesting explicit

patterns across the data set (Gao et al., 2023). In an integrated,

scaled and merged data set, inadequately masked beamstops

often result in clusters of weak observations at the low-

resolution end of the data sets. While diagnostic tools based on

binning may lack the sensitivity to detect these clusters, it is

intuitive for human observers to identify NEMOs as clusters

within the inherently sparse low-resolution region in an

AUSPEX plot. Two key questions arise. (i) Can such clusters

be identified automatically? (ii) Are the elements in the
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Figure 2
Example of the experimental origin of NEMOs. The images are the corresponding raw detector frames of PDB entry 5b8f. The blue dashed polygon
highlights the edge of excluded shaded regions recognized by the best possible XDS–DEFPIX trial without masking unobstructed areas on the detector.
The red dashed polygon highlights the edge of how one would intuitively define a mask, manually created with the aid of dials.image_viewer. The beam
centre is indicated by the yellow and green crosses. The 50 and 10 Å resolution shells are marked with black rings. Predicted locations of reflections are
circled in yellow. Using the blue mask, the similarity of observations �120 in (b), 1�20 in (c) and �1�20 in (d) result in the exclusion of observation 120 in (a).
The resulting merged unique reflection 120 would then have a value close to 0, but an ‘algorithm-acceptable’ uncertainty. Using the red mask, the unique
reflection 120 can be properly recorded, as the other symmetry-equivalent observations are completely masked. However, in (b) and (c) such a mask
results in the masking of unbiased observations (highlighted with magenta circles).



automatically identified clusters NEMOs and only NEMOs?

To address these questions, we explored a route that combines

X-ray crystallographic statistics with modern density-based

clustering methods and utilized a semi-supervised training

strategy to further improve the robustness.

2. Methods

2.1. Automatic detection of NEMOs

A low-angle (d-spacing > 10 Å) data subset, A, is created

consisting of 2D coordinates (x, y), where x is the inverse

d-spacing squared and y is the merged signal-to-noise ratio

Fobs/�(Fobs) or Iobs/�(Iobs). The d-spacing squared is a natural

choice for uniformity given that the volume of a thin shell of a

sphere can be approximated quadratically (Singer, 2021). The

rationale behind using merged Fobs/�(Fobs) and Iobs/�(Iobs) is

that, unlike reflections affected by other systematic errors

(Assmann et al., 2016), the signal-to-noise ratio of beamstop

shadow outliers does not increase after merging. In the case of

intensities, Iobs/�(Iobs) exhibits non-monotonic growth due to

the presence of negative values resulting from the integration

of predicted reflections under the beamstop shadow. When

considering amplitudes, applying the French–Wilson method

results in the inferred Fobs and �(Fobs) of beamstop shadow

outliers predominantly being influenced by the prior distri-

bution, which effectively amplifies the posterior error esti-

mates �(Fobs). Therefore, the use of a merged signal-to-noise

ratio is preferable. Hence,

A :¼ ðx; yÞjx< 0:01 Å
� 2

n o
; ð1Þ

2.1.1. Identifying an initial pool of potential outliers

The statistical tests proposed by Read (Read, 1999; Read &

McCoy, 2016) are used to select the potential outliers. The

cumulative probability functions in the form of amplitudes

and intensities, respectively, are defined as follows.

For acentric reflections:

paðEO <EO;measÞ ¼ 1 � expð� E2
O;measÞ; ð2Þ
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In these equations, erfc is the complementary error func-

tion, EO is the normalized amplitude, E2
O is the normalized

intensity and �ðE2
OÞ is the standard deviation for the

normalized intensity. The functions compute the probability

that an observation could be smaller than EO,meas or E2
O;meas.

In our study, the normalization to an absolute scale is

performed with the kernel normalization method in the cctbx

library. The integration for centric intensities pcðE
2
O <E2

O;measÞ

is determined numerically. The numerical integration is

conducted using nquad in the SciPy library (Virtanen et al.,

2020) via low-level callable C functions.

For all the (x, y) in A, those with cumulative probabilities

smaller than t are marked and compose the initial potential

outliers set O with a size of k,

O :¼ fðx; yÞjx< 0:01 Å
� 2

and p½EðyÞ�< tg; jjOjj ¼ k: ð6Þ

The parameter t is a factor deciding the tolerance to

potential outliers. Set O may be a close approximation to the

true set of beamstop shadow outliers when a case-specific t is

carefully selected. Automatic detection is hard to achieve if a

universal t threshold is applied. For example, the outlier-

detection module in cctbx empirically classifies observations

with t < 10� 2 as beamstop shadow outliers, which gives

unpromising results (discussed in Section 3.1).

