research papers\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
BIOLOGY
ISSN: 2059-7983

The success rate of processed predicted models in molecular replacement: implications for experimental phasing in the AlphaFold era

crossmark logo

aInstitute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom, and bUKRI–STFC, Rutherford Appleton Laboratory, Research Complex at Harwell, Didcot OX11 0FA, United Kingdom
*Correspondence e-mail: drigden@liv.ac.uk

Edited by C. Mueller-Dieckmann, ESRF, France (Received 6 August 2024; accepted 23 September 2024; online 3 October 2024)

This article is part of the Proceedings of the 2023 CCP4 Study Weekend.

The availability of highly accurate protein structure predictions from AlphaFold2 (AF2) and similar tools has hugely expanded the applicability of molecular replacement (MR) for crystal structure solution. Many structures can be solved routinely using raw models, structures processed to remove unreliable parts or models split into distinct structural units. There is therefore an open question around how many and which cases still require experimental phasing methods such as single-wavelength anomalous diffraction (SAD). Here, this question is addressed using a large set of PDB depositions that were solved by SAD. A large majority (87%) could be solved using unedited or minimally edited AF2 predictions. A further 18 (4%) yield straightforwardly to MR after splitting of the AF2 prediction using Slice'N'Dice, although different splitting methods succeeded on slightly different sets of cases. It is also found that further unique targets can be solved by alternative modelling approaches such as ESMFold (four cases), alternative MR approaches such as ARCIMBOLDO and AMPLE (two cases each), and multimeric model building with AlphaFold-Multimer or UniFold (three cases). Ultimately, only 12 cases, or 3% of the SAD-phased set, did not yield to any form of MR tested here, offering valuable hints as to the number and the characteristics of cases where experimental phasing remains essential for macromolecular structure solution.

1. Introduction

For many years, molecular replacement (MR) has been the predominant mode of solution of the phase problem in macromolecular structure determination, and its popularity has recently increased. MR depends on identifying a search model that is sufficiently similar to at least part of the new crystal structure, allowing its computational placement in the asymmetric unit of the new structure. An initial set of calculated phases can then be determined, allowing the production of initial electron-density maps which may then ultimately allow structure tracing and refinement. Conventionally, the search model has typically been derived from the experimental structure of a quite closely related homologous protein, but the area has also been fertilized by structural bioinformatics. This latter field has encompassed the testing of small substructures that are identifiable by secondary-structure prediction (Rodríguez et al., 2009[Rodríguez, D. D., Grosse, C., Himmel, S., González, C., de Ilarduya, I. M., Becker, S., Sheldrick, G. M. & Usón, I. (2009). Nat. Methods, 6, 651-653.]), diverse approaches for the definition of useful substructures in more distantly related homologues (Sammito et al., 2014[Sammito, M., Meindl, K., de Ilarduya, I. M., Millán, C., Artola-Recolons, C., Hermoso, J. A. & Usón, I. (2014). FEBS J. 281, 4029-4045.]; Rigden et al., 2018[Rigden, D. J., Thomas, J. M. H., Simkovic, F., Simpkin, A., Winn, M. D., Mayans, O. & Keegan, R. M. (2018). Acta Cryst. D74, 183-193.]) and the exploitation of successive waves of ab initio structure-modelling methods (Qian et al., 2007[Qian, B., Raman, S., Das, R., Bradley, P., McCoy, A. J., Read, R. J. & Baker, D. (2007). Nature, 450, 259-264.]; Bibby et al., 2012[Bibby, J., Keegan, R. M., Mayans, O., Winn, M. D. & Rigden, D. J. (2012). Acta Cryst. D68, 1622-1631.]; Simkovic et al., 2016[Simkovic, F., Thomas, J. M. H., Keegan, R. M., Winn, M. D., Mayans, O. & Rigden, D. J. (2016). IUCrJ, 3, 259-270.]; Simpkin et al., 2019[Simpkin, A. J., Thomas, J. M. H., Simkovic, F., Keegan, R. M. & Rigden, D. J. (2019). Acta Cryst. D75, 1051-1062.]).

The latest deep-learning-based structure-prediction methods, starting with AlphaFold2 (AF2; Jumper et al., 2021[Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., Bridgland, A., Meyer, C., Kohl, S. A. A., Ballard, A. J., Cowie, A., Romera-Paredes, B., Nikolov, S., Jain, R., Adler, J., Back, T., Petersen, S., Reiman, D., Clancy, E., Zielinski, M., Steinegger, M., Pacholska, M., Berghammer, T., Bodenstein, S., Silver, D., Vinyals, O., Senior, A. W., Kavukcuoglu, K., Kohli, P. & Hassabis, D. (2021). Nature, 596, 583-589.]), have had a profound effect on MR. It was immediately recognized at and after the CASP14 structure-prediction experiment (Millán et al., 2021[Millán, C., Keegan, R. M., Pereira, J., Sammito, M. D., Simpkin, A. J., McCoy, A. J., Lupas, A. N., Hartmann, M. D., Rigden, D. J. & Read, R. J. (2021). Proteins, 89, 1752-1769.]; Pereira et al., 2021[Pereira, J., Simpkin, A. J., Hartmann, M. D., Rigden, D. J., Keegan, R. M. & Lupas, A. N. (2021). Proteins, 89, 1687-1699.]; McCoy et al., 2022[McCoy, A. J., Sammito, M. D. & Read, R. J. (2022). Acta Cryst. D78, 1-13.]) that their unprecedented accuracy made many targets that would previously have been difficult or intractable, principally those of significantly novel folds, readily soluble by MR. Often an unmodified AF2 model would succeed as a search model, but the importance, in some cases, of removing less confident (often disordered) portions of models and/or splitting multi-domain structure predictions into individual domains was quickly recognized (Oeffner et al., 2022[Oeffner, R. D., Croll, T. I., Millán, C., Poon, B. K., Schlicksup, C. J., Read, R. J. & Terwilliger, T. C. (2022). Acta Cryst. D78, 1303-1314.]; Simpkin et al., 2022[Simpkin, A. J., Elliott, L. G., Stevenson, K., Krissinel, E., Rigden, D. & Keegan, R. M. (2022). bioRxiv, 2022.06.30.497974.]). A study of 215 recent PDB (Berman et al., 2003[Berman, H., Henrick, K. & Nakamura, H. (2003). Nat. Struct. Mol. Biol. 10, 980.]) depositions that had been solved by single-wavelength anomalous diffraction (SAD) (and which were hence assumed to comprise structures not readily soluble by MR) found that 87% were easily solved using AF2 models, with only seven ultimately failing in MR (Terwilliger et al., 2023[Terwilliger, T. C., Afonine, P. V., Liebschner, D., Croll, T. I., McCoy, A. J., Oeffner, R. D., Williams, C. J., Poon, B. K., Richardson, J. S., Read, R. J. & Adams, P. D. (2023). Acta Cryst. D79, 234-244.]). Such results have encouraged the integration of AF2 into structure-solution pipelines (Krissinel et al., 2022[Krissinel, E., Lebedev, A. A., Uski, V., Ballard, C. B., Keegan, R. M., Kovalevskiy, O., Nicholls, R. A., Pannu, N. S., Skubák, P., Berrisford, J., Fando, M., Lohkamp, B., Wojdyr, M., Simpkin, A. J., Thomas, J. M. H., Oliver, C., Vonrhein, C., Chojnowski, G., Basle, A., Purkiss, A., Isupov, M. N., McNicholas, S., Lowe, E., Triviño, J., Cowtan, K., Agirre, J., Rigden, D. J., Uson, I., Lamzin, V., Tews, I., Bricogne, G., Leslie, A. G. W. & Brown, D. G. (2022). Acta Cryst. D78, 1079-1089.]; Poon et al., 2024[Poon, B. K., Terwilliger, T. C. & Adams, P. D. (2024). Protein Sci. 33, e4992.]; Simpkin, Caballero et al., 2023[Simpkin, A. J., Caballero, I., McNicholas, S., Stevenson, K., Jiménez, E., Sánchez Rodríguez, F., Fando, M., Uski, V., Ballard, C., Chojnowski, G., Lebedev, A., Krissinel, E., Usón, I., Rigden, D. J. & Keegan, R. M. (2023). Acta Cryst. D79, 806-819.]).

