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For protein crystals in which more than two thirds of the volume is occupied by

solvent, the featureless nature of the solvent region often generates a constraint

that is powerful enough to allow direct phasing of X-ray diffraction data.

Practical implementation relies on the use of iterative projection algorithms with

good global convergence properties to solve the difficult nonconvex phase-

retrieval problem. In this paper, some aspects of phase retrieval using iterative

projection algorithms are systematically explored, where the diffraction data

and density-value distributions in the protein and solvent regions provide

the sole constraints. The analysis is based on the addition of random error to

the phases of previously determined protein crystal structures, followed by

evaluation of the ability to recover the correct phase set as the distance from the

solution increases. The properties of the difference-map (DM), relaxed–reflect–

reflect (RRR) and relaxed averaged alternating reflectors (RAAR) algorithms

are compared. All of these algorithms prove to be effective for crystallographic

phase retrieval, and the useful ranges of the adjustable parameter which controls

their behavior are established. When these algorithms converge to the solution,

the algorithm trajectory becomes stationary; however, the density function

continues to fluctuate significantly around its mean position. It is shown that

averaging over the algorithm trajectory in the stationary region, following

convergence, improves the density estimate, with this procedure outperforming

previous approaches for phase or density refinement.

1. Introduction

Direct phase determination using the diffraction amplitude

data alone has been a long-sought goal in protein crystallo-

graphy. This problem admits no solution unless something is

known about the density function within the crystal (Millane

& Arnal, 2015; Millane, 1990, 2023). Recently, it has been

demonstrated that the largely featureless nature of the solvent

region generates a constraint that is powerful enough to

directly determine phases for protein crystals with a high

solvent content (Liu et al., 2012; He & Su, 2015; Kingston &

Millane, 2022). Unlike traditional direct methods, which rest

on the atomicity of the image (Hauptman, 1998), these new

direct phasing techniques work at more modest resolution.

Key to these methods is the use of iterative projection algo-

rithms with good global convergence properties (Marchesini,

2007; Millane & Lo, 2013; Millane, 2023) to perform phase

retrieval.

Fundamental to this approach is the treatment of crystallo-

graphic phase retrieval as a constraint-satisfaction problem. In

this formulation, the problem is to find a density function that

satisfies a number of constraints in both real and reciprocal

space. In reciprocal space, the constraint is that the structure-

factor amplitudes must equal their experimentally measured
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values. In real space, various constraints are possible. In

addition to the enforcement of a constant density in the

solvent region (a solvent-flatness constraint; Bricogne, 1974;

Hendrickson, 1981; Wang, 1985), these might include the

enforcement of a suitable prior for the density-value distri-

bution in the protein region (a histogram-equivalence

constraint; Harrison, 1988; Lunin, 1988; Zhang & Main, 1990),

or the enforcement of density equivalence when multiple

copies of a molecule are present in the asymmetric unit of the

crystal (a symmetry constraint; Lawrence, 1991; Rossmann,

1995; Vellieux & Read, 1997; Kleywegt & Read, 1997). In fact,

in principle any a priori property of the density can be

incorporated as a constraint. If the constraints, taken together,

are sufficiently restrictive, then only one density will simulta-

neously satisfy all of them, and the solution to the phase-

retrieval problem is unique (Millane & Arnal, 2015). If the

available constraints are not sufficiently powerful, then they

will be satisfied by multiple density functions and the solution

is not unique. In this case, direct phase retrieval will not be

possible.

Assuming that sufficiently powerful constraints are avail-

able, the problem of finding a density satisfying all of the

constraints remains. Iterative projection algorithms (IPAs),

which are an evolution of traditional electron-density modi-

fication techniques (Podjarny, 1987; Cowtan & Zhang, 1999),

provide an effective way to approach this problem. In these

algorithms, the density is iteratively adjusted based on the

constraints existing in real and reciprocal space, with the

objective of converging to the solution. However, a primary

difficulty with this approach is that the reciprocal-space

constraint, involving the structure-factor amplitudes, is non-

convex (for a definition and discussion, see Millane & Lo,

2013). This nonconvexity makes the associated optimization

problem very difficult. An iterative projection algorithm in

which the constraints are alternately and exactly satisfied on

every iteration (equivalent to density modification, as it was

originally conceived; Bricogne, 1974) will only converge to the

solution when initiated with a density (or equivalently with a

phase set) that is close to the solution. Therefore, traditional

density modification, while very powerful for improving

experimentally determined phases that are substantially

correct, is not useful for direct phasing where the starting

densities (or phase sets) are fully randomized.

Fortunately, there are other IPAs that are more effective

in finding the solution to difficult nonconvex constraint-

satisfaction problems (Elser, 2003; Millane & Lo, 2013; Millane,

2023). These algorithms have good global (as opposed to

local) convergence properties and thus are potentially effec-

tive for phase retrieval without any prior phase information

(i.e. starting from a random density). We and others have

demonstrated the potential of these algorithms for direct

phasing in protein crystallography (He & Su, 2015; Kingston &

Millane, 2022). In particular, we developed a practical method

to directly phase diffraction data from high-solvent-content

protein crystals (Kingston & Millane, 2022) using the difference-

map (DM) IPA (Elser, 2003). A two-stage procedure was

found to be most computationally efficient, in which an

approximate molecular envelope is first determined at low

resolution, with knowledge of the envelope subsequently

exploited to aid phase retrieval using all data. The DM algo-

rithm is used in both stages. The performance of the procedure

was optimized empirically through application to previously

determined protein crystal structures.

The DM algorithm is, however, only one of a number of

IPAs that have been used to solve difficult noncomplex opti-

mization problems, with some other specific algorithms being

the relaxed–reflect–reflect (RRR) algorithm (Elser et al.,

2018) and the relaxed averaged alternating reflections

(RAAR) algorithm (Luke, 2005). The performance of these

latter algorithms for crystallographic phase retrieval is

untested and cannot be predicted from existing theory;

however, differences in detailed behavior from the DM

algorithm are expected.

In this paper, we conduct a comprehensive survey of the

properties and behavior of IPAs for phase retrieval in protein

crystallography, using solvent flatness and histogram equiva-

lence as the real-space constraints. In the first part of the study,

we compare the behavior and performance of the DM, RRR

and RAAR algorithms as a function of their adjustable

algorithm parameter. We do this by simulation, introducing

random error into the phases of previously determined

protein crystal structures and testing the ability of the algo-

rithms to return to the solution as the magnitude of the error

increases. Subsequently, we perform an analysis of algorithm

behavior in the Fourier domain, examining the trajectories of

individual Fourier coefficients as the algorithms progress. This

analysis suggests a new and effective way to deploy these

algorithms in which the information present in the algorithm

trajectories following convergence is exploited to improve the

final phase (or density) estimates.

The paper is structured as follows. In Section 2 we briefly

review the algorithms used and the constraints employed. In

Section 3 we describe the simulation strategy, error model,

agreement measures and methods of analysis. In Sections 4, 5

and 6 we describe our results, while in Section 7 we summarize

the findings and discuss the implications for the use of these

algorithms for protein crystallographic phasing.

2. Algorithms and constraints

2.1. Iterative projection algorithms

As noted in Section 1, IPAs are iterative schemes, where at

each iteration a density estimate is adjusted based on the

various constraints, with the objective of moving the estimate

to one that satisfies all of the constraints (i.e. one that lies in

the intersection of the constraint sets). Such an estimate

represents a valid solution to the constraint-satisfaction

problem. For the purposes of describing these algorithms, the

density function is represented as an N-dimensional vector,

with each element of the vector associated with a point of the

discrete 3D grid that samples the density in the asymmetric

unit (or unit cell). The values carried in the vector may

represent a surrogate function that does not actually correspond
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to the values of the density function. However, a density

estimate can be calculated from the function carried in the

vector. For this reason, the vector is referred to as the iterate.

We denote the iterate at the nth iteration of the algorithm

by xn.

One iteration of an IPA produces a new iterate xn+1, which

is calculated from xn using an update rule. The IPAs described

here consider only two constraint sets. This is the norm, and is

not generally restrictive in practice, as constraints can often be

sensibly combined. As is usual, we consider one constraint in

real space, denoted A, and one in reciprocal space, denoted B.