2.1.2. Clustering estimations at multiple noise levels

The hierarchical density-based spatial clustering of appli-

cations with noise (HDBSCAN) algorithm is a clustering

algorithm that is particularly effective in identifying clusters

within data sets characterized by varying densities and non-flat

geometry (Campello et al., 2013, 2015). Clusters observed at

the low-resolution end of AUSPEX plots typically exhibit

non-flat geometries, i.e. local densities significantly surpassing

the neighbouring background and overall non-convex shapes.

In HDBSCAN, the key parameter governing its operation is

the minimum cluster size (�mcs), which serves as an abstract

proxy for noise levels under examination. If a core cluster is

present, the elements identified within it or its hierarchical

subclusters by HDBSCAN exhibit mutual consistency across a

broad range of minimum cluster sizes (McInnes & Healy, 2017;

Guo et al., 2021). Consider that set A contains a core cluster

comprising beamstop shadow outliers (possibly null, repre-

senting zero beamstop shadow outliers) and noise background

formed by normal data with unknown noise levels. Using a

fixed, universal threshold for �mcs may lead to either over-

segmentation or under-segmentation. To address this, a series

of clustering-estimation cycles are conducted, varying the �mcs

from 1 to k, resembling a bootstrapping approach to resample

the noise level. For cluster i in a given clustering estimation
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cycle j (Ci,j), the population of the intersection ratio between

Ci,j and O is then calculated as

si;j ¼
jjCi;j \Ojj

jjCi;jjj
: ð7Þ

si,j serves as a simple measurement of set overlap between

Ci,j and O.

Without loss of generality, x is scaled to match the range of

y to aid the use of Euclidean distance to support clustering,

which is calculated as

dist ¼ �
�95ðyÞ

0:01
� x

� �� �2

þ ð�yÞ
2

( )1=2

; ð8Þ

where �95(y) is the 95th percentile of y.

2.1.3. Robust assignment of beamstop shadow outliers

To improve the robustness of assignment, the following

steps are formulated based on mutual regulation. (i) An

element (x, y) in set O is not classified as a NEMO if it does

not show persistent membership of multiple estimated Ci,j

across different noise levels. (ii) An element (x, y) disjoint

from O is classified as a NEMO if it is part of multiple esti-

mated Ci,j that exhibit a sufficient overlapping ratio to O

across different noise levels.

Let the collective set Ĉ be the concatenation of Ci,j under

the condition that the elements of Ci,j that are encompassed in

O populate Ci,j with a proper fraction of l,

Ĉ :¼ fn � ðx; yÞjðx; yÞ 2 Ci;j and si;j > lg; ð9Þ

where n denotes the number of times that an observation is

assigned as a component of a cluster during successive esti-

mation cycles. The parameter l regulates the required simi-

larity for Ci,j to be considered as a subgroup of the core cluster

formed by beamstop shadow outliers.

Finally, an observation is categorized as NEMO if n/nmax �

m, where nmax is the maximum multiplicity of (x, y) in Ĉ and m

is a d-spacing-dependent 3-tuple determining the difficulty of

satisfying the aforementioned principles. The set of NEMOs

can then be represented as

N :¼ fðx; yÞjðx; yÞ 2 Ĉ and n=nmax � mg: ð10Þ

2.2. Hyperparameter optimization

Clustering or a clustering task-involving framework is

typically viewed as an unsupervised task. However, with

known ground truth and appropriate external metrics, it is

possible to transition the problem into a semi-supervised

regime, facilitating the tuning of hyperparameters to optimize

performance. In the algorithm discussed above, the para-

meters t, l and m can be considered as hyperparameters with

unit intervals that affect the performance of detection. A total

of 109 Protein Data Bank (PDB) entries with available raw

diffraction images were selected for hyperparameter optimi-

zation (Supplementary Information S1.1 and S1.2, list of data

sets and assignment). All entries were examined using

phenix.xtriage (Adams et al., 2010) to confirm the absence of

twinning or translational noncrystallographic symmetry

(tNCS). To find the exact source of the weak observations, we

performed re-integration using the respective raw diffraction

images. The re-integration was conducted using XDS (version

Jun 30, 2023). The space group was kept the same as that in

the deposited data header and the unit-cell parameters were

rounded to the nearest tenths of the reported values. The

default value of 50 Å was used as the low-resolution limit.