Here, we address the extent to which search models from AF2 and other approaches can solve recent PDB depositions that had been solved by single-wavelength anomalous diffraction (SAD). The set of 408 cases, deposited between 27 July 2022 and 4 October 2023, is much larger than those tested in previous work but, it should be remembered, represents only a minority of PDB entries: in the same period 10 084 deposited structures were listed as being determined using MR. Crucially, as well as testing the performance of different AF2 variants [the original DeepMind version (Jumper et al., 2021[Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., Bridgland, A., Meyer, C., Kohl, S. A. A., Ballard, A. J., Cowie, A., Romera-Paredes, B., Nikolov, S., Jain, R., Adler, J., Back, T., Petersen, S., Reiman, D., Clancy, E., Zielinski, M., Steinegger, M., Pacholska, M., Berghammer, T., Bodenstein, S., Silver, D., Vinyals, O., Senior, A. W., Kavukcuoglu, K., Kohli, P. & Hassabis, D. (2021). Nature, 596, 583-589.]) and ColabFold (Mirdita et al., 2022[Mirdita, M., Schütze, K., Moriwaki, Y., Heo, L., Ovchinnikov, S. & Steinegger, M. (2022). Nat. Methods, 19, 679-682.])], we quantify the importance of (automated) domain splitting, as well as illustrating the key value in difficult cases both of other software [such as ESMFold (Lin et al., 2023[Lin, Z., Akin, H., Rao, R., Hie, B., Zhu, Z., Lu, W., Smetanin, N., Verkuil, R., Kabeli, O., Shmueli, Y., dos Santos Costa, A., Fazel-Zarandi, M., Sercu, T., Candido, S. & Rives, A. (2023). Science, 379, 1123-1130.]) and ARCIMBOLDO (Rodríguez et al., 2009[Rodríguez, D. D., Grosse, C., Himmel, S., González, C., de Ilarduya, I. M., Becker, S., Sheldrick, G. M. & Usón, I. (2009). Nat. Methods, 6, 651-653.])] and of alternative approaches (for example multimeric search-model building). All in all, just 3% of the SAD test-set structures were not solved (or 0.1% of the 10 492 total depositions), providing a new picture of the size and the characteristics of recent PDB depositions for which experimental phasing was considered likely to be essential for structure solution. We find that targets with few homologues in the database are challenging, as expected, and that proteins with predominantly α secondary structure, especially coiled coils, are also over-represented in difficult cases. While experimental phasing is widely used for other purposes (El Omari et al., 2023[El Omari, K., Duman, R., Mykhaylyk, V., Orr, C. M., Latimer-Smith, M., Winter, G., Grama, V., Qu, F., Bountra, K., Kwong, H. S., Romano, M., Reis, R. I., Vogeley, L., Vecchia, L., Owen, C. D., Wittmann, S., Renner, M., Senda, M., Matsugaki, N., Kawano, Y., Bowden, T. A., Moraes, I., Grimes, J. M., Mancini, E. J., Walsh, M. A., Guzzo, C. R., Owens, R. J., Jones, E. Y., Brown, D. G., Stuart, D. I., Beis, K. & Wagner, A. (2023). Commun. Chem. 6, 219.]), for example localization of ions, these results help to define the future targets which should be prioritized for this typically more expensive and laborious mode of structure solution.

2. Methods

2.1. Selection of target sequences

The targets selected were PDB structures that had been solved by single-wavelength anomalous diffraction (SAD) and deposited between 27 July 2022 and 4 October 2023. This yielded 408 cases, two of which (PDB entries 8ec9 and 8cuf) contained peptides with multiple modified or unnatural amino acids and so were excluded (see the supporting information for a list of PDB codes).

2.2. Modelling and characterization of target sequences

Target sequences were modelled using DeepMind AlphaFold2 (here called AF2; Jumper et al., 2021[Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., Bridgland, A., Meyer, C., Kohl, S. A. A., Ballard, A. J., Cowie, A., Romera-Paredes, B., Nikolov, S., Jain, R., Adler, J., Back, T., Petersen, S., Reiman, D., Clancy, E., Zielinski, M., Steinegger, M., Pacholska, M., Berghammer, T., Bodenstein, S., Silver, D., Vinyals, O., Senior, A. W., Kavukcuoglu, K., Kohli, P. & Hassabis, D. (2021). Nature, 596, 583-589.]) and ColabFold (CF; Mirdita et al., 2022[Mirdita, M., Schütze, K., Moriwaki, Y., Heo, L., Ovchinnikov, S. & Steinegger, M. (2022). Nat. Methods, 19, 679-682.]). These methods employ the same trained network but differ in other aspects, principally in the mode of generation of the multiple sequence alignment (MSA), a key input. DeepMind AF2 uses HHblits (Remmert et al., 2012[Remmert, M., Biegert, A., Hauser, A. & Söding, J. (2012). Nat. Methods, 9, 173-175.]) and jackhmmer (Johnson et al., 2010[Johnson, L. S., Eddy, S. R. & Portugaly, E. (2010). BMC Bioinformatics, 11, 431.]) to search the Big Fantastic Database (BFD) and the Uniclust30 (Mirdita et al., 2017[Mirdita, M., von den Driesch, L., Galiez, C., Martin, M. J., Söding, J. & Steinegger, M. (2017). Nucleic Acids Res. 45, D170-D176.]), UniRef90 (Suzek et al., 2015[Suzek, B. E., Wang, Y., Huang, H., McGarvey, P. B., Wu, C. H. & UniProt Consortium (2015). Bioinformatics, 31, 926-932.]) and MGnify (Richardson et al., 2017[Richardson, L., Allen, B., Baldi, G., Beracochea, M., Bileschi, M. L., Burdett, T., Burgin, J., Caballero-Pérez, J., Cochrane, G., Colwell, L. J., Curtis, T., Escobar-Zepeda, A., Gurbich, T. A., Kale, V., Korobeynikov, A., Raj, S., Rogers, A. B., Sakharova, E., Sanchez, S., Wilkinson, D. J. & Finn, R. D. (2023). Nucleic Acids Res. 51, D753-D759. ]) databases, while ColabFold uses the MMseqs2 application programming interface (Steinegger & Söding, 2017[Steinegger, M. & Söding, J. (2017). Nat. Biotechnol. 35, 1026-1028.]), allowing a rapid search of metagenomic databases. By default, AF2 uses structural templates (homologous structures identified in the PDB), whereas CF does not. Where single-molecule AF2 and CF predictions failed to yield a solution, ESMFold models (Lin et al., 2023[Lin, Z., Akin, H., Rao, R., Hie, B., Zhu, Z., Lu, W., Smetanin, N., Verkuil, R., Kabeli, O., Shmueli, Y., dos Santos Costa, A., Fazel-Zarandi, M., Sercu, T., Candido, S. & Rives, A. (2023). Science, 379, 1123-1130.]) were generated. Multimeric search models were also generated for these cases using AlphaFold-Multimer (Evans et al., 2021[Evans, R., O'Neill, M., Pritzel, P., Antropova, N., Senior, A., Green, T., Žídek, A., Bates, R., Blackwell, S., Yim, J., Ronneberger, O., Bodenstein, S., Zielinski, M., Bridgland, A., Potapenko, A., Cowie, A., Tunyasuvunakool, K., Jain, R., Clancy, E. Kohli, P., Jumper, J. & Hassabis, D. (2021). bioRxiv, 2021.10.04.463034.]) or Uni-Fold Symmetry (Li et al., 2022[Li, Z., Liu, X., Chen, W., Shen, F., Bi, H., Ke, G. & Zhang, L. (2022). bioRxiv, 2022.08.04.502811.]).

Alignment depth was expressed as Neff, a measure of the effective number of sequences for MSAs (Wu et al., 2020[Wu, T., Hou, J., Adhikari, B. & Cheng, J. (2020). Bioinformatics, 36, 1091-1098.]; Jumper et al., 2021[Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., Bridgland, A., Meyer, C., Kohl, S. A. A., Ballard, A. J., Cowie, A., Romera-Paredes, B., Nikolov, S., Jain, R., Adler, J., Back, T., Petersen, S., Reiman, D., Clancy, E., Zielinski, M., Steinegger, M., Pacholska, M., Berghammer, T., Bodenstein, S., Silver, D., Vinyals, O., Senior, A. W., Kavukcuoglu, K., Kohli, P. & Hassabis, D. (2021). Nature, 596, 583-589.]), using an 80% sequence-identity threshold and normalized by target length, hence Neff/length.

Targets were classified using the secondary-structure information in the deposited PDB structures, defining them as all-α (100% of regular secondary structure was α-helix), mostly α (>65% α), mixed, mostly β (>65%) or all-β (100% of regular secondary structure was β-sheet).

Socket2 (Kumar & Woolfson, 2021[Kumar, P. & Woolfson, D. N. (2021). Bioinformatics, 37, 4575-4577.]) was used to evaluate whether targets contained coiled-coil domains within them, as it has been noted that AF2 struggles to accurately predict these domains (van Breugel et al., 2022[Breugel, M. van, Rosa e Silva, I. & Andreeva, A. (2022). Commun. Biol. 5, 312.]).