The update rule can then be written as

xnþ1 ¼ f ðA;B; xnÞ: ð1Þ

The function f(·) then defines the IPA. The update rule

involves steps in which the iterate is adjusted so the corre-

sponding density estimate is moved towards a position satis-

fying both sets of constraints. These steps involve ‘projections’

onto the constraints, which are adjustments that satisfy the

constraints while minimizing change in the squared difference

sense. The projection of the iterate x onto the constraint set A

is formally written as PAx, with PA representing the projection

operation.

The projections usually correspond to the operations

performed in conventional density modification. For example,

projection onto a solvent-flatness constraint corresponds to

setting the iterate (or some function derived from the iterate)

to a constant value at all points within the solvent region,

while leaving the remaining points unchanged. The difference

between different IPAs (and the difference from conventional

density modification) lies in the way that the projections are

subsequently incorporated into the update rule.

In this paper, we assess the performance of several different

IPAs for phase retrieval. These are defined briefly below using

a common notation, followed by a discussion of the constraints

employed, which are common to all of the algorithms

employed here. The reader is referred to Millane & Lo (2013),

Marchesini (2007) and Millane (2023) for a general review of

IPAs. Further details of our practical implementation of IPAs

in a crystallographic setting are given in Kingston & Millane

(2022).

It is worth pointing out that we do not consider one of the

first, and arguably one of the most popular, phase-retrieval

algorithms, the hybrid input–output (HIO) algorithm (Fienup,

1982). This is because the HIO algorithm accommodates only

support and positivity constraints, cannot be couched in

general as an IPA and does not have the general applicability

of the algorithms that we consider here. While the HIO

algorithm has been used successfully for crystallographic

phase retrieval (Liu et al., 2012; He & Su, 2015, 2018), we omit

it from this study because of its fundamentally different

character.

2.1.1. The error-reduction (ER) or Gerchberg–Saxton

algorithm

The error-reduction (ER) algorithm (Fienup, 1982; Gerch-

berg & Saxton, 1972) consists of sequentially applying the two

projections PA and PB to complete one iteration of the algo-

rithm (Fienup, 1982; Gerchberg & Saxton, 1972). The update

rule is given by

xnþ1 ¼ PBPAxn; ð2Þ

where PA represents the projection onto the real-space

constraints and PB represents the projection onto the Fourier-

space constraints.

It is immediately obvious that this algorithm corresponds

to classical crystallographic density modification (Bricogne,

1974). The problem with this algorithm is that unless it is

initiated close to the solution, it quickly converges to a density

that does not satisfy both constraints, and so is not effective for

ab initio phase retrieval. However, we include it as a control in

some of our computational experiments.

2.1.2. The difference-map (DM) algorithm

The difference-map (DM) algorithm (Elser, 2003) is

designed to avoid stagnation at a nonsolution and continues to

explore the parameter space if the constraints are not both

satisfied. The update rule is given by

xnþ1 ¼ xn þ �

�

PA 1þ
1

�

� �

PBxn �
1

�

� �

xn

� �

� PB 1 �
1

�

� �

PAxn þ
1

�

� �

xn

� ��

; ð3aÞ

where � 2 (� 1, 1) is an adjustable parameter. Changing the

sign of � effectively changes the role of the two constraints in

the update rule.

For the DM algorithm, xn is a surrogate function which is

not itself an estimate of the density. However, each time the

update rule is evaluated, two solution estimates are generated,

which fully satisfy the constraints A or B, respectively. These

are given by

xA
n ¼ PA 1þ

1

�

� �

PBxn �
1

�

� �

xn

� �

; ð3bÞ

xB
n ¼ PB 1 �

1

�

� �

PAxn þ
1

�

� �

xn

� �

: ð3cÞ

Prior to convergence these two solution estimates are

not generally equal. However, when the iterate becomes

stationary (i.e. xn+1 ffi xn) inspection of equation (3a) shows

that the two estimates in equations (3b) and (3c) must become

equivalent and they represent a potential solution to the

problem, since they satisfy both sets of constraints.

In evaluating the performance of the DM algorithm we

monitored agreement between the known solution and the

solution estimate (equation 3c), which exactly satisfies the

Fourier-space constraints.

2.1.3. The relaxed–reflect–reflect (RRR) algorithm

The relaxed–reflect–reflect (RRR) algorithm (Elser et al.,

2018) is defined by the update rule

xnþ1 ¼ xn þ �½PBð2PAxn � xnÞ � PAxn�; ð4aÞ
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where � 2 (0, 2) is an adjustable parameter. As with the DM

algorithm, two solution estimates can be calculated at each

iteration which fully satisfy the constraints A or B, respec-

tively. These are given by

xA
n ¼ PAxn; ð4bÞ

xB
n ¼ PBð2PAxn � xnÞ: ð4cÞ

As with the DM algorithm, the update rule involves the

difference of these estimates, and the estimates become

equivalent when the iterate becomes stationary (xn+1 ffi xn).

A significant advantage of the RRR algorithm over the DM

algorithm is that the computational cost per iteration is

halved. This can be seen by comparing equations (3a) and

(4a). It is worth noting that the RRR algorithm with � = 1 is

identical to the Douglas–Rachford algorithm (Douglas &

Rachford, 1956).

Inspection of equation (4a) shows that interchanging the

projections PA and PB in the update rule results in a different

algorithm, which cannot be obtained by manipulating �, as is

the case for the DM algorithm. Making this change still results

in an RRR algorithm, but the behavior of the algorithm is

expected to be different. To distinguish the two cases, we refer

to this second case as the reversed RRR (revRRR) algorithm,

with update rule

xnþ1 ¼ xn þ �½PAð2PBxn � xnÞ � PBxn ð5aÞ

and the two solution estimates given by

xA
n ¼ PAð2PBxn � xnÞ; ð5bÞ

xB
n ¼ PBxn: ð5cÞ

In evaluating the performance of the RRR or revRRR

algorithm we monitored the agreement between the known

solution and the solution estimates given by equations (4c) or

(5c), respectively, which exactly satisfy the Fourier-space

constraints. For the analysis of structure-factor trajectories

generated by the RRR algorithm (Section 6) we followed the

solution estimate given by equation (4b), which exactly

satisfies the real-space constraints.

2.1.4. The relaxed averaged alternating reflections (RAAR)

algorithm

The relaxed averaged alternating reflections (RAAR)

algorithm is a widely used IPA which was originally developed

to control the noise-sensitivity of some earlier algorithms

(Luke, 2005). The update rule for the RAAR algorithm is

given by

xnþ1 ¼ �½PAð2PBxn � xnÞ þ xn� þ ð1 � 2�ÞPBxn; ð6Þ

where � 2 (0, 1) is an adjustable parameter. We note that for

the special case of � = 1, the RAAR algorithm (equation 6)

becomes equivalent to the revRRR algorithm with � = 1

(equation 5a). Correspondingly, when � = 1 a solution esti-

mate is readily calculated from the iterate using equations (5b)

and (5c). However, when � 6¼ 1 there is no obvious way to

calculate the solution from the iterate, which represents a

limitation of the algorithm. In a practical implementation of

the RAAR algorithm, the value of � could be gradually

increased towards 1 as the iterations proceed (Luke, 2005),

which obviates this problem. For our purposes, we keep �

fixed, as we do for the other algorithms, but we calculate a

solution estimate using equation (5c), even when � 6¼ 1, and

use this to monitor agreement with the known solution.

Finally, we note that like the RRR algorithm, the RAAR

algorithm is not symmetric, so that it is possible to generate a

different algorithm by interchanging the projections in the

update rule. However, we do not consider the ‘reversed’

RAAR algorithm.

2.2. Constraints and projections onto the constraints

The constraints in Fourier space are the measured Fourier

amplitudes. Projection onto the constraints involves Fourier

transforming the current density, replacing the Fourier

amplitudes with the measured Fourier amplitudes and trans-

forming back to real space. For unmeasured Fourier ampli-

tudes, which are not subject to any direct constraint, statistical

restraints are implemented based on Wilson statistics (King-

ston & Millane, 2022), which prevent these terms taking on

physically unrealistic values.