The lower bound of VALUE_RANGE_FOR_TRUSTED_

DETECTOR_PIXELS was adjusted to 2000 to ensure that all

predicted reflections were integrated. A validation set of

NEMO labels was made manually according to the following

protocol: low-angle observations below the 10 Å threshold

were considered to be NEMO candidates if they (i) exhibited

a poor correlation factor (<20) between the observed and the

expected reflection integration profiles in the re-integrated

unmerged data (column 11 in INTEGRATE.HKL) and (ii)

were verified as NEMOs upon manual visual inspection of the

corresponding detector frame. This inspection was carried

out to check that the candidate observations were indeed

predicted to be under the beamstop, which is visible using

XDS-Viewer (Brehm et al., 2023). The resulting NEMO-

labelled observations from the 109 PDB entries comprise a

ground-truth set. Clustering was performed using the

HDBSCAN module within the scikit-learn package (Pedre-

gosa et al., 2011), with Euclidean distance between individual

points (x, y) serving as the distance metric. The search and

evaluation are implemented in a similar way as described in

a previous study (Mishra et al., 2022). The detailed tuning

process is reported in Supplementary Fig. S2.

2.3. Performance test

To evaluate the reliability of the hyperparameter-tuned

automatic detection (Fig. 3), a performance test was

performed with deposited data. The deposited merged data

from 328 further PDB entries, each with publicly available raw

diffraction images, were used to validate and assess the

performance of automatic detection methods (Supplementary

Information S1.1 and S1.2, list of data sets and assignment).

Among these data sets, 45 exhibit the presence of twinning or/

and tNCS. The same approach as outlined in Section 2.2 was

employed to populate the ground-truth set G.

For a given NEMO assignment N, the true-positive (TP),

false-positive (FP), true-negative (TN) and false-negative

(FN) classifications are defined as described in Table 1.
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Table 1
Definitions of true positive (TP), false positive (FP), true negative (TN)
and false negative (FN).

2 N 2 G 2 O0†

TP True True —
FP True False —

TN False False True
FN False True —

† O0 := {(x, y)|x < 0.01 Å� 2 and p[E(y)] < 0.03}.

http://doi.org/10.1107/S2059798324008519
http://doi.org/10.1107/S2059798324008519
http://doi.org/10.1107/S2059798324008519
http://doi.org/10.1107/S2059798324008519


The performance of the algorithms was evaluated using four

metrics, precision, accuracy, sensitivity and specificity, which

are defined as follows:

precision ¼ nTP=ðnTP þ nFPÞ;

accuracy ¼ ðnTP þ nTNÞ=ðnTP þ nTN þ nFP þ nFNÞ;

sensitivity ¼ nTP=ðnTP þ nFNÞ;

specificity ¼ nTN=ðnTN þ nFPÞ:

Here, n represents the total number of corresponding

classifications across all test data sets. Accuracy measures the

true concentration of beamstop shadow outliers in a given

NEMO assignment. Precision measures algorithm stability

towards various data sets. Sensitivity and specificity measure

the abilities to correctly identify beamstop shadow outliers

and to correctly exclude weak observations that are not

beamstop outliers, respectively. It is worth noting that TN can

be artificially inflated if more observations exist in set A (for

example a larger unit cell or higher symmetry). To mitigate

this effect, O0 is introduced to include only nominally weak

signals when counting TN.

2.4. Re-refinement

PDB-REDO (version 8.04; Joosten et al., 2012) was used to

benchmark the influence of NEMOs on refinement, with the

assumption that PDB-REDO reflects the data-processing

capabilities typical of an experimenter. A selection of 270

PDB entries, each with confirmed NEMOs in the deposited

amplitudes, were chosen for this analysis (Supplementary

Information S3, list of data sets and statistics). A comparison

was conducted between the original deposited data sets and

their respective counterparts with NEMOs removed. The

deposited coordinates were randomized using phenix.pdbtools

(Adams et al., 2010), with a 0.25 Å shake applied. The default

settings of PDB-REDO were consistently applied across all

re-refinement processes.

3. Results and discussion

3.1. Performance of the NEMO-detection algorithm

Table 2 gives a comprehensive comparison of different

NEMO-detection approaches. When Wilson statistics-based

rejection (the beamstop_shadow_outlier function in cctbx) is

employed the performance is less than satisfactory, as

suggested by the four mediocre metrics in the first two rows.