2.3. Processing of structure predictions into search models

AF2 predictions are accompanied by residue-level confidence estimates expressed as predicted local difference distance test (pLDDT) values on a scale of 0 to 100, where values of 70 or higher are considered as moderate-to-high confidence (Jumper et al., 2021[Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., Bridgland, A., Meyer, C., Kohl, S. A. A., Ballard, A. J., Cowie, A., Romera-Paredes, B., Nikolov, S., Jain, R., Adler, J., Back, T., Petersen, S., Reiman, D., Clancy, E., Zielinski, M., Steinegger, M., Pacholska, M., Berghammer, T., Bodenstein, S., Silver, D., Vinyals, O., Senior, A. W., Kavukcuoglu, K., Kohli, P. & Hassabis, D. (2021). Nature, 596, 583-589.]). The AF2 and CF models were trialled unmodified or after trimming to remove residues with a pLDDT confidence estimate of less than 70. In each case, the pLDDT values of the structure were converted to pseudo-B factors (Oeffner et al., 2022[Oeffner, R. D., Croll, T. I., Millán, C., Poon, B. K., Schlicksup, C. J., Read, R. J. & Terwilliger, T. C. (2022). Acta Cryst. D78, 1303-1314.]). For some multi-domain targets where these trials failed, Slice'N'Dice (SnD; Simpkin et al., 2022[Simpkin, A. J., Elliott, L. G., Stevenson, K., Krissinel, E., Rigden, D. & Keegan, R. M. (2022). bioRxiv, 2022.06.30.497974.]) was used to split the model into distinct structural units. A description of how this was performed is given in Section 2.5.2[link] below (MR and refinement). SnD allows selection from a number of algorithms for structural domain splitting: here, the Birch algorithm was used by default (balanced iterative reducing and clustering using hierarchies; Zhang et al., 1996[Zhang, T., Ramakrishnan, R. & Livny, M. (1996). SIGMOD Rec. 25, 103-114.]), with splitting based on the AF2 predicted aligned error (PAE; Jumper et al., 2021[Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., Bridgland, A., Meyer, C., Kohl, S. A. A., Ballard, A. J., Cowie, A., Romera-Paredes, B., Nikolov, S., Jain, R., Adler, J., Back, T., Petersen, S., Reiman, D., Clancy, E., Zielinski, M., Steinegger, M., Pacholska, M., Berghammer, T., Bodenstein, S., Silver, D., Vinyals, O., Senior, A. W., Kavukcuoglu, K., Kohli, P. & Hassabis, D. (2021). Nature, 596, 583-589.]) also being tested in some cases. The Birch algorithm amounts to applying clustering on the Cα coordinates of the input structure, whereas the PAE-based method generates clusters from the PAE matrix output from AF2, AlphaFold3 and ESMFold. The PAE matrix displays the predicted alignment error to the true structure for each residue pair. Contiguous regions of this matrix having a low PAE usually represent a domain or structural unit. Where single-molecule AF2 and CF predictions failed to yield a solution, ESMFold models (Lin et al., 2023[Lin, Z., Akin, H., Rao, R., Hie, B., Zhu, Z., Lu, W., Smetanin, N., Verkuil, R., Kabeli, O., Shmueli, Y., dos Santos Costa, A., Fazel-Zarandi, M., Sercu, T., Candido, S. & Rives, A. (2023). Science, 379, 1123-1130.]) and multimeric search models from AlphaFold-Multimer (Evans et al., 2021[Evans, R., O'Neill, M., Pritzel, P., Antropova, N., Senior, A., Green, T., Žídek, A., Bates, R., Blackwell, S., Yim, J., Ronneberger, O., Bodenstein, S., Zielinski, M., Bridgland, A., Potapenko, A., Cowie, A., Tunyasuvunakool, K., Jain, R., Clancy, E. Kohli, P., Jumper, J. & Hassabis, D. (2021). bioRxiv, 2021.10.04.463034.]) or Uni-Fold Symmetry (Li et al., 2022[Li, Z., Liu, X., Chen, W., Shen, F., Bi, H., Ke, G. & Zhang, L. (2022). bioRxiv, 2022.08.04.502811.]) were subjected to the same pLDDT-based processing.

2.4. Secondary structure-based search models

ARCIMBOLDO_LITE (Rodríguez et al., 2009[Rodríguez, D. D., Grosse, C., Himmel, S., González, C., de Ilarduya, I. M., Becker, S., Sheldrick, G. M. & Usón, I. (2009). Nat. Methods, 6, 651-653.]) was used to try to solve selected α-helix-rich targets. AMPLE helical ensemble search models (Sánchez Rodríguez et al., 2020[Sánchez Rodríguez, F., Simpkin, A. J., Davies, O. R., Keegan, R. M. & Rigden, D. J. (2020). Acta Cryst. D76, 962-970.]) were also trialled in some cases. ARCIMBOLDO coiled_coil mode was also selected for those targets predicted to contain coiled-coil regions.

2.5. Molecular replacement and refinement

2.5.1. First pass: automated tests

Predictions were created using local installations of both AF2 (version 2.3.2) and CF (version 1.5.1) and passed into an automated structure-solution pipeline. This pipeline was based on applications from the CCP4 suite (version 8.0.016; Agirre et al., 2023[Agirre, J., Atanasova, M., Bagdonas, H., Ballard, C. B., Baslé, A., Beilsten-Edmands, J., Borges, R. J., Brown, D. G., Burgos-Mármol, J. J., Berrisford, J. M., Bond, P. S., Caballero, I., Catapano, L., Chojnowski, G., Cook, A. G., Cowtan, K. D., Croll, T. I., Debreczeni, J. É., Devenish, N. E., Dodson, E. J., Drevon, T. R., Emsley, P., Evans, G., Evans, P. R., Fando, M., Foadi, J., Fuentes-Montero, L., Garman, E. F., Gerstel, M., Gildea, R. J., Hatti, K., Hekkelman, M. L., Heuser, P., Hoh, S. W., Hough, M. A., Jenkins, H. T., Jiménez, E., Joosten, R. P., Keegan, R. M., Keep, N., Krissinel, E. B., Kolenko, P., Kovalevskiy, O., Lamzin, V. S., Lawson, D. M., Lebedev, A. A., Leslie, A. G. W., Lohkamp, B., Long, F., Malý, M., McCoy, A. J., McNicholas, S. J., Medina, A., Millán, C., Murray, J. W., Murshudov, G. N., Nicholls, R. A., Noble, M. E. M., Oeffner, R., Pannu, N. S., Parkhurst, J. M., Pearce, N., Pereira, J., Perrakis, A., Powell, H. R., Read, R. J., Rigden, D. J., Rochira, W., Sammito, M., Sánchez Rodríguez, F., Sheldrick, G. M., Shelley, K. L., Simkovic, F., Simpkin, A. J., Skubak, P., Sobolev, E., Steiner, R. A., Stevenson, K., Tews, I., Thomas, J. M. H., Thorn, A., Valls, J. T., Uski, V., Usón, I., Vagin, A., Velankar, S., Vollmar, M., Walden, H., Waterman, D., Wilson, K. S., Winn, M. D., Winter, G., Wojdyr, M. & Yamashita, K. (2023). Acta Cryst. D79, 449-461.]). Models were prepared as search models for MR using SnD to truncate residues with a pLDDT of <70 but not performing any splitting. MR was carried out using Phaser (McCoy et al., 2007[McCoy, A. J., Grosse-Kunstleve, R. W., Adams, P. D., Winn, M. D., Storoni, L. C. & Read, R. J. (2007). J. Appl. Cryst. 40, 658-674.]; Read & McCoy, 2016[Read, R. J. & McCoy, A. J. (2016). Acta Cryst. D72, 375-387.]). The resulting solution was subjected to 100 cycles of jelly-body refinement in REFMACAT (Yamashita et al., 2023[Yamashita, K., Wojdyr, M., Long, F., Nicholls, R. A. & Murshudov, G. N. (2023). Acta Cryst. D79, 368-373.]). Phaser was run with default options. The assumed similarity of the search models to the target was set to an r.m.s.d. of 1.2 Å. Assessment of the solution was performed using a map correlation coefficient (map CC) calculated between the placed model(s) and a map calculated from the deposited structure. This was performed using phenix.get_cc_mtz_pdb from the Phenix suite (Liebschner et al., 2019[Liebschner, D., Afonine, P. V., Baker, M. L., Bunkóczi, G., Chen, V. B., Croll, T. I., Hintze, B., Hung, L.-W., Jain, S., McCoy, A. J., Moriarty, N. W., Oeffner, R. D., Poon, B. K., Prisant, M. G., Read, R. J., Richardson, J. S., Richardson, D. C., Sammito, M. D., Sobolev, O. V., Stockwell, D. H., Terwilliger, T. C., Urzhumtsev, A. G., Videau, L. L., Williams, C. J. & Adams, P. D. (2019). Acta Cryst. D75, 861-877.]). A global map CC of greater than 0.25 was considered to be indicative of correct placement of the search model(s). Where a manually driven structure solution was required (described below), the Phaser LLG (log-likelihood gain) and TFZ (translation-function Z-score) were also used to assess the MR solutions. An LLG of better than 64 and a TFZ of better than 8.0 for each search model in MR are considered to be indicative of correct placement (Oeffner et al., 2018[Oeffner, R. D., Afonine, P. V., Millán, C., Sammito, M., Usón, I., Read, R. J. & McCoy, A. J. (2018). Acta Cryst. D74, 245-255.]).