The constraints employed in real space are solvent flatness

(the solvent region should be effectively featureless) and

histogram equivalence (the protein region should have a

characteristic density-value distribution). This amounts to

assuming and enforcing priors for the density distribution in

both the solvent and the protein region (where the prior in the

solvent region is a one-point distribution). Application of the

real-space constraints requires determination of the molecular

envelope, a binary-valued function indicating which regions of

the map are protein and which are solvent. As in our prior

work (Kingston & Millane, 2022), the molecular envelope is

updated on each iteration, based on thresholding the local

variance of the solution estimate (Abrahams & Leslie, 1996;

Terwilliger & Berendzen, 1999). Given an envelope, a

projection onto the constraints involves setting the current

density in the solvent region equal to its mean value, while

applying an order-preserving transformation of the density

values in the protein region that generates the desired histo-

gram (Harrison, 1988; Lunin & Vernoslova, 1991). These

changes are distance-minimizing (Elser, 2003). Further details

regarding specification of the priors are given in Kingston &

Millane (2022).

3. Other computational methods

3.1. Simulation strategy

Our initial objective was to investigate the suitability of

a number of IPAs for crystallographic phase retrieval by

exploring their convergence behavior as a function of their

configurable parameter. We did this by randomly corrupting

the density functions of previously determined protein crystal

structures and testing the ability of the algorithms to return to

the solution as the random error was increased. The advantage

of this approach is that it allows algorithm convergence to be
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studied under well controlled conditions using a limited

number of iterations, making the investigation computationally

tractable. As we show (Sections 5.1 and 5.2), these experi-

ments clearly identify the productive and unproductive

regions of the parameter space for each algorithm studied.

A limitation of this approach is that it does not directly

investigate performance of the algorithms for ab initio phase

determination, beginning with completely randomized phase

sets. In these circumstances, convergence to the solution may

sometimes require many thousands of iterations (Kingston &

Millane, 2022). A feature of ab initio phase determination is

that coalescence of a near-correct molecular envelope (which

is determined from the density estimate; Section 2.2) some-

times precedes convergence to the correct density by some

margin, and hence appears to be a necessary ‘pre-step’ during

direct phase determination. It is this observation which

underpins our previous development of a two-stage procedure

for direct phase determination, with the first stage involving

formation of an approximation to the molecular envelope

(Kingston & Millane, 2022). Some experiments that test the

ability of the algorithms to perform direct phase determina-

tion, starting with random phases and an approximate mole-

cular envelope, are reported in Section 5.3.

3.2. Error model

To introduce error into the density function, we manipu-

lated the phases in the Fourier domain. For the acentric data,

where there are no restrictions on the phase value, the phases

calculated from deposited atomic models (’m) were replaced

with a von Mises distributed random variate ’ (Fisher, 1993;

Mardia & Jupp, 1999; Barnett & Kingston, 2024), with location

parameter � = ’m, defining the mean and mode of the

distribution, and concentration parameter �, defining its

dispersion around the mean. Hence, the probability density

function for ’ is given by

f ð’Þ ¼
exp½� cosð’ � ’mÞ�

2�I0ð�Þ
; ð7Þ

where I0 is the modified Bessel function of the first kind and

order zero. The circular variance of the von Mises distribution

is given by

Vð’Þ ¼ 1 �
I1ð�Þ

I0ð�Þ
; ð8Þ

where I1 is the modified Bessel function of the first kind and

order one. Computationally, a von Mises random variate was

generated from a sequence of uniform random variates using

the procedure of Best & Fisher (1979).

For the centric data, where there are only two possible

phase values, the phases calculated from the deposited atomic

models (’m) were replaced with a wrapped Bernoulli distrib-

uted random variate ’ with probabilities p (associated with the

model phase ’m) and q = 1 � p (associated with phase ’m + �).

Setting p = 1 introduces no phase error, setting p = 0.5 fully

randomizes the centric phases and setting p = 0 exactly

switches all centric phases. The probability mass function for ’

is given by

f ð’ ¼ ’mÞ ¼ p;

f ð’ ¼ ’m þ �Þ ¼ q ¼ 1 � p ð9Þ

and the circular variance of the wrapped Bernoulli function is

given by (Girija et al., 2014)

Vð’Þ ¼ 2 � 2p where 1=2< p< 1: ð10Þ

The probability p was set such that the circular variance of

the wrapped Bernoulli function (equation 10) and the von

Mises distribution (equation 8) were equal.

We note that for any specified circular variance, the same

error distributions were used for all centric and acentric data.

A more sophisticated model might scale the error according to

the amplitude or frequency of the Fourier terms, as the large-

amplitude terms contribute more to the variance of the density

function than the small terms (Giacovazzo & Mazzone, 2011;

Giacovazzo et al., 2011) and are also more critical to the

convergence of conventional iterative density-modification

procedures (Vekhter, 2005; Uervirojnangkoorn et al., 2013).

However, the simple error model is sufficient for our purpose.

3.3. Global agreement measures

To monitor the agreement between phase sets and density

functions, several metrics were employed.

The mean absolute phase difference (mean unsigned phase

difference) was used as a simple measure of phase dispersion,

j�’j ¼
1

n

P

h

arccosfcos½’1ðhÞ � ’2ðhÞ�g; ð11Þ

where ’1(h) and ’2(h) are the phase sets being compared, n is

the number of terms in the summation and the trigonometric

functions act to place the phase difference in the domain

0 < �’ < �.

The Pearson correlation coefficient was used as a measure

of real-space agreement between two density functions. This

is conveniently calculated from the Fourier amplitudes F1(h)

and F2(h) and phase differences �’(h) = �’1(h) � �’2(h)

(Lunin & Woolfson, 1993; Bailey et al., 2012) using

CC ¼

P

hðh6¼0Þ

F1ðhÞF2ðhÞ cos½�’ðhÞ�

P

hðh6¼0Þ

F1ðhÞ
2 P

hðh6¼0Þ

F2ðhÞ
2

" #1=2
: ð12Þ

Finally, as a measure of the correlation between two phase

sets, the circular correlation coefficient defined by Fisher &

Lee (1983) was employed, which in this setting can be written

as

�FL ¼
Efsin½’1ðhAÞ � ’1ðhBÞ� sin½’2ðhAÞ � ’2ðhBÞ�g

Efsin2½’1ðhAÞ � ’1ðhBÞ�gEfsin2½ðhAÞ � ’2ðhBÞ�g
� �1=2

;

ð13Þ

where hA and hB are the indices of any two observations in the

data set and E is the expected value. Similar to the linear

correlation coefficient, �FL takes on values between � 1 and 1,
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with +1 indicating positive association between the phase sets

and � 1 indicating negative association. If the two phase sets

are independent then �FL = 0. We note that there are many

alternate definitions of correlation for angular variables (Jupp

& Mardia, 1989).

As an estimator of �FL we evaluate (Fisher, 1993)

�FL ¼
4ðAB � CDÞ

½ðn2 � E2 � F2Þðn2 � G2 � H2Þ�
1=2
; ð14Þ

where n is the number of observations and

A ¼
P

h

cos½’1ðhÞ� cos½’2ðhÞ�;

B ¼
P

h

sin½’1ðhÞ� sin½’2ðhÞ�;

C ¼
P

h

cos½’1ðhÞ� sin½’2ðhÞ�;

D ¼
P

h

sin½’1ðhÞ� cos½’2ðhÞ�;

E ¼
P

h

cos½2’1ðhÞ�;

F ¼
P

h

sin½2’1ðhÞ�;

G ¼
P

h

cos½2’2ðhÞ�;

H ¼
P

h

sin½2’2ðhÞ�:

Equations (11), (12) and (14) are correct where the

summations take place over the full hemisphere of data in

reciprocal space. In summations that extend only over the

asymmetric unit, the terms must be weighted by statistical

factors "(h), which account for the variable degeneracy of the

reciprocal-lattice points (Blessing et al., 1998; Iwasaki & Ito,

1977).