Two major factors contribute to this suboptimal performance:

firstly, weak observations are not unusual for a diffraction data

set even at low angle. The number of false positives hence

becomes high with a loose probability threshold using Wilson

statistics. Secondly, the normalization of amplitudes/intensities

is susceptible to interference from absolute scaling, which is

potentially affected by the binning strategies applied as well as

the number of outliers within bins (Murshudov et al., 1997;

Read & McCoy, 2016). This consequently leads to an elevated

rate of false negatives. The abundance of false positives

pinpoints the risk of unnecessarily discarding valuable infor-

mation, while an excess of false negatives poses challenges for

the downstream structure solution. Merely adjusting the
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Table 2
Comparison of different beamstop shadow outlier-detection algorithms.

Input Precision Accuracy Sensitivity Specificity

beamstop_shadow_outlier in cctbx Fobs 0.787 � 0.045 0.692 � 0.051 0.750 � 0.048 0.569 � 0.055

Fobs† 0.809 � 0.047 0.729 � 0.053 0.794 � 0.048 0.584 � 0.058
Clustering-derived detection Fobs/�(Fobs) 0.927 � 0.029 0.912 � 0.031 0.928 � 0.029 0.887 � 0.035

Fobs/�(Fobs)† 0.974 � 0.019 0.960 � 0.023 0.959 � 0.023 0.960 � 0.023
Clustering-derived detection Iobs/�(Iobs) 0.935 � 0.046 0.901 � 0.056 0.932 � 0.047 0.814 � 0.072

Iobs/�(Iobs)† 0.958 � 0.040 0.935 � 0.050 0.955 � 0.042 0.875 � 0.067

† The test was made excluding data sets with twinning or tNCS.

Figure 3
Schematic workflow of the automatic detection algorithm. The process
begins with a low-angle data subset A. Subsequently, crystallographic
statistics and clustering bootstrapping are performed independently. The
overlap between each subcluster Ci,j and the set O derived from crys-
tallographic statistics is then assessed. This results in the concatenated
multiset Ĉ, where elements can be recurrent with a certain multiplicity. If
an unique element has sufficient multiplicity, it will be included in the
output set N and categorized as a NEMO. The detection performance is
influenced by the hyperparameters t, l and m. Here, an element p is
equivalent to indexed 2D coordinates with (x, y) as positional properties
in a Euclidean plane.

http://doi.org/10.1107/S2059798324008519
http://doi.org/10.1107/S2059798324008519


threshold for the cumulative probability (the parameter t) is

ineffective to enhance evaluation, as all metrics remain rela-

tively stagnant.

Our clustering-derived method, integrating an additional

and independent logical layer alongside statistical inference,

demonstrates a relatively good performance (see Table 2 and

the example in Fig. 4). Particularly for inputs free of twinning

and tNCS, this method can reliably label NEMOs. When

utilizing intensities, the performance is slightly worse

compared with amplitude-based detection. We speculate that

this difference may arise from the complexity of patterns in

intensities compared with converted amplitudes, as hinted by

the relatively lower specificity observed with intensity-based

detection. The example in Fig. 4 shows that the ‘NEMO

clusters’ in Iobs/�(Iobs) are more dispersed than those in Fobs/

�(Fobs). This illustrates that the inferred amplitudes of weak

signals could predominantly be influenced by the French–

Wilson prior, potentially leading to the inadvertent loss of

additional information implicitly encoded in intensities,

including the sources of systematic errors.

It is important to note that the specificity of automatic

detection can significantly diminish when twinning or tNCS

are present. Since tNCS data sets inherently contain weak data

with high errors (Read et al., 2013), a substantial portion of

the data are falsely flagged as outliers during the statistical

testing phase, making the subsequent exclusion harder

(Supplementary Fig. S3). In a twinned data set, intensity

dispersion is lower compared with a generic data set (Stanley,

1972). Consequently, an excessive number of irrelevant sub-

clusters may be assigned during the noise-level bootstrapping,

potentially increasing the number of false positives. This

serves as yet another example of how strong patterns in atomic

crystal structures such as tNCS and crystal twinning result in

altered intensity statistics, which in turn will confuse methods

that are not designed to handle them. Nevertheless, despite

reduced specificity in identifying exact reflections as NEMOs

in the presence of twinning or tNCS, the automatic detection

can still accurately determine whether the data set contains

any NEMOs, even under these conditions.