2.5.2. Second pass: manual structure solution

Where the automated tests failed to give a solution meeting the map CC threshold for a solution, test-case data and predictions were imported into a CCP4 Cloud project (Krissinel et al., 2022[Krissinel, E., Lebedev, A. A., Uski, V., Ballard, C. B., Keegan, R. M., Kovalevskiy, O., Nicholls, R. A., Pannu, N. S., Skubák, P., Berrisford, J., Fando, M., Lohkamp, B., Wojdyr, M., Simpkin, A. J., Thomas, J. M. H., Oliver, C., Vonrhein, C., Chojnowski, G., Basle, A., Purkiss, A., Isupov, M. N., McNicholas, S., Lowe, E., Triviño, J., Cowtan, K., Agirre, J., Rigden, D. J., Uson, I., Lamzin, V., Tews, I., Bricogne, G., Leslie, A. G. W. & Brown, D. G. (2022). Acta Cryst. D78, 1079-1089.]) where search-model preparation, MR and subsequent steps could be carried out interactively through the interface. If multimer and ESMFold predictions were tested in these cases, the predictions were generated online using the DeepMind AF2 Google Colab server, the Uni-Fold Google Colab server and the ESMFold prediction service provided through the ESMAtlas website. These were then imported and prepared for MR in the CCP4 Cloud project. Solution attempts using ARCIMBOLDO were also run through the CCP4 Cloud interface. AMPLE tests were run from the command line. Where model splitting was required, several splits were tested. This typically involved splitting the initial prediction into two, three or more parts with SnD and passing all parts as separate search models to a Phaser MR run. The tree-like project-structure layout of CCP4 Cloud made it easy to explore each of the splitting strategies. In some cases, the parameterization of Phaser was adjusted to aid the determination of a correct solution. For example, sometimes the assumed r.m.s.d. of the search model to the target needed to be decreased from the chosen default of 1.2 Å to enable the correct placement of search models that were more accurate but constituted only a small part of the overall scattering content in the crystal. In other cases, only partial solutions could be found in MR, so additional refinement in REFMACAT and model building using ModelCraft (Bond & Cowtan, 2022[Bond, P. S. & Cowtan, K. D. (2022). Acta Cryst. D78, 1090-1098.]) were run to verify the solution and bring it to a more complete state.

3. Results and discussion

3.1. Most recent SAD-phased structures can be solved with unedited or pLDDT-edited AF2 or CF models

We first attempted structure solution using DeepMind AF2 models, either unmodified or after trimming to remove residues with a pLDDT confidence estimate of less than 70. In each case, the pLDDT values of the structure were converted to B factors as in Section 2[link]. Using a map CC of at least 0.25 (see Section 2[link]) as a threshold, a large majority of the test cases achieved this criterion (349/406 = 86%), solving straightforwardly (Fig. 1[link]). Recalling that these are not PDB depositions as a whole, but rather those for which SAD was used for phasing, this is a remarkable result that echoes previous work demonstrating the profound impact of AF2 on crystal structure solution by MR (Terwilliger et al., 2023[Terwilliger, T. C., Afonine, P. V., Liebschner, D., Croll, T. I., McCoy, A. J., Oeffner, R. D., Williams, C. J., Poon, B. K., Richardson, J. S., Read, R. J. & Adams, P. D. (2023). Acta Cryst. D79, 234-244.]).

[Figure 1]
Figure 1
Pie charts showing the results from testing our SAD data set (406 structures). The pie chart on the left shows the results from the first pass where models from ColabFold and AlphaFold were run in MR with minimal modification (pLDDT ≥ 70 and conversion of pLDDT to predicted B factor); 356 of the 406 structures (87.7%) were solved in this first pass. The pie chart on the right shows the results from the second pass where various MR strategies were used on 50 cases that we had been unable to solve in the first pass. A further 38 cases were solved, bringing the total to 394/406 (97%).
3.1.1. ColabFold solves a slightly different set to DeepMind AlphaFold2

The development of the ColabFold implementation of AF2 (Mirdita et al., 2022[Mirdita, M., Schütze, K., Moriwaki, Y., Heo, L., Ovchinnikov, S. & Steinegger, M. (2022). Nat. Methods, 19, 679-682.]) has contributed significantly to the democratization of the technology. By replacing the original MSA-generation step of AF2 with a quicker approach based on MMseqs2 (Steinegger & Söding, 2017[Steinegger, M. & Söding, J. (2017). Nat. Biotechnol. 35, 1026-1028.]) and, in particular, by the provision of a fast API for the MSA-generation step, the CF developers have facilitated AF2 modelling on more modest hardware and, notably, on Colab pages. In most cases, AF2 and CF each produce excellent models which can be used largely interchangeably for downstream applications. However, we note here that the different MSAs generated by AF2 and CF can lead to subtly different structures with, in some cases, a crucial impact on MR success (Supplementary Table S1).

3.1.2. Inclusion of templates is occasionally required for success

The AF2 pipeline employed here used templates where available. Although not required in most cases, in which the available MSA depth and the power of the modelling network combine to produce excellent models, AF2 and CF can optionally use information from homologous templates. A dramatic difference in the quality of the AF2 and CF models for PDB entry 7snr was noted (Fig. 2[link]). It could be explained by the exceedingly shallow MSA produced by the CF pipeline (Neff/length = 0.01), which allows the extraction of only weak evolutionary covariance information. The AF2 model was far superior since, unlike the CF prediction, it used information from the PDB structures (PDB entries 5b0u, 4azn, 5ur9 and 4lkp) as templates.

[Figure 2]
Figure 2
An alignment of the (a) ColabFold (r.m.s.d. 2.7 Å) and (b) AF2 (r.m.s.d. 1.3 Å) predictions coloured by pLDDT with the deposited structure PDB entry 7snr (2 Å resolution, two copies in the asymmetric unit, space group P21212; white). The AF2 prediction benefitted from the use of a template during the prediction process to give a much higher confidence, and subsequently more accurate, prediction that was suitable as a search model in MR. All structural figures were created using the CCP4mg application (McNicholas et al., 2011[McNicholas, S., Potterton, E., Wilson, K. S. & Noble, M. E. M. (2011). Acta Cryst. D67, 386-394.]).

3.2. Most of the remaining 50 structures yield to structure solution using computational methods

The 50 structures that were not straightforwardly solved were examined in more detail (Supplementary Tables S2–S7). As described in Section 2.5.2[link], alternative computational approaches were trialled, principally the splitting of AF2 models more finely into larger numbers of structural units. On a case-by-case basis, other approaches included AlphaFold2-Multimer, Uni-Fold (especially the symmetry-aware version) and ESMFold. MR with ideal helices in ARCIMBOLDO_LITE (Rodríguez et al., 2009[Rodríguez, D. D., Grosse, C., Himmel, S., González, C., de Ilarduya, I. M., Becker, S., Sheldrick, G. M. & Usón, I. (2009). Nat. Methods, 6, 651-653.]) or helical ensembles in AMPLE (Sánchez Rodríguez et al., 2020[Sánchez Rodríguez, F., Simpkin, A. J., Davies, O. R., Keegan, R. M. & Rigden, D. J. (2020). Acta Cryst. D76, 962-970.]) was also attempted in selected cases. Supplementary Tables S2–S7 summarize the key characteristics of these cases and indicate whether and how successful MR was achieved. Below, we consider some of the main findings and provide illustrative examples in each case.

3.2.1. Automated splitting into two or more units solves many more cases

It is well understood that multi-domain proteins represent a challenge, even for the latest generation of modelling software. Inter-domain information from evolutionary covariance will likely be weaker than intra-domain information and, of course, flexible linkers between domains can lead to proteins sampling conformations with a variety of inter-domain orientations. In such cases the prediction may be valid as biologically accessible but only a representative conformation that may differ significantly from the crystallized conformation. Recognizing this issue, it is relatively commonplace to split domains of larger proteins, and the PAE, as provided by many methods, provides a readout of confidence in inter-domain orientations that can be used for splitting. Targets that yielded to this approach are listed in Supplementary Table S2. Here, we first applied the default PAE-independent Birch algorithm for domain splitting by SnD: this method allows the processing of experimental structures and structure predictions from any method.

An example of successful structure solution after Birch domain splitting is shown in Fig. 3[link] for the test case PDB entry 8ewh. After eliminating low-confidence residues (see Section 2[link]), the structure prediction is split into four units which superimpose on the respective domains of the native structure much better than the original prediction. An MR search for the two copies of the overall molecule, i.e. the attempted placement of two copies of each of the four search models created by the splitting, resulted in the correct placement for all parts with an LLG of 3458. Subsequent jelly-body refinement with REFMACAT improved the solution to an R and Rfree of 0.29 and 0.33, respectively.