3.4. Analysis of structure-factor trajectories

In Section 6, we analyze structure factors generated by the

RRR algorithm as a function of iteration (i.e. structure-factor

trajectories). To aid the visualization of these trajectories, the

structure factors for acentric data were modeled as indepen-

dently Gaussian-distributed on amplitude (F) and von Mises-

distributed on phase (’), with probability density functions

f ðFj�G; �Þ ¼
1

ð2�Þ
1=2
�

exp �
1

2

F � �G

�

� �2
" #

; ð15Þ

gð’j�VM; �Þ ¼
exp½� cosð’ � �VMÞ�

2�I0ð�Þ
; ð16Þ

where the Gaussian distribution is characterized by its mean

(�G) and variance (�) and the von Mises distribution is

characterized by its location (�VM) and concentration (�)

parameters.

Under the assumption of independence, the joint PDF of

the Fourier coefficients is then

hðF; ’j�G; �; �VM; �Þ ¼ f ðFj�G; �Þgð’j�VM; �Þ: ð17Þ

The estimators of the Gaussian distribution parameters �G

and � were the sample mean and sample standard deviation

of the amplitudes over the relevant region of the trajectory,

respectively. To obtain estimators of the von Mises distribu-

tion parameters �VM and �, we first computed the sample

mean length (R) and sample mean direction (’) of the phases

according to Fisher (1993) and Mardia & Jupp (1999),

C ¼
1

n

Pi¼n

i¼1

cosð’iÞ; ð18Þ

S ¼
1

n

Pi¼n

i¼1

sinð’iÞ; ð19Þ

R ¼ ðC
2
þ S

2
Þ

1=2
; ð20Þ

’ ¼ arctan 2ðS;CÞ; ð21Þ

where ’i are the phase estimates over the relevant region of

the trajectory and arctan2 denotes the four-quadrant inverse

tangent.

The maximum-likelihood estimator of the von Mises loca-

tion parameter �VM is simply the sample mean direction (’).

The maximum-likelihood estimator of the von Mises concen-

tration parameter � is given by the solution of (Fisher, 1993;

Mardia & Jupp, 1999)

R ¼
I1ð�Þ

I0ð�Þ
ð22Þ

for �, which was evaluated using the algorithm of Hill (1981).

For nonparametric analysis of phase-angle distributions

following convergence (Section 6.2), we simply computed the

sample mean length (R) and sample mean direction (’) from

the phase-angle trajectory in the stationary region for both

centric and acentric structure factors using equations

(18)–(21). In Supplementary Fig. S3 and Supplementary

Movie S1 we report some results in terms of the sample

circular variance (1 � R).

To compute the phase-retrieval transfer function (Chapman

et al., 2006) following convergence (Section 6.3) we evaluated

PRTFðhÞ ¼

1

n

Pi¼n

i¼1

Freconstructed;iðhÞ

�
�
�
�

�
�
�
�

FmeasuredðhÞ
; ð23Þ

where Freconstructed,i(h) are the complex-valued Fourier co-

efficients generated by an IPA in the stationary part of its

trajectory and Fmeasured(h) are the experimentally measured

Fourier amplitudes. We then calculated the mean of the

statistic in equation (23) as a function of resolution (i.e.

averaged over concentric spherical shells in Fourier space),

correcting appropriately for the variable degeneracy of the

lattice points in the asymmetric unit (Blessing et al., 1998;

Iwasaki & Ito, 1977).

3.5. Test cases

In the figures we present results generated using several

crystallographic data sets, which are summarized in Table 1.

All of these diffraction data were collected from crystals with a

solvent content exceeding 60%, creating a strong constraint on
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the density function. PDB entries 4bsj and 4zqk are used for

the comparative experiments described in Sections 5.1 and 5.2.

PDB entry 4bsj is used for the illustrative analysis in Section

6.1. PDB entries 4bsj and 4gbg are used to demonstrate the

effects of averaging over the stationary part of the algorithm

trajectory (Section 6.2). PDB entry 4bsj is used to demonstrate

the behavior of the phase-retrieval transfer function (Section

6.3). PDB entry 4nli is used to make some supplementary

points about the behavior of the RRR algorithm as the solu-

tion is located (Supplementary Movie S1) and the response of

the structure-factor distributions to the configurable algorithm

parameter � (Supplementary Fig. S3).

Finally, PDB entry 4bsj, together with four additional test

cases, is used to demonstrate the effectiveness of the algo-

rithms for ab initio phase retrieval in Section 5.3. Details are

given in Supplementary Table S1.

3.6. Implementation

All of the algorithms described in the paper (Section 2.1)

have been implemented within the program IPA (version 1.2),

which is available on Github (https://github.com/rlkingston/

IPA). All other computational procedures required to repli-

cate the results are now accessible to the user, including the

ability to introduce controlled amounts of phase error using

circular probability distributions and the ability to average

over the stationary part of the algorithm trajectory and eval-

uate the phase-retrieval transfer function (equation 23).

4. The error model and its relationship to phase and

electron-density agreement

To enable simulations, density functions were perturbed by

introducing phase error into the structure factors using

appropriate circular probability distributions, as described in

Section 3.2. The error distributions were parameterized so that

they had a defined circular variance. Here, we establish the

relationship between the circular variance of the phase-error

distributions and the statistics given by equations (11–13) used

to monitor phase and electron-density agreement.

For each circular variance, 1000 phase sets were generated

with random errors incorporated and agreement statistics

were calculated with the original data set. Some typical results

are shown in Fig. 1 (for PDB entry 4bsj). Both the mean

absolute phase difference (equation 11) and the real-space

density correlation (equation 12) are almost linear functions

of the circular variance, while the Fisher–Lee phase correla-

tion (equation 13) responds in a less linear fashion. Of the

three agreement metrics, only the real-space density correla-

tion shows appreciable variation around its mean value, with

the magnitude of this variation differing between crystallo-

graphic data sets (data not shown). This reflects the appear-

ance of the Fourier amplitudes in the summation used to

calculate the statistic (equation 12).

5. Behavior of IPAs as a function of their adjustable

algorithm parameter

For the phase-retrieval problem, the initial objective was to

explore how iterative projection algorithms behave, when

initiated at a varying distance from the solution, as a function

of their adjustable algorithm parameter. In other words, if we

move some defined distance from the solution by randomly

perturbing the phases, what is the ability of the algorithms to

return to the solution?

5.1. Behavior of the DM algorithm when initiated at a

varying distance from the solution

Our initial investigations of this question used the DM

algorithm (equation 3a), which we have previously shown to

be effective for ab initio phase determination when the

constraints on the image are sufficiently strong (in particular,

when the crystal solvent content is >70%; Kingston & Millane,

2022). The algorithm was deployed on two test cases (PDB

entries 4bsj and 4zqk), representing phase-retrieval problems

of varying difficulty. Test case 4bsj has a solvent fraction of

0.74. In this case ab initio phase determination is known to

be possible, and hence the solution to the phase-retrieval

problem must be uniquely determined by the available

constraints (Kingston & Millane, 2022). Test case 4zqk has a

solvent fraction of 0.61. In this case the feasibility of ab initio

phase determination has not been demonstrated (Kingston &

Millane, 2022).

The trajectory of the iterate in an IPA can vary dramatically

and unpredictably for a particular problem, depending on the

initial state. This reflects the difficulty of the phase-retrieval

problem: the algorithms are being used to explore a high-

dimensional space, subject to nonconvex constraints. Even

when the solution is uniquely specified by the constraints, the

number of iterations required to locate the solution can vary

widely, depending on the starting state, and the solution may
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Table 1
Crystallographic data used to generate the figures.

Protein Data Bank
(PDB) identifier Protein

Resolution
(Å)

Solvent
fraction Reference

4bsj Human vascular endothelial growth factor 3 (VEGF-3)
extracellular domains

2.5 0.74 Leppänen et al. (2013)

4zqk Complex of human programmed death-1 (PD-1) and its
ligand PD-L1

2.45 0.61 Zak et al. (2015)

4nli Ovine �-lactoglobulin 1.9 0.76 Loch et al. (2014)
4gbg Thermomyces lanuginosa lipase 2.9 0.68 S. Yamini, J. Mukherjee, M. N. Gupta, M. Sinha,

P. Kaur, S. Sharma & T. P. Singh (unpublished work)
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http://doi.org/10.1107/S2059798324009902
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not be located within a computationally reasonable number of

iterations. Analyzing algorithm behavior therefore requires

extensive replication with different randomly generated initial

states to characterize the statistical distribution of the results.