3.2. Impact of NEMOs on refinement

The selected NEMO-containing data sets for analysis cover

a broad spectrum of experimental characteristics, including
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Figure 4
AUSPEX plots of the low-angle data subset of PDB entry 8g0s. Top: Fobs/�(Fobs). Bottom: Iobs/�(Iobs). Red dots are beamstop shadow outliers identified
by statistical tests (equations 2–5) alone with a threshold of 10� 2. Blue dots are NEMOs identified by our method derived from semi-supervised
clustering. Observations that are not NEMOs can be falsely identified as outliers by statistical tests. Observations that are NEMOs can escape the
statistical tests due to too many outliers disrupting the absolute scaling. Decreasing the threshold leads to an increased rate of false negatives. In this
instance, our clustering-derived method successfully identified all NEMOs with perfect metrics.
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various resolutions, Rfree values, numbers of unique observa-

tions per non-H atom, solvent contents, synchrotron beam-

lines and data-processing software used (Table 3). The diverse

synchrotron sources and data-reduction techniques imply that

the presence of NEMOs is not uncommon, despite the robust

implementation of explicit outlier-rejection methods in the

current data-processing pipelines.

It is widely believed that once the structure has successfully

been phased, low-angle observations have a minimal influence

on model quality. The differences in figure of merit (FOM;

Read, 1999; Murshudov et al., 1997) across the entire data set

and within the low-resolution shell at the end of refinement,

after and before NEMO removal, suggest otherwise (Fig. 5).

Despite the relatively small absolute fraction of NEMOs, the

result clearly indicates that removing NEMOs from the data

set effectively enhances phase quality, benefiting not only the

low-resolution bin but also the entire data set. Especially in

instances where the data-to-parameter ratio is low (i.e. fewer

unique observations per non-H atom), attempting refinement

with a data set containing NEMOs is more likely to impede

the refinement process. In one illustrative example, we

observed that ignoring the presence of NEMOs caused the

molecular envelope to be flipped over, which shows system-

atically underestimated electron density within the protein

envelope and overestimation of the bulk-solvent region

density (Supplementary Fig. S6). Such distortion may affect

the accuracy of the model built using such electron density,

particularly the ligands at the protein–solvent interface.

3.3. Limitations and further implementation

The clustering-derived automatic detection of NEMOs has

certain limitations. The performance deficiency in handling

integrated intensities should be addressed, as intensities are

more primordial than amplitudes. One potential solution is to

use a more stable estimation of expected intensities, such as

that implemented in Phaser (McCoy et al., 2007). Another

solution is to incorporate more intensity data into the training

set, possibly by re-integrating diffraction images without the

beamstop mask using various data-reduction software. With

regard to data sets containing twinning or tNCS, improved sets

for O and consequently better NEMO assignment may be

achieved by correcting for the statistical effect of twinning and

tNCS (for example using the tNCS-corrected " factor; McCoy

et al., 2005). In addition, the extent to which this method is

affected by other coexisting pathologies, such as improper

Lorentz correction, remains unexplored. It is important to

note that the selection of data sets for hyperparameter tuning

and performance testing was not entirely random. This is

because for some initially selected data sets it was not possible

to reconstruct the ground-truth set due to issues with indexing

during re-integration caused primarily by discrepancies in
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Figure 5
The difference in FOM [�(FOM)] at the end of re-refinement after and before NEMO removal for the selected data sets. Left: �(FOM) of the entire
data set. Right: �(FOM) of the low-resolution shell. Note that the scales of the two panels are different. We consider that the number of unique
observations per non-H atom remains approximately consistent before and after NEMO removal, given the small proportion of NEMOs (a maximum of
0.75% of the entire data set).

Table 3
The characteristics of the 270 data sets selected for re-refinement (details in Supplementary Information S3).

Experimental characteristics Range

Resolution (Å) 3.38–0.97

Rfree 0.341–0.119
No. of unique observations per non-H atom 1.8–55.7
Solvent content (%) 32.25–81.83
Synchrotron sources NSLS-II, ESRF, BESSY, PETRA III, APS, Diamond, SSRL, Australian Synchrotron, ALS, LNLS
Data-reduction tools autoPROC (Vonrhein et al., 2011), DENZO (Otwinowski & Minor, 1997), DIALS (Winter et al., 2018),

HKL-2000, HKL-3000 (Minor et al., 2006), MOSFLM (Battye et al., 2011), XDS (Kabsch, 2010)
NEMOs (%) 0.75–0.0015
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reported space group or unit-cell parameters. Nevertheless, we

believe that this method, together with the idea of utilizing

the strength of both crystallographic statistics and machine

learning, will be widely useful for structural biologists and at

synchrotron beamlines for macromolecular crystallography.