[Figure 3]
Figure 3
PDB entry 8ewh (2.33 Å resolution, two copies in the asymmetric unit, space group P21). (a) shows the unmodified AF2 prediction (coloured by pLDDT) aligned with the crystal structure (white) using GESAMT to perform the alignment (r.m.s.d. 2.5 Å). MR using the full predicted model was not successful. (b) shows the alignment with the true structure of a four-way split of the AF2 prediction after it has been truncated to residues with pLDDT ≥ 70. The Birch clustering method employed in SnD was used to cluster the Cα atoms into the four clusters. Phaser successfully placed all eight fragments making up the two copies of the molecule in the asymmetric unit with a final LLG of 3458. TFZ values for each placed fragment are shown. To illustrate their accuracy, the r.m.s.d. for each split fragment to the crystal structure is also shown. The solution was then refined using 100 cycles of jelly-body refinement in REFMACAT, giving an R and Rfree of 0.29 and 0.33, respectively. The solution was further improved to an R and Rfree of 0.24 and 0.30, respectively, by automated model building using ModelCraft. This gave a global map CC of 0.772 when compared with the map generated from the deposited data.
3.2.2. The splitting algorithm can be important

Domain partition of protein structures is an active area of research and a variety of approaches and programs are available (see, for example, Wells et al., 2024[Wells, J., Hawkins-Hooker, A., Bordin, N., Sillitoe, I., Paige, B. & Orengo, C. (2024). Bioinformatics, 40, btae296.]; Kandathil et al., 2024[Kandathil, S. M., Lau, A. M. & Jones, D. T. (2024). bioRxiv, 2024.03.25.586696.]; Cretin et al., 2022[Cretin, G., Galochkina, T., Vander Meersche, Y., de Brevern, A. G., Postic, G. & Gelly, J. C. (2022). Nucleic Acids Res. 50, W732-W738.]). The default Birch algorithm in SnD has the advantages of being quick and PAE-independent, meaning that it can be applied to any input structure. In some cases the Birch algorithm gives the best results (Supplementary Fig. S3): however, in other cases the use of alternative algorithms is required for success. For example, the target PDB entry 8bfi was not solved by SnD using Birch-defined partitions, but was solved using PAE-based domain splitting (Fig. 4[link])

[Figure 4]
Figure 4
Solution of target structure PDB entry 8bfi (3 Å resolution, one copy in the asymmetric unit, space group P21) using PAE-based domain splitting of ColabFold predictions of each of the three chains to create suitable search models for MR. The target structure is shown in the centre, coloured by its three chains: A (blue), B (gold) and C (orange). Chains A and C have domain-swapped parts, leading to large differences in the relative orientation of each of the domains of the predicted chain when compared with the crystallized form. However, utilizing the PAE matrices produced by ColabFold (shown for each chain; blue is low error and red is high error), the domains can be separated out from the chain predictions to produce accurate search models (shown in the boxes) that can be placed correctly in MR by Phaser. All predicted domains were placed correctly apart from A1, which was not present in the crystal, and A3 and B2, which both constituted a very small fraction of the overall scattering content. The TFZ from Phaser for each search-model placement is shown (values above 8 are indicative of correct placement). The final LLG for all of the placed components was 2048.
3.2.3. Alternative structure-prediction software can succeed

Recent CASP data have confirmed that AF2 predictions continue to underpin all of the most successful structure-prediction protocols. However, there is also strong interest in the alternative approach of structure prediction using protein language models (pLMs), especially for its much superior predictive speed, and CASP15 indeed showed that in a handful of cases the best-performing pLM method at the competition produced the most accurate model. Targets that yielded to this approach are listed in Supplementary Table S3.

For the case of PDB entry 8bjw, neither the AF2 or CF models succeeded with the approaches we tried, and nor did the target yield to MR with ideal helices in ARCIMBOLDO_LITE. However, a prediction from ESMFold processed to remove low-confidence residues did succeed (Fig. 5[link]). In this case, removal of pLDDT < 70 residues from the AF2 model left only 16 residues which, given the six copies in the asymmetric unit and the moderate resolution, failed in MR. Interestingly, the processed ESMFold result (60 residues, 0.503 Å r.m.s.d.) is only a little larger and more accurate than the CF-derived search model (45 residues, 1.215 Å r.m.s.d.), but this marginal difference is evidently crucial. The final LLG for the six placed copies of the ESMFold-based search model was 655, with TFZ values for the placed copies ranging from 8.6 to 16.7. With refinement and model building, R and Rfree were 0.22 and 0.32, respectively.

[Figure 5]
Figure 5
PDB entry 8bjw (2.39 Å resolution, six copies in the asymmetric unit, space group P3221). Following model truncation to residues with pLDDT ≥ 70, the target structure (white) was aligned with (a) the AF2 prediction (green, 16 residues, r.m.s.d. 1.07 Å), (b) the ColabFold prediction (blue, 45 residues, r.m.s.d. 1.215 Å) and (c) the ESMFold prediction (orange, 60 residues, r.m.s.d. 0.503 Å).

The case of PDB entry 7qrr is even more remarkable. The AF2 and CF models are each very poor (Fig. 6[link]), even when modelling the native trimer (data not shown), presumably due to the low Neff/length values of their input MSAs (0.01 in each case). The ESMFold model, however, is excellent and a remarkable 12 copies can be placed to solve the structure (LLG = 2064). Interestingly, PDB entries 7qrr and 8bjw are both virus proteins, the rapid sequence divergence of which during evolution is known to make the collection of homologous sequences more difficult (Karlin, 2024[Karlin, D. G. (2024). J. Gen. Virol. 105, https://doi.org/10.1099/jgv.0.001948.]). Conceivably, in these cases the ESMFold language-model training more successfully inferred relationships across these divergent families than were discovered during the MSA generation of AF2 and CF modelling.

[Figure 6]
Figure 6
PDB entry 7qrr (1.9 Å resolution, 12 copies in the asymmetric unit, space group C121). The target structure (white) was aligned with (a) the AF2 prediction (green, r.m.s.d. 4.123 Å), (b) the ColabFold prediction (blue, r.m.s.d. 3.636 Å) and (c) the ESMFold prediction (orange, r.m.s.d. 1.384 Å).

In the remaining two cases, PDB entries 8bvl and 8gxl, splitting of ESMFold predictions with SnD was required for structure solution.

3.2.4. Modelling an oligomer can be helpful

In some cases it can be critical that the search model contains a significant proportion of the scattering matter, for example where data only extend to a relatively low resolution. Thus, the construction of oligomeric search models can help in these scenarios, giving the search model a larger signal in the MR search and enabling the correct placement to be found more readily. The latest generation of structure-prediction software can straightforwardly model protein complexes (Evans et al., 2021[Evans, R., O'Neill, M., Pritzel, P., Antropova, N., Senior, A., Green, T., Žídek, A., Bates, R., Blackwell, S., Yim, J., Ronneberger, O., Bodenstein, S., Zielinski, M., Bridgland, A., Potapenko, A., Cowie, A., Tunyasuvunakool, K., Jain, R., Clancy, E. Kohli, P., Jumper, J. & Hassabis, D. (2021). bioRxiv, 2021.10.04.463034.]) and, in some cases (Li et al., 2022[Li, Z., Liu, X., Chen, W., Shen, F., Bi, H., Ke, G. & Zhang, L. (2022). bioRxiv, 2022.08.04.502811.]), can exploit noncrystallographic symmetry that might be apparent, for example from a self-rotation function.

In the set used here, there were three cases (two from Uni-Fold Symmetry and one from AlphaFold-Multimer) in which the construction of an oligomer was absolutely essential (Supplementary Table S4). For example, Fig. 7[link] shows the case of PDB entry 8h8h, where a monomeric structure was insufficiently accurately captured. In this case modelling the Uni-Fold Symmetry dimer produced a more accurate model, with the angles between the two helices closer to those in the native structure. The resulting dimer can be used to solve the structure, but required some manual assistance to find all four copies. Three copies were initially placed by Phaser, achieving an LLG of 220. Refinement of this solution and the subsequent use of one of the refined dimers as a search model enabled the fourth copy to be placed correctly (TFZ = 34.9). The better formed monomer produced in the dimer prediction gives a solution more easily, with all eight copies found by Phaser, achieving an LLG of 1427.