Consequently, the experimental approach taken was as

follows. For each of the two test cases, phase sets calculated

from the deposited atomic models were corrupted with

random error using the model described in Section 3.2. The

circular variance (V) of the applied phase-error functions

ranged from 0.1 to 0.9. The correspondent variation in phase

and map agreement measures, and typical appearance of the

resulting density function, are shown in Fig. 1, which illustrates

how the circular variance of the error functions controls the

fidelity of the density function. At each circular variance, 30

random replicates were generated and used as input to the

DM algorithm (executed for a fixed 250 iterations and with

adjustable parameter � = 0.75). Although it is known that

gradually increasing the resolution of the density function,

through the application of a Fourier-space data-apodization

scheme, aids the convergence of iterative phase-retrieval

algorithms (Lo et al., 2015; He & Su, 2018; Kingston &

Millane, 2022), the calculations here were carried out without

apodization for simplicity.

The results of the experiment are shown in Fig. 2. The real-

space correlation coefficient with the original density function

is used as the measure of agreement throughout. The trajec-

tories of individual replicates, at varying error levels (defined

by the circular variance of the phase-error distributions), are

shown in Figs. 2(a)–(d) together with violin plots (Hintze &

Nelson, 1998) that summarize the agreement at the end of

the runs. The overall results of the experiment are shown in

Fig. 2(e).
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Figure 1
Density and phase agreement measures as a function of the circular variance of the phase-error distributions. The top left panel shows the Fourier-space
mean absolute phase difference (equation 11), the real-space density correlation coefficient (equation 12) and the Fourier-space Fisher–Lee phase
correlation coefficient (equation 13) as a function of the circular variance of the phase-error distributions for test case 4bsj. Symbols show the sample
mean for each statistic, while error bars show half the sample standard deviation. The bottom left panel shows schematically the correspondent
probability mass function of the wrapped Bernoulli function, used to introduce phase error for the centric data, and the probability density function of
the von Mises distribution, used to introduce phase error for the acentric data. The von Mises distribution is displayed on the unit circle, with the distance
from the unit circle at each angle representing the probability density, and the location parameter � set to �/2, without loss of generality. The insets on
the right show the typical appearance of the electron-density function at the indicated level of error, with the same isosurface displayed in all cases.



With small amounts of added error (V � 0.5 or j�’j � 50�)

all runs rapidly converge close to the known solution (Fig. 2e).

The final mean map correlations are �0.78 for test case 4bsj

and �0.65 for test case 4zqk. In this regime, the point of

convergence remains essentially the same, although the algo-

rithm may be initiated at a point that is closer to the known

solution (Fig. 2a) or more distant from the known solution

(Fig. 2b). This suggests that the results at low error simply
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Figure 2
Behavior of the difference-map algorithm (� = 0.75) starting at a varying distance from the solution for test cases 4bsj (left panels) and 4zqk (right
panels). (a)–(d) show trajectories of individual replicates, with initial error specified by the circular variance (V) of the phase-error distribution as
indicated. The real-space correlation coefficient with the known solution is displayed as a function of iteration. The weighted average trajectory,
evaluated from all replicates, is shown with a dashed black line [each trajectory being self-weighted (Garcia, 2012) according to the value of the
correlation coefficient at each iteration]. The associated violin plots (Hintze & Nelson, 1998) summarize the agreement of the individual replicates at the
final iteration. (e) summarizes the overall results of the experiment, showing the violin plots as a function of the circular variance of the phase-error
distributions.



reflect the ability of the constraints (solvent flatness and

histogram equivalence) to maintain the image at a point close

to the solution. Those constraints are considerably less

powerful for test case 4zqk (solvent fraction 0.61) than for test

case 4bsj (solvent fraction 0.74), although we note that even

among test cases with equivalent solvent content there is

considerable variation in the ability of the algorithms to

maintain the solution (data not shown).

As the error levels increase (V > 0.5 or j�’j > 50�), and the

problem begins to resemble ab initio phase retrieval, the

proportion of runs which return to the solution in 250 itera-

tions declines. Differences in the behavior of test cases 4bsj

and 4zqk become apparent. For 4bsj, the lag before the

solution is located increases with the error level, but the

algorithm remains capable of locating the solution in 250

iterations when V = 0.8 (j�’j ’ 75�; Fig. 2d). In this case the

runs which progress to intermediate values of agreement in

250 iterations (Fig. 2d) would converge to the solution if more

iterations were allowed (Supplementary Fig. S1 shows a

replicate of the experiment in which 1000 iterations are

completed). For 4zqk the phase-retrieval process is less robust

to added error, and there is no indication of progression

towards the solution at V = 0.8, whatever the number of

iterations (Fig. 2d, Supplementary Fig. S1). This is consistent

with the weaker constraints being insufficient for ab initio

phase retrieval. Overall, in the higher error cases, the final

result clearly reflects both the power of the constraints and the

efficiency of the iterative projection algorithm in locating the

solution in a fixed number of iterations.

With very large amounts of added error (V = 0.9 or j�’j ’

85�) the initial phases are effectively random, and no runs

return to the solution for either test case in 250 iterations,

although the constraints are sufficiently powerful to directly

determine the solution for test case 4bsj if more iterations

were allowed (Kingston & Millane, 2022).

As a control we performed the same basic experiment using

the ER (Gerchberg–Saxton) algorithm (equation 2). The

results are shown in Supplementary Fig. S2. Consistent with its

known properties (Stark & Yang, 1998), the ER algorithm is

effective when initiated close to the solution, but is much less

effective than the DM algorithm when initiated far from the

solution. At high error (V > 0.7 or j�’j > 70�) the ER algo-

rithm never appears to progress significantly from the point at

which it is initiated for either test case, when following a global

agreement measure such as the density correlation. At low

error, the ER algorithm does produce much better agreement

with the solution than the DM algorithm. However, we show

in Section 6.2 how this apparent loss of accuracy when using

the DM algorithm could readily be rectified.

5.2. Effectiveness of various IPAs as a function of their

adjustable parameter b

The DM algorithm (equation 3a) is one of a number of IPAs

that have been used to solve difficult nonconvex constraint-

satisfaction problems. We explored the utility of several other

algorithms for iterative phase retrieval that have seen little

application in crystallography to date. These are the RRR

algorithm (equation 4a), a reversed variant of the RRR

algorithm (equation 5a) and the RAAR algorithm (equation

6), which are described in Section 2.1. We note that the RAAR

algorithm has previously been employed to determine the

anomalous scattering substructure from single-wavelength

anomalous diffraction data (Skubák, 2018; Fu et al., 2024).

Like the DM algorithm, the behavior of each of these

algorithms is dependent on a single adjustable parameter �,

although the range of � differs between the algorithms. As the

optimal choice of � is domain-specific, we systemically inves-

tigated the effects of the parameter � on the performance of

the algorithms for crystallographic phase retrieval.

Our initial experiments (Section 5.1) established that the

failure point of the DM algorithm (with � = 0.75 and a fixed

250 iterations) occurred when the circular variance of the

error functions was 0.7–0.8, depending on the test case

(Fig. 2e). This corresponds to mean absolute phase differences

of 70–75� and starting map correlations of 0.3–0.2 with the

known solution (Fig. 1). With higher levels of phase error, the

DM algorithm was unable to routinely recover the solution for

either test case within 250 iterations. Based on these results,

we investigated the ability of all of the algorithms to recover

the solution, as a function of their parameter �, given similar

levels of initial error (V = 0.6–0.8) and the same number of

iterations (250). The results are summarized in Figs. 3, 4, 5 and

6, which show agreement with the known solution at the final

iteration.

For the DM algorithm, where � 2 (� 1, 1), the results are

consistent with our earlier empirical observations (Kingston &

Millane, 2022). The effectiveness of the algorithm is quite

sensitive to the value of �, and it works most robustly when

�� 0.7 or � < � 0.9 (Fig. 3). While adopting negative values for

� amounts to swapping the order in which the projections are

applied within the update rule (equation 3a), the response to

� is not symmetric, and performance is more sensitive to the

exact value of � in the negative region. There also exists a

range of values � 0.7 < � < 0.1 which are entirely unproductive.