The automatic NEMO-detection feature has been incor-

porated into AUSPEX as well as the web service https://

auspex.de and integrated into the AUSPEX plots presented

to the user (Supplementary Figs. S4 and S5). Additionally, if

necessary, the AUSPEX command-line interface can remove

rows corresponding to NEMOs from an input reflection file

before structure solution. In the current version, AUSPEX

can be used to generate a list of reflections that should be

ignored during scaling if unmerged reflection files are also

provided. For example, when provided with an INTE-

GRATE.HKL file from XDS, AUSPEX will attempt to

generate a FILTER.HKL file to prevent the CORRECT step of

XDS from erroneously rejecting correctly recorded observa-

tions due to the presence of NEMOs within a group of

symmetry-equivalent observations.

The tuned NEMO-detection algorithm has been imple-

mented as the NEMO module within AUSPEX (https://

github.com/thorn-lab/AUSPEX) and is available under the

GNU Lesser General Public Licence, adhering to FAIR

principles (Wilkinson et al., 2016). The code efficiently handles

noise-level bootstrapping in parallel. Within the CCP4

(version 8.0.019) virtual environment (Agirre et al., 2023),

most calculations are completed in less than a second on

a 3 GHz CPU. The primary runtime bottleneck is the

construction of tree structures for the calculation of Ci,j, which

accounts for 77% of the total runtime. There are no known

memory bottlenecks.

4. Conclusion

The emergence of NEMOs in the merged data set mainly

results from unmasked/partially masked beamstops and the

scaling protocols employed during data reduction. While

detecting a few weak outliers using global data-quality indi-

cators is challenging, the pattern posed by systematic errors,

such as NEMOs, is discernible through direct observation of

the data in a certain form (for example an AUSPEX plot).

By combining statistical inference with machine-learning

concepts such as clustering and hyperparameter tuning, we

have developed an explainable model to identify and exclude

NEMOs with better reliability than was previously possible.

Our approach suggests that by accurately pinpointing the

source and recognizing the pattern of the corresponding error

(which is only possible with a sufficient amount of raw data

deposition), it becomes feasible to exclude such errors during

automatic data processing.

As the recent novel Bragg peak-finding algorithm based on

machine learning does not completely exclude NEMOs (Dong

et al., 2024), we would like to emphasize that the optimal

practice to eliminate NEMOs is to mask the untrusted region

properly before data reduction. However, achieving zero

NEMOs while minimizing information loss with an optimally

modelled beamstop mask is a sophisticated task. As far as

we are aware, there is no universally accepted convention for

generating an objectively perfect mask for the whole data set

(Lyubimov et al., 2016), as this process often involves trial and

error (for example iteratively adjusting the lower bound of

trusted detector pixels in XDS and inspecting the respective

background table). Moreover, data derived from manually

masked images do not consistently enhance the fit between

model and data due to the loss of low-resolution information

(Supplementary Table S1 and Supplementary Information

S4), and until now there has been no reliable method to detect

NEMOs in processed data sets. Our method serves as a

promising tool to evaluate the goodness of a beamstop mask

in retaining as much low-resolution information as possible

without interrupting any existing data-reduction pipeline.

Specifically, the number of NEMOs at the end of the data-

reduction process can be used as an objective indicator to

iteratively model a beamstop mask that is sufficient yet not

overly extensive for the entire data set. This approach is

superior to manually generated polygons, which typically rely

on only one or a few reference frames, and to the provided

metadata, which may be inadequate for the whole data set as

other sources that affect the assignment of shadowed pixels

may remain unrecognized. In a time-resolved and serial

crystallography setup where adapting a static beamstop mask

is in general impractical, our method can be useful in the post-

mortem exclusion of NEMOs in integrated data sets, given

that the unmerged data are not often available. The approach

proposed here also holds practical utility for adapting to

the evolving detection strategies of next-generation X-ray

diffraction experiments as well as beamline automation.

5. Related literature

The following references are cited in the supporting infor-

mation for this article: Bergstra et al. (2011), Emsley et al.

(2010) and Hubert & Arabie (1985).
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E., Joosten, R. P., Keegan, R. M., Keep, N., Krissinel, E. B.,
Kolenko, P., Kovalevskiy, O., Lamzin, V. S., Lawson, D. M.,
Lebedev, A. A., Leslie, A. G. W., Lohkamp, B., Long, F., Malý, M.,
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