[Figure 7]
Figure 7
PDB entry 8h8h (2.7 Å resolution, eight copies in the asymmetric unit, space group P212121). (a) shows the entire content of the asymmetric unit, (b) shows a structural alignment of the AF2 prediction and a single chain from the deposited structure (r.m.s.d. 3.27 Å) and (c) shows a structural alignment of a dimer from the deposited structure (white) and a dimeric model generated using Uni-Fold Symmetry (r.m.s.d. 1.49 Å). Both the AF2 prediction and the Uni-Fold Symmetry dimer have been truncated to residues with pLDDT ≥ 70. The AF2 prediction failed to yield a solution in MR, either as the whole monomer or as a set of search models derived through splitting at the hinge between the helices. Both the dimer and the monomer produced as part of the Uni-Fold Symmetry dimer prediction can be used to determine the structure.

The case of PDB entry 7rt7, where the crystal contains six copies of a two-chain heterogeneous complex, demonstrates the advantage of using an AlphaFold-Multimer complex prediction rather than the individual monomers in MR. Although the monomeric search models can be used in MR successfully, the stronger signal for the complex search model containing the two chains solves the structure much more quickly (15 min versus 2 h; Fig. 8[link]).

[Figure 8]
Figure 8
PDB entry 7rt7 [2.29 Å resolution, 12 copies in the asymmetric unit (6 + 6), space group P3221]. The asymmetric unit consists of six copies of a heterogeneous complex of two chains (a). The AF2 prediction for the complex coloured by pLDDT aligned with the true structure of the complex (white) is shown in (b), while (c) displays the same alignment with the predicted complex coloured by chain. The r.m.s.d. for the complex aligned with the target is 0.735 Å. A solution could be found with Phaser using the individual chains as search models (taking 2 h on four CPU cores). However, using the complex search model gave a clearer signal for the correct positioning of the models, enabling a solution to be found in less than 15 min.
3.2.5. Secondary-structure-based search models are still useful for coiled-coil and other helix-rich cases

As was evident at CASP15 (Simpkin, Mesdaghi et al., 2023[Simpkin, A. J., Mesdaghi, S., Sánchez Rodríguez, F., Elliott, L., Murphy, D. L., Kryshtafovych, A., Keegan, R. M. & Rigden, D. J. (2023). Proteins, 91, 1616-1635.]), even the latest modelling software can struggle with certain cases, most notably those for which few homologues are available by database search (and for which, of course, there is no template in the PDB). For these proteins, AF2 and similar tools have neither the template nor the evolutionary covariance information required to generate an initial model. Here, it must be recalled that AF2 is not the only tool in the box, and previous generations of unconventional MR software can still be deployed.

We first used ARCIMBOLDO_LITE (Sammito et al., 2013[Sammito, M., Millán, C., Rodríguez, D. D., de Ilarduya, I. M., Meindl, K., De Marino, I., Petrillo, G., Buey, R. M., de Pereda, J. M., Zeth, K., Sheldrick, G. M. & Usón, I. (2013). Nat. Methods, 10, 1099-1101.]), which solved PDB entries 7twd and 7qwe (Supplementary Table S5). In the case of PDB entry 7twd, where each chain is a single, kinked α-helix, the helical twist is incorrectly modelled by AF2 and CF. PDB entry 7qwe is the structure of a de novo protein containing a homopentamer. AF2, CF and Uni-Fold models of the single chain or oligomers failed, but ARCIMBOLDO_LITE solved the structure (Fig. 9[link]).

[Figure 9]
Figure 9
(a) The ARCIMBOLDO solution (gold) shown against the crystal structure (grey) for PDB entry 7twd (2.11 Å resolution, two copies in the asymmetric unit, space group P6122). (b) The AMPLE solution (blue) shown against the crystal structure (grey) for PDB entry 8fby (2.4 Å resolution, four copies in the asymmetric unit, space group P212121).

For a handful of cases of structures that were rich in α-helical content but that could not be solved any other way, one containing a coiled coil, we attempted MR with AMPLE using libraries of helical ensembles, which have been shown to outperform single ideal helical structures (Sánchez Rodríguez et al., 2020[Sánchez Rodríguez, F., Simpkin, A. J., Davies, O. R., Keegan, R. M. & Rigden, D. J. (2020). Acta Cryst. D76, 962-970.]). For two targets, PDB entries 8bc5 and 8fby, successful MR results were thereby obtained with search models of 30 and 25 residues, respectively (Supplementary Table S6). Interestingly, PDB entry 8bc5 featured as target T1122 at CASP15, where the extremely low solvent content of the crystal was noted as a feature that aggravated the high degree of difficulty imparted by the shallow MSA (Simpkin, Mesdaghi et al., 2023[Simpkin, A. J., Mesdaghi, S., Sánchez Rodríguez, F., Elliott, L., Murphy, D. L., Kryshtafovych, A., Keegan, R. M. & Rigden, D. J. (2023). Proteins, 91, 1616-1635.]).

Recognizing the presence of coiled-coil cases in the unsolved set, we tried the ARCIMBOLDO coiled_coil protocol on seven cases, PDB entries 7sfy, 7uv8, 7w91, 8auc, 8b8d, 8jpa and 8tv0, but none were solved.

3.2.6. Further investigation and intervention was required in some cases

Where the straightforward manual processing approach in CCP4 Cloud failed to give a solution or gave only a partial solution, a more detailed examination of the case was sometimes required (Supplementary Table S7). One such case is PDB entry 8u12 (the crystal structure of antitoxin protein Rv0298), which consists of eight copies of the target protein in the asymmetric unit (Fig. 10[link]a) in space group H3 with a resolution of 1.6 Å. 25 residues from the N-terminus of the expected sequence do not appear to have been crystallized, making MR using a predicted model based on this sequence difficult due to packing clashes between residues that are not present. In the initial MR trial using the entire predicted model from AF2 (Fig. 10[link]b), Phaser struggled to find the correct placement for the models due to these packing clashes. This was followed by using SnD to split the model into two (Fig. 10[link]d) and attempt to place eight copies of each part. Using these parts as search models, Phaser gave a more encouraging solution with an LLG of 2528. Closer examination of the result indicated that it had placed eight copies of one of the two split models (pink in Fig. 10[link]d). Following MR with refinement in REFMACAT and model building using ModelCraft, the structure was close to completion (R = 0.25, Rfree = 0.27), but it became clear that the 25 residues were missing from the N-terminus. This absence also meant that the solvent content was higher (67.6%) than that estimated using a Matthews coefficient calculation based on the initial sequence (52%).

[Figure 10]
Figure 10
(a) PDB entry 8u12 (1.6 Å resolution, eight copies in the asymmetric unit, space group H3). (b) and (c) show the alignment of the predicted model from AF2 (r.m.s.d. 0.79 Å) and CF (r.m.s.d. 0.94 Å) onto a single chain from the target (white), respectively. The predicted models are coloured by pLDDT. Note that the predicted models contain about 25 additional C-terminal residues. These residues from the expected sequence (as deposited in the PDB) did not appear in the crystal. The structure was determined by splitting the model in two and finding eight copies of the N-terminal domain (d) (pink; r.m.s.d. 0.48 Å).
3.2.7. Some targets resist solution by any approach

After application of the battery of tools described above, some targets were not solved using computational predictions (Table 1[link]; Fig. 11[link]). Of course, this does not preclude the possibility of some models being able to solve structures with extensive, expert intervention.

Table 1
Information on the resolution, asymmetric unit content, size, secondary structure and crystal pathology of the PDB entries that we were unable to solve using ColabFold/AlphaFold2 or alternative MR methods

This table is extended in Supplementary Table S9 to give details of the modelling.

PDB code Resolution (Å) No. of entities No. of molecules in asymmetric unit per entity Biological assembly No. of residues in each entity Secondary structure Socket2: contains coiled coil? Crystal pathology: contains twinning? Crystal pathology: contains tNCS?
7px1 2.33 1 2 Homodimer 89 All helix No No Yes
7sfy 2.5 2 4, 2 Heterotrimer 46, 42 All helix Yes No No
7t6a 1.65 2 2, 2 Heterodimer 185, 44 Mostly sheet, all sheet No, no No No
7uv8 2.7 2 1, 2 Heterotrimer 150, 212 Mostly helix, all helix No, yes No No
7w91 3.29 1 12 Homohexamer 56 All helix Yes No No
7ztw 1.93 1 4 Homodimer 150 Mostly helix No No Yes
8auc 3.5 1 2 Monomer 600 Mostly helix Yes No Yes
8b8d 2.4 1 4 Homotetramer 115 All helix Yes No No
8jpa 2.3 1 2 Homodimer 183 All helix No No Yes
8opz 1.5 1 1 Homotrimer 641 Mostly sheet No Yes No
8bt6 2.33 1 1 Monomer 2646 Mostly helix Yes No No
8tv0 3.1 1 5 Homopentamer 2537 Mixed Yes No No
[Figure 11]
Figure 11
The crystal structures of the 12 cases that we were unable to solve with ColabFold/AlphaFold2 models or alternative MR methods. The structures are coloured by chain.