We note that terms involving 1/� appear in the update rule of

the DM algorithm (equation 3a), so irrespective of our results

the algorithm is not defined when � = 0. The data further

suggest that the useful values for � are somewhat dependent

on the level of error in the density function. For example,

� = 0.5 works well at relatively low error (Fig. 3a) but becomes

much less effective at recovering the solution at high error

(Fig. 3c). There is of course no reason why � must be held

constant during the phase-retrieval process and we have

previously found, empirically, that varying � as a function of

the iterate can aid in convergence of the DM algorithm

(Kingston & Millane, 2022).

The RRR algorithm and the revRRR algorithms, where

� 2 (0, 2), exhibit a quite similar response to �, with 0.2 < � <

1.2 being the most productive values for phase retrieval and

� > 1.7 being generally unproductive. As with the DM algo-

rithm some sensitivity to the level of error is apparent, with

borderline values, such as � = 1.5, being effective at low error

and ineffective at high error (test case 4bsj; Figs. 4 and 5).
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However, overall, the RRR and revRRR algorithms show less

sensitivity to the exact value of � than the DM algorithm.

The RAAR algorithm, where � 2 (0, 1), exhibits a less step-

like response to � than either the DM or RRR algorithms.
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Figure 4
Performance of the RRR algorithm as a function of its adjustable parameter � for test cases 4bsj and 4zqk. Details are as for Fig. 3.

Figure 3
Performance of the DM algorithm as a function of its adjustable parameter � for test cases 4bsj and 4zqk. Violin plots (Hintze & Nelson, 1998)
summarize the agreement (real-space correlation coefficient) of the individual replicates with the known solution at the final iterate. As in Fig. 2, the
black dashed line indicates the self-weighted (Garcia, 2012) mean correlation coefficient calculated from the replicates. (a) Results for error-function
circular variance V = 0.6 (mean absolute phase difference j�’j = 60�, starting map correlation coefficient �0.39). (b) Results for error-function circular
variance V = 0.7 (mean absolute phase difference j�’j = 68�, starting map correlation coefficient �0.30). (c) Results for error-function circular variance
V = 0.8 (mean absolute phase difference j�’j = 75�, starting map correlation coefficient �0.19).



Overall, it appears that the region with � > 0.75 is the most

productive and the region with � � 1/2 is less productive,

which is not unexpected. In the limit, when � = 0, the update

rule for the RAAR algorithm (equation 6) does not involve

any projection onto the real-space constraints. Our findings

are consistent with prior investigation of the performance of

the RAAR algorithm in noncrystallographic phase-retrieval

problems (Li & Zhou, 2017).
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Figure 5
Performance of the revRRR algorithm as a function of its adjustable parameter � for test cases 4bsj and 4zqk. Details are as for Fig. 3.

Figure 6
Performance of the RAAR algorithm as a function of its adjustable parameter � for test cases 4bsj and 4zqk. Details are as for Fig. 3.



5.3. Effectiveness of various IPAs for direct phase retrieval

Following the basic characterization of algorithm behavior,

we tested the ability of the algorithms to perform true ab initio

phase retrieval. In these experiments we used each algorithm

(DM, RRR, revRRR and RAAR, with ‘optimal’ choices for

�) to directly phase five different test cases beginning with

completely random phases and algorithmically determined

approximations to the molecular envelope. The test cases

employed (Supplementary Table S1) were a subset of those

used in Kingston & Millane (2022). These phase-retrieval

experiments involved many more iterations (8000) than the

experiments shown in Figs. 3, 4, 5 and 6 and graduated

extension of the resolution via a Fourier-space apodization

scheme (Kingston & Millane, 2022). The results (Supplementary

Table S1) establish that all algorithms are effective for direct

phase retrieval, although there is considerable case-by-case

variation in algorithm performance, which remains to be

explored.

6. Analysis of algorithm behavior in the Fourier domain

6.1. Monitoring individual structure-factor trajectories as the

algorithms progress

The experiments described in the previous section probed

the global performance of IPAs as a function of their adjus-

table parameter, and established their utility for direct phase

determination. Additional insight into algorithm behavior

can be obtained by examining the trajectories of individual

Fourier coefficients as the algorithms progress. This concept is

illustrated here using the RRR algorithm alone, as the beha-

vior of the other algorithms studied is broadly similar.

Phase retrieval was conducted for test case 4bsj using the

RRR algorithm (� = 0.80 and 300 iterations) initiated with

three different random phase sets, and the results are shown in

Fig. 7. The known molecular envelope was used at iteration 0,

and the envelope was updated based on the density function at

each iteration thereafter. The use of a correct or near-correct

molecular envelope to initiate phase retrieval has the effect

of decreasing the mean number of iterations required for

convergence, as we have previously noted (Kingston &

Millane, 2022) and exploited in Section 5.3. For two of the

phase sets the algorithm converges to the global solution,

while for the third phase set it does not, as indicated by the

global agreement statistics (Fig. 7a).

Trajectories of a single Fourier coefficient generated by the

RRR algorithm (test case 4bsj) over the course of each run are

shown in Fig. 7(b). The experimentally measured amplitude

and model-derived phase are represented by the thick black

line terminating on an open circle. In each trajectory, varia-

tions in both amplitude and phase are apparent, as the algo-

rithm attempts to find an intersection between the real- and

Fourier-space constraints. Although the measured amplitudes

act as the Fourier-space constraint on every iteration of the

RRR algorithm, the trajectory of the solution estimate

(equation 4b) is being followed in Fig. 7(b). For this solution

estimate, the real-space constraints (solvent flatness and

histogram equivalence) are exactly satisfied on every iteration;

however, the Fourier-space constraints are not, even at the

solution (due to both errors in the measured amplitudes and

the approximations inherent in the real-space constraints).

In the cases that converge (i and ii), the structure-factor

trajectory eventually becomes stationary, with a mean value

that does not change with iteration, consistent with the

construction of the update rule for the iterate (equation 4a). In

this regime, the structure factor is undergoing what resembles

a biased random walk in the complex plane and the distribu-

tion of estimates generated by the algorithm appears to be

unimodal and symmetric. Consequently, for the purposes of

visualization, we fit the final points in the structure-factor

trajectory to a probability density function (Fig. 7c), modeling

the phases as von Mises distributed, and the amplitudes as

Gaussian distributed, and assuming independence between

these two components (equation 17). When the algorithm has

converged, the average structure factor across the final points

in the trajectory is very close to the model-associated value,

although not exactly coincident (Fig. 7c), noting that we are

not estimating or representing errors in the model-derived

phases (Read, 1997) or the measured amplitudes.

In contrast, the structure-factor trajectory for the case that

did not converge (iii) is markedly different. At the algorithm

end point, the trajectory is clearly nonstationary. Concomi-

tantly, the distribution of points is far broader, and the average

does not even approximately correspond to the model-

associated value (Fig. 7c). We note that since this case is well

constrained, it is likely that this trajectory would ultimately

converge to the correct solution given an increased number of

iterations.

A notable feature of the structure-factor trajectories shown

in Fig. 7 is that even following convergence to the solution,

constant movements around the mean value are apparent.

This is the Fourier-space corollary of the significant fluctua-

tions that are observed in the electron-density function,

subsequent to the formation of an essentially correct image.

These fluctuations are shown explicitly in Supplementary

Movie S1 (for a different test case, PDB entry 4nli), in which

the trajectory of the density function, the trajectory of several

individual Fourier coefficients and the circular variance of

the phase-angle distributions are displayed both prior and

subsequent to location of the solution. Convergence to the

solution is accompanied by a general reduction in the variance

of the phase-angle distributions as the structure-factor

trajectories become stationary. This is quite diagnostic of

successful phase retrieval. Nonetheless, the variance remains

far from zero, and continued significant movements around

the mean position are seen in both the density function and

the Fourier coefficients following convergence to the solution.

These fluctuations are an inevitable consequence of the design

of algorithms such as RRR and occur in practical situations,

when the constraints cannot all be simultaneously and exactly

satisfied.

To reinforce this point, we show in red in Fig. 8 the final

trajectories of 15 individual acentric Fourier coefficients

generated by one run of the RRR algorithm (� = 0.80) for test
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case 4bsj after convergence to the solution. The terms were

selected based on the amplitude, having either large, inter-

mediate or small values (top, middle and bottom rows,

respectively). The trajectories of the large-amplitude Fourier

terms are generally far more tightly constrained than the

small-amplitude terms. This is unsurprising, as the large-

amplitude terms will dominate the variance of the Fourier

synthesis (Giacovazzo & Mazzone, 2011; Giacovazzo et al.,

2011) and will have the greatest impact on its appearance.

However, among terms of nearly equivalent amplitude, there

still exist considerable differences in the extent of the phase

variation following convergence, implying that the phases for

individual terms in the Fourier synthesis are not equally well

determined by the constraints being applied. Despite the

breadth of the distributions for the small- and intermediate-

amplitude terms, they are generally consistent with the model-

derived phase estimates.

6.2. Averaging over structure-factor trajectories following

convergence to improve the solution estimate

The results obtained (Fig. 8, Supplementary Movie S1)

suggest that averaging over the stationary region of the

algorithm trajectory, following convergence to the solution,

could be used to improve the estimate of the electron density.

Such averaging could be performed in either real or Fourier

space, and we have investigated the latter. This kind of

averaging operation has a precedent in the field of coherent

X-ray imaging (Shapiro et al., 2005; Thibault et al., 2006).

We hypothesized that the trajectory of the individual

Fourier coefficients generated by the IPA, following global

convergence to the solution (Fig. 8), might be reflective of the

probability distributions for each Fourier coefficient arising

from imposition of the constraints. Hence, it could be useful

to estimate from each trajectory the components of the first

trigonometric moment of the phase-angle distribution. When
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Figure 7
Global agreement statistics and individual structure-factor trajectories generated by the RRR algorithm (� = 0.80, test case 4bsj) following initiation of
the algorithm with three different random phase sets (i), (ii) and (iii). For phase sets (i) and (ii) the algorithm converges to the global solution within 300
iterations, while for set (iii) it does not. (a) Evolution of the real-space map correlation coefficient, an overall agreement measure. (b) Trajectories for the
Fourier coefficient with indices h = 12, k = 9, l = 8 for the three runs. The estimate for the Fourier coefficient at each iterate, obtained from equation (4b),
is represented with a filled circle in the complex plane, and consecutive iterates are connected with thin lines. The progression of the trajectory over the
300 iterations allowed is indicated with a purple-to-red color gradient. The experimentally measured structure-factor amplitude at the model-derived
phase angle is indicated by an open circle, connected to the origin by a thick black line. (c) Fit of the final 30 iterations in the algorithm trajectory to a
bivariate probability density function, assuming independent von Mises distribution of the phases and Gaussian distribution of the amplitudes (equation
17). Points contributing to the fit of the PDF retain their color, while all remaining points in the trajectory are reverted to gray. The displayed isocontours
of the fitted PDF pass through �G � 2�, �G � 4� and �G � 6� along the central symmetry axis of the distribution.
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expressed in polar form these are the mean direction (’)

(equation 20) and mean length (R) (equation 21). In the

absence of amplitude error, the best Fourier synthesis, in a

least-squares sense, could then be calculated using the mean

direction (’) as the phase, while weighting the Fourier

amplitudes by the mean length (R) (Read, 1997; Barnett &

Kingston, 2024). However, even if the structure-factor distri-

butions obtained following convergence cannot be interpreted

in this way, it is apparent, by inspection, that simply using the

mean direction as the phase together with the unweighted

Fourier amplitudes should yield an improved estimate of the

electron density.

To explore this hypothesis, we performed phase-retrieval

runs for a number of test cases using the RRR algorithm. The

experiments were performed with � ranging from 0.3 to 1.1,

which corresponds to the values shown earlier to be most

effective for phase retrieval (Section 5.2). At each value of �

tested, 30 runs. each of 150 iterations, were performed. Each

run was initiated with model-derived phases corrupted with

random error (circular variance of the error functions V =

0.75, corresponding to a mean absolute phase difference of

�70� with the model phases). The molecular envelope was

estimated from the solution estimate at each iteration.

From the trajectories of the 30 replicates, all of which

converged to the solution, we calculated the sample mean

direction (’) and mean length (R) of the phase-angle distri-

bution for each term hkl using equations (18)–(21) over a

window of 30 iterations extending backwards from the end of

the run. This nonparametric procedure is applicable to both

the centric and acentric data. Electron-density maps were

subsequently computed using the mean direction (’) as the

phase, in combination with either unweighted Fourier ampli-

tudes or Fourier amplitudes weighted by the mean length of

the phase-angle distribution (R). We compared the results

with an alternate procedure in which the solution estimate at

the final iteration of the RRR algorithm was subjected to an

additional 30 iterations of the ER algorithm to damp fluc-

tuations in the estimate. We have previously used this proce-

dure to improve the phase and density estimates at the end of

a phase-retrieval run (Kingston & Millane, 2022). We then

assessed the mean agreement of each of the resulting density

functions with the map derived from the atomic model. The
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Figure 8
Structure-factor trajectories generated by the RRR algorithm (� = 0.8) following global convergence to the solution (test case 4bsj). Structure-factor
trajectories for 15 individual acentric terms are displayed as in Fig. 7. Initial iterations of the trajectory are displayed in gray, while the final 30 iterations
of each trajectory, which are representative of behavior following global convergence to the solution, are displayed in red. The trajectories following
convergence (red points) are summarized via the fit of a bivariate probability density function. Isocontours of the PDF are displayed together with the
model-derived structure factors, as in Fig. 7(c). (a) The large terms, displayed in the top row, fall in the 90th to 100th percentile of the measured amplitude
distribution. (b) The intermediate terms, displayed in the middle row, fall in the 45th to 55th percentile of the measured amplitude distribution. (c) The
small terms, displayed in the bottom row, fall in the 0th to 10th percentile of the measured amplitude distribution. Note that the scale for the amplitude is
different for the large, intermediate and small terms to facilitate visualization.



results are shown in Fig. 9 for two test cases (PDB entries 4bsj

and 4gbg) which are representative of the results obtained.

For the RRR algorithm, the breadth of the structure-factor

distributions observed in the complex plane increases with � in

a quite regular fashion (Supplementary Fig. S3), as � controls

the step size of the algorithm (equation 4a). In other words,

as � increases the RRR algorithm effectively samples from

increasingly broad structure-factor distributions following

convergence to the solution (or equivalently, the fluctuations

in the electron-density function become steadily larger).

Therefore, the single-point solution estimate obtained at the

final iterate of the RRR algorithm becomes steadily worse

with increasing � in all cases (Fig. 9). However, averaging over

the structure-factor trajectories generated by the algorithm in

the stationary region (i.e. using the mean direction, computed

from the stationary part of the algorithm trajectory, as the

phase estimate) is effective in improving the solution estimate

at each value of �. The averaging appears to be uniformly

effective at lower values of � (0.3–0.7). In some cases, it

appears significantly better to weight the Fourier amplitudes

by the mean length of the phase-angle distribution (Fig. 9, test

case 4gbg), while in other cases the results of this procedure

are comparable or slightly worse than those obtained using

unweighted Fourier amplitudes (Fig. 9, test case 4bsj). Both

averaging procedures routinely outperform the alternative,

which is to apply the ER algorithm to improve the final density

estimate. While application of the ER algorithm might be

expected to drive the phases to the long-term averages

apparent in the trajectory of the RRR algorithm, its poor

global convergence properties mean that this is only partially

achieved. As � increases and the density estimate at the final

iterate becomes worse, this becomes increasingly problematic,

and the result returned by applying the ER algorithm

degrades. For the specific case of the RRR algorithm, where

the variance in the solution estimate responds so regularly to �

(Supplementary Fig. S3), it would also be possible to improve

the solution estimate by systematically reducing � towards

the end of the run. However, this would appear to have no

advantage over averaging across the solution trajectory in the

stationary region.