Inspection of Table 1[link] suggests that traditional complications of MR such as moderate diffraction resolution and the search model comprising only a small proportion of the scattering matter still apply in some cases. So, even a perfect model will fail in cases with many chains in the asymmetric unit (where a relevant biological oligomer cannot be accurately built) and insufficient resolution (Oeffner et al., 2018[Oeffner, R. D., Afonine, P. V., Millán, C., Sammito, M., Usón, I., Read, R. J. & McCoy, A. J. (2018). Acta Cryst. D74, 245-255.]).

Here, the focus is on model-centred factors that complicate MR. Given the overall excellent performance of AF2 and CF predictions as search models, but the understanding that modelling fails in cases with shallow MSAs, our initial prediction was that this set of recalcitrant targets would comprise largely orphan sequences or members of small families with few homologues in sequence databases. A rough minimum of 30 sequences in the MSA is often quoted as a threshold for successful modelling (Jumper et al., 2021[Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., Bridgland, A., Meyer, C., Kohl, S. A. A., Ballard, A. J., Cowie, A., Romera-Paredes, B., Nikolov, S., Jain, R., Adler, J., Back, T., Petersen, S., Reiman, D., Clancy, E., Zielinski, M., Steinegger, M., Pacholska, M., Berghammer, T., Bodenstein, S., Silver, D., Vinyals, O., Senior, A. W., Kavukcuoglu, K., Kohli, P. & Hassabis, D. (2021). Nature, 596, 583-589.]), but the diversity of the MSA is also important; hence the use of Neff/length here, where Neff is the number of effective (nonredundant to 80% sequence identity) sequences and the value is normalized by length. By this measure, 0.2 has been quoted as a threshold below which the MSA may be too shallow for good modelling (Ruiz-Serra et al., 2021[Ruiz-Serra, V., Pontes, C., Milanetti, E., Kryshtafovych, A., Lepore, R. & Valencia, A. (2021). Proteins, 89, 1888-1900.]). The set of failing PDB entries in Table 1[link] covers 12 sequences. Of these, four lie below the Neff/length threshold in AF2 runs and eight in CF runs (Supplementary Table S9). For comparison, more than a third of the easily solved set had Neff/length values for CF runs of <0.2. This observation suggests that shallow MSAs are only part of the explanation of the difficulties encountered with this set.

Notably, seven of the 12 chains in Table 1[link] contain coiled-coil regions. This compares with only 42 of 355 (12%) in the set that were easily solved in an automated fashion (Supplementary Table S1). Furthermore, half of the structures that yielded only to ideal helices or helical ensembles (see above) contained coiled coils. These observations suggest that even with the current generation of modelling software, this architecture remains a continuing challenge in MR (Thomas et al., 2015[Thomas, J. M. H., Keegan, R. M., Bibby, J., Winn, M. D., Mayans, O. & Rigden, D. J. (2015). IUCrJ, 2, 198-206.], 2020[Thomas, J. M. H., Keegan, R. M., Rigden, D. J. & Davies, O. R. (2020). Acta Cryst. D76, 272-284.]; Caballero et al., 2018[Caballero, I., Sammito, M., Millán, C., Lebedev, A., Soler, N. & Usón, I. (2018). Acta Cryst. D74, 194-204.]; Fu et al., 2022[Fu, R., Su, W. & He, H. (2022). Crystals, 12, 1674.]).

Interestingly, among the most intractable of the recent CASP15 targets (Simpkin, Mesdaghi et al., 2023[Simpkin, A. J., Mesdaghi, S., Sánchez Rodríguez, F., Elliott, L., Murphy, D. L., Kryshtafovych, A., Keegan, R. M. & Rigden, D. J. (2023). Proteins, 91, 1616-1635.]), high α-helical content was also seen as aggravating: indeed, six of 14 chains (43%) in the 12 structures in Table 1[link] are defined as all-α. This compares with 42 all-α in the set of 356 (12%) that solved readily (Supplementary Table S1), suggesting that high helical content is indeed linked to AF2 target difficulty.

Finally, it is interesting to note that some targets (PDB entries 7px1, 7t6a and 7ztw) contain multiple metal ions: conceivably these, which are not considered explicitly by AF2, may have a significant influence on conformation as well as comprising, in some cases, a significant proportion of the scattering matter.

As this work was being finalized for publication, AlphaFold3 (AF3) was released (Abramson et al., 2024[Abramson, J., Adler, J., Dunger, J., Evans, R., Green, T., Pritzel, A., Ronneberger, O., Willmore, L., Ballard, A. J., Bambrick, J., Bodenstein, S. W., Evans, D. A., Hung, C., O'Neill, M., Reiman, D., Tunyasuvunakool, K., Wu, Z., Žemgulytė, A., Arvaniti, E., Beattie, C., Bertolli, O., Bridgland, A., Cherepanov, A., Congreve, M., Cowen-Rivers, A. I., Cowie, A., Figurnov, M., Fuchs, F. B., Gladman, H., Jain, R., Khan, Y. A., Low, C. M. R., Perlin, K., Potapenko, A., Savy, P., Singh, S., Stecula, A., Thillaisundaram, A., Tong, C., Yakneen, S., Zhong, E. D., Zielinski, M., Žídek, A., Bapst, V., Kohli, P., Jaderberg, M., Hassabis, D. & Jumper, J. M. (2024). Nature, 630, 493-500.]) and structure solution of the 12 cases in Fig. 11[link] was attempted using AF3 models and the same methods. The only case that readily solved was PDB entry 8bt6 (Supplementary Fig. S2). AF3 produced a more accurate model that was therefore better split into structural units for MR. Note that in this single case an AF2 model was not available due to system limitations at the modelling stage.

4. Conclusions

It is already very apparent that the emergence of AF2 and similar tools has revolutionized the phasing step of X-ray crystallography. Already by far the most favoured approach, MR has been turbocharged by the ever-easier availability of high-quality structure predictions for most proteins. The literature contains many examples of structures that resisted structure determination until AF2 allowed easy phasing by MR (Barbarin-Bocahu & Graille, 2022[Barbarin-Bocahu, I. & Graille, M. (2022). Acta Cryst. D78, 517-531.]). Larger-scale exercises, especially focused on CASP targets, have also shown that most crystal structures can be phased with AF2 models, even those `Free Modelling' targets which have only weak sequence and structural similarities to PDB entries (Millán et al., 2021[Millán, C., Keegan, R. M., Pereira, J., Sammito, M. D., Simpkin, A. J., McCoy, A. J., Lupas, A. N., Hartmann, M. D., Rigden, D. J. & Read, R. J. (2021). Proteins, 89, 1752-1769.]; Pereira et al., 2021[Pereira, J., Simpkin, A. J., Hartmann, M. D., Rigden, D. J., Keegan, R. M. & Lupas, A. N. (2021). Proteins, 89, 1687-1699.]; McCoy et al., 2022[McCoy, A. J., Sammito, M. D. & Read, R. J. (2022). Acta Cryst. D78, 1-13.]; Simpkin, Mesdaghi et al., 2023[Simpkin, A. J., Mesdaghi, S., Sánchez Rodríguez, F., Elliott, L., Murphy, D. L., Kryshtafovych, A., Keegan, R. M. & Rigden, D. J. (2023). Proteins, 91, 1616-1635.]).

In this work, we focused on structures that were determined by SAD in the period July 2022 to October 2023. It is important to note that these are not representative of the PDB as a whole: in the same period, around 88% of structures were determined by MR. While there may be other reasons to choose SAD phasing, for example determination of bound ion positions, our focus is on a set of targets that is likely to include most targets that were not easily tractable by MR at the time. On the suggestion of a reviewer, we explored whether there was anything in the PDB that would have been able to solve the structures in our test set (Supplementary Table S8). We identified potential search models by using MrParse (Simpkin et al., 2022[Simpkin, A. J., Elliott, L. G., Stevenson, K., Krissinel, E., Rigden, D. & Keegan, R. M. (2022). bioRxiv, 2022.06.30.497974.]) with HHsearch (Steinegger et al., 2019[Steinegger, M., Meier, M., Mirdita, M., Vöhringer, H., Haunsberger, S. J. & Söding, J. (2019). BMC Bioinformatics, 20, 473.]) on the HHsearch database released prior to 27 July 2022, and by using GESAMT (Krissinel, 2012[Krissinel, E. (2012). J. Mol. Biochem. 1, 76-85.]) to identify the most structurally similar model released prior to the deposition date for each target. MR using Phaser gave 99/406 solutions for the MrParse set and 87/406 solutions for the GESAMT set. When taken together, 145 of the 406 cases (35.6%) could have been solved using an existing structure in the PDB. Nonetheless, the remaining 261 cases were found to have met our criteria for targets that are not easily tractable by MR. By exploring these cases, we hoped to explore the outer boundaries of phasing with AF2 and other bioinformatics methods, and to reveal how many structures and what kind of structures require experimental phasing methods post-AF2. Notably, AF3, which became available at a very late stage, does not seem to change the picture dramatically with regard to providing search models for MR.