Similar outcomes to those obtained above might also be

achieved by averaging the final outputs of multiple indepen-

dent phase-determination runs, as we have performed

previously when using the DM algorithm (Kingston &

Millane, 2022). However, the present procedure, which

exploits the information contained in the trajectory of a single

run once it has become stationary, is far more computationally

efficient.

6.3. Phase uncertainty as a function of resolution

The uncertainty in the phases estimated by IPAs is very

dependent on the Fourier amplitude (Fig. 8, Supplementary

Movie S1) and hence on the resolution. As the resolution

increases, the precision of the phase estimates decreases. To

capture the resolution-dependence of the phase-retrieval

process, the phase-retrieval transfer function (PRTF) was

introduced in the field of coherent X-ray imaging (Chapman

et al., 2006). The PRTF is defined as the amplitude of the

averaged complex Fourier coefficients obtained from multiple

solution estimates, normalized by the experimental Fourier

amplitudes. In a crystallographic setting, this statistic can be

straightforwardly calculated from the trajectory of an IPA

when it is stationary (equation 23). We note that for the RRR

algorithm, averaging the complex structure factors over some

part of the trajectory is either exactly (solution estimate given

by equation 4c) or nearly (solution estimate given by equation
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Figure 9
Accuracy of density estimates obtained by averaging over the RRR
algorithm trajectory following convergence to the solution versus appli-
cation of the ER algorithm to improve the final solution estimate for test
cases 4bsj and 4gbg. Results are reported as a function of the RRR
algorithm parameter �. Computational procedures are indicated in the
key. The mean real-space map correlation with the known solution (over
30 replicates) is indicated by the bar height. The associated error bars
show the standard error of the mean.
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4b) equivalent to weighting the measured amplitudes by the

mean length of the phase-angle distribution, as we have

performed in Section 6.2. In other words, in computing the

PRTF from the RRR algorithm trajectory, each term in the

numerator is essentially the Fourier amplitude weighted

according to the confidence with which its phase is known.

Consequently, if there is no uncertainly in the determined

phases (they have a single-point distribution) the PRTF will

evaluate close to 1, while if the determined phases are random

(they have a uniform circular distribution for the acentric

data) the PRTF will evaluate to 0.

The PRTF calculated for test case 4bsj, and averaged within

concentric resolution shells, is shown in Fig. 10(a) together

with the mean length (R) of the phase-angle distributions

(Fig. 10b) and the absolute difference |�’| from the known

phases (Fig. 10c), averaged in the same fashion. As expected,

the PRTF and the mean length of the phase-angle distributions

provide effectively the same information about the decrease

in phase reliability with resolution, although in involving the

Fourier amplitudes, the PRTF is the more physically infor-

mative statistic. While it has been suggested that the point

at which the PRTF drops below some empirical threshold

(typically 0.5) might be used as an objective estimate of image

resolution, the circular variance of the phase-angle distribu-

tions (and hence the absolute value of the PRTF) is dependent

on the RRR algorithm parameter � (Figs. 10a and 10b). In

contrast, the mean direction of the phase-angle distributions

is essentially unchanged with �, and hence the phase sets are

equally accurate in each case (Fig. 10c). Hence, the PRTF

cannot yield absolute estimates of image resolution until the

connections between the phase-angle distributions generated

by the algorithm and the constraints on the solution are better

understood. This is in concordance with the results of the

previous section (refer to Supplementary Fig. S3). However,

the PRTF is certainly informative of relative phase uncertainty

as a function of scattering angle, and this has physical rele-

vance, as comparison of Figs. 10(a) and 10(c) makes clear.

7. Conclusion

In this paper, we have explored the behavior of a number

of iterative projection algorithms for crystallographic phase

retrieval. We have emphasized the practical application of the

algorithms, rather than the theoretical consideration of their

properties, which have been discussed extensively elsewhere

(Marchesini, 2007; Millane & Lo, 2013; Millane, 2023). The

real-space constraints employed were solvent flatness and

histogram equivalence. Although we do not explore the issue

in this paper, it is easy to demonstrate, both theoretically and

practically, that the solvent-flatness constraint is by far the

more powerful of the two constraints employed.

Previously, we have used the DM algorithm (equation 3a)

to develop a direct phase-determination procedure for high-

solvent-content crystals (Kingston & Millane, 2022), illus-

trating the potential of IPAs for ab initio phase retrieval.

Several alternatives to the DM algorithm have been devel-

oped, which have seen little or no use in the crystallographic

setting. Here, we have performed some comparative experi-

ments using two such alternatives: the RRR algorithm

(equation 4a; Elser et al., 2018) and a reversed variant

(equation 5a), and the RAAR algorithm (equation 6; Luke,

2005). The results (Figs. 3, 4, 5 and 6, Supplementary Table S1)

demonstrate that all of these algorithms appear to be effective

for crystallographic phase retrieval, given appropriate values

of their adjustable parameter �. There may be computational

advantages associated with the choice of algorithm. For

example, the performance of the RRR algorithm appears to

be rather insensitive to the exact value of � (Fig. 4) and it is

less costly to evaluate than the DM algorithm.

A property of all of these constraint-satisfaction algorithms

(DM, RRR and RAAR) is that even when they have arrived

at the solution, and the algorithm trajectory is stationary, the

density function, and hence the associated Fourier coefficients,

continue to significantly fluctuate around the mean value

(Figs. 7 and 8, Supplementary Movie S1) because it is not

possible to exactly and simultaneously satisfy all of the
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Figure 10
Resolution-dependence of the phase uncertainty inferred from trajectory
averaging for test case 4bsj. (a) The phase-retrieval transfer function
(PRTF) as a function of resolution (1/s). (b) The mean mean length
(mean R) of the phase-angle distributions as a function of resolution (1/s).
(c) The mean absolute difference (mean |�’|) between the trajectory-
averaged and model phases as a function of resolution (1/s). The statistics
were evaluated over 30 iterations of the RRR algorithm (� = 0.8 or
� = 0.3 as indicated) once the algorithm had become stationary.
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constraints. We show that averaging across the stationary part

of the trajectory, which has negligible computational cost, can

be used to improve the solution estimate (Fig. 9). We have

performed this averaging operation in Fourier space, esti-

mating the first trigonometric moment of the phase-angle

distribution for each Fourier coefficient from the algorithm

trajectory following convergence and then incorporating this

information into the Fourier synthesis in the usual way. The

resulting map is significantly better than that obtained by

simply taking the output of the algorithm at the final iteration,

and is also generally better than that obtained by applying the

ER algorithm to improve the final iterate, as we and others

have done in the past. Trajectory averaging has therefore been

incorporated as the default procedure in our program for

direct crystallographic phase retrieval (IPA).

There are theoretical issues which remain to be explored.

In particular, the relationship between the phase distributions

derived from the algorithm trajectory and the real-space

constraints being applied needs to be systematically investi-

gated. Our current treatment of these frequency distributions

as ‘probabilities’ is practically effective (Fig. 9) but purely

empirical. If this limitation can be addressed, then trajectory

averaging might additionally be used to generate reliable

resolution estimates via analysis of the PRTF (Fig. 10).

However, even at the current state of development, our results

suggest that switching from a deterministic to a probabilistic

view of phase determination when using iterative projection

algorithms is likely to prove productive, just as it has been for

the procedures involved in experimental phase determination

(Read, 2003; Bricogne et al., 2003; McCoy & Read, 2010).

One place in which a probabilistic framework might be

applied is understanding how the real-space constraints on the

density function propagate into Fourier space. The constraints

being applied to the density function could be expressed in the

Fourier domain as a system of nonlinear equations (Main,

1990). Such a system of equations can in principle be analyzed

to understand the phase constraints existing on the system.

This kind of approach was previously adopted to analyze the

phase restrictions resulting from the presence of noncrys-

tallographic symmetry (Main & Rossmann, 1966; Crowther,

1967; Main, 1967; Crowther, 1969). The work presented here

suggests that iterative projection algorithms may ultimately

provide a more computationally convenient way to address

this same problem, through investigation of the impact of

the real-space constraints on the phase-angle distributions

generated by the algorithms.
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