Our results show that a striking 356/406 or 87.7% of the set could be solved directly using an AF2 model, unprocessed except for the conversion of pLDDT confidence estimates to pseudo-B factors. In a further number of cases, elementary model editing to remove low-confidence regions, a procedure available in major software packages, enables structure solution. Also now routine, the splitting of a structure prediction into individual domains (Oeffner et al., 2022[Oeffner, R. D., Croll, T. I., Millán, C., Poon, B. K., Schlicksup, C. J., Read, R. J. & Terwilliger, T. C. (2022). Acta Cryst. D78, 1303-1314.]; Simpkin et al., 2022[Simpkin, A. J., Elliott, L. G., Stevenson, K., Krissinel, E., Rigden, D. & Keegan, R. M. (2022). bioRxiv, 2022.06.30.497974.]) was sometimes required for structure solution: however, in some cases success depended on the particular splitting algorithm used. In other cases, splitting domains was not essential but provided solutions that were significantly better quality, accelerating downstream rebuilding and refinement.

The use of methods other than AF2 was sometimes important. In four cases we found that neither flavour of AF2 succeeded, but an edited model from the protein language-model method ESMFold (Lin et al., 2023[Lin, Z., Akin, H., Rao, R., Hie, B., Zhu, Z., Lu, W., Smetanin, N., Verkuil, R., Kabeli, O., Shmueli, Y., dos Santos Costa, A., Fazel-Zarandi, M., Sercu, T., Candido, S. & Rives, A. (2023). Science, 379, 1123-1130.]) succeeded. In three other cases, the construction of a multimeric search model was required for success. As with search-model splitting, the use of a multimeric search model was sometimes advantageous for speed and for the better phases that resulted, even when a monomeric search model could solve a structure. Interestingly, oligomeric state can be predicted to some extent using deep-learning networks (Kshirsagar et al., 2024[Kshirsagar, M., Meller, A., Humphreys, I., Sledzieski, S., Xu, Y., Dodhia, R., Horvitz, E., Berger, B., Bowman, G., Lavista Ferres, J., Baker, D. & Baek, M. (2024). Research Square, https://doi.org/10.21203/rs.3.rs-4215086/v1.]). In four further cases tertiary-structure prediction failed to produce a successful search model, but MR with secondary-structure elements using ARCIMBOLDO (Rodríguez et al., 2009[Rodríguez, D. D., Grosse, C., Himmel, S., González, C., de Ilarduya, I. M., Becker, S., Sheldrick, G. M. & Usón, I. (2009). Nat. Methods, 6, 651-653.]) or AMPLE (Sánchez Rodríguez et al., 2020[Sánchez Rodríguez, F., Simpkin, A. J., Davies, O. R., Keegan, R. M. & Rigden, D. J. (2020). Acta Cryst. D76, 962-970.]) succeeded, emphasizing the continued utility of these methods in some cases.

Ultimately, these approaches collectively failed on 12 targets. One relevant feature is low MSA depth, i.e. some of these proteins have few homologues in the databases. This feature deprives AF2 of the evolutionary covariance information which (in the absence of templates, of course) is essential for the construction of an initial model (Jumper et al., 2021[Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., Bridgland, A., Meyer, C., Kohl, S. A. A., Ballard, A. J., Cowie, A., Romera-Paredes, B., Nikolov, S., Jain, R., Adler, J., Back, T., Petersen, S., Reiman, D., Clancy, E., Zielinski, M., Steinegger, M., Pacholska, M., Berghammer, T., Bodenstein, S., Silver, D., Vinyals, O., Senior, A. W., Kavukcuoglu, K., Kohli, P. & Hassabis, D. (2021). Nature, 596, 583-589.]). This mirrors other findings, such as those of recent CASPs (Pereira et al., 2021[Pereira, J., Simpkin, A. J., Hartmann, M. D., Rigden, D. J., Keegan, R. M. & Lupas, A. N. (2021). Proteins, 89, 1687-1699.]; Simpkin, Mesdaghi et al., 2023[Simpkin, A. J., Mesdaghi, S., Sánchez Rodríguez, F., Elliott, L., Murphy, D. L., Kryshtafovych, A., Keegan, R. M. & Rigden, D. J. (2023). Proteins, 91, 1616-1635.]). This remains a current development frontier of predictive methods despite the possibilities of artificial MSA depth enhancement (Zhang et al., 2023[Zhang, L., Chen, C., Shen, T., Li, Y. & Sun, S. (2023). arXiv:2306.01824.]) and the means to recognize the fast evolution of viral proteins and detect more distant homologues than current pipelines do (Karlin, 2024[Karlin, D. G. (2024). J. Gen. Virol. 105, https://doi.org/10.1099/jgv.0.001948.]). There are also recurrent suggestions that pLM-based methods may outperform MSA-based approaches in such cases (Chowdhury et al., 2022[Chowdhury, R., Bouatta, N., Biswas, S., Floristean, C., Kharkar, A., Roy, K., Rochereau, C., Ahdritz, G., Zhang, J., Church, G. M., Sorger, P. K. & AlQuraishi, M. (2022). Nat. Biotechnol. 40, 1617-1623.]; Wang et al., 2022[Wang, W., Peng, Z. & Yang, J. (2022). Nat. Comput. Sci. 2, 804-814.]; Jing et al., 2024[Jing, X., Wu, F., Luo, X. & Xu, J. (2024). Proc. Natl Acad. Sci. USA, 121, e2308788121.]), although this was not apparent at the CASP15 experiment (Simpkin, Mesdaghi et al., 2023[Simpkin, A. J., Mesdaghi, S., Sánchez Rodríguez, F., Elliott, L., Murphy, D. L., Kryshtafovych, A., Keegan, R. M. & Rigden, D. J. (2023). Proteins, 91, 1616-1635.]).

Also notable are the continued difficulties with coiled-coil proteins, whose unpredictable irregularities, oligomeric state and parallel versus antiparallel architectures remain, despite ongoing efforts (Madeo et al., 2023[Madeo, G., Savojardo, C., Manfredi, M., Martelli, P. L. & Casadio, R. (2023). Bioinformatics, 39, btad495.]; Madaj et al., 2024[Madaj, R., Martinez-Goikoetxea, M., Kaminski, K., Ludwiczak, J. & Dunin-Horkawicz, S. (2024). bioRxiv, 2024.03.07.583852.]), a significant hindrance to structure prediction and hence the use of modelled structures for MR.

Of course, a sufficiently accurate search model is necessary but not sufficient for structure solution by MR. Even with a good model available, a case may still fail where one or more traditional complications apply. These include cases where a large number of copies of the search model are present in the asymmetric unit, challenging crystal pathologies (twinning and tNCS) and crystals that diffract only to poorer resolution (≥3 Å). Thus, in terms of prioritizing cases for experimental phasing beamlines, difficult targets can initially be predicted bioinformatically, especially by assessing the depth and diversity of the MSA that can be constructed from homologous sequences, but other complications will only become evident once the crystal characteristics can be seen.

Supporting information


Footnotes

These authors contributed equally to this work.

Funding information

This research was supported by Biotechnology and Biological Sciences Research Council (BBSRC) grant BB/S007105/1 (DJR) and by CCP4 collaborative framework funding for AJS.

References

First citationAbramson, J., Adler, J., Dunger, J., Evans, R., Green, T., Pritzel, A., Ronneberger, O., Willmore, L., Ballard, A. J., Bambrick, J., Bodenstein, S. W., Evans, D. A., Hung, C., O'Neill, M., Reiman, D., Tunyasuvunakool, K., Wu, Z., Žemgulytė, A., Arvaniti, E., Beattie, C., Bertolli, O., Bridgland, A., Cherepanov, A., Congreve, M., Cowen-Rivers, A. I., Cowie, A., Figurnov, M., Fuchs, F. B., Gladman, H., Jain, R., Khan, Y. A., Low, C. M. R., Perlin, K., Potapenko, A., Savy, P., Singh, S., Stecula, A., Thillaisundaram, A., Tong, C., Yakneen, S., Zhong, E. D., Zielinski, M., Žídek, A., Bapst, V., Kohli, P., Jaderberg, M., Hassabis, D. & Jumper, J. M. (2024). Nature, 630, 493–500.  Web of Science CrossRef CAS PubMed Google Scholar
First citationAgirre, J., Atanasova, M., Bagdonas, H., Ballard, C. B., Baslé, A., Beilsten-Edmands, J., Borges, R. J., Brown, D. G., Burgos-Mármol, J. J., Berrisford, J. M., Bond, P. S., Caballero, I., Catapano, L., Chojnowski, G., Cook, A. G., Cowtan, K. D., Croll, T. I., Debreczeni, J. É., Devenish, N. E., Dodson, E. J., Drevon, T. R., Emsley, P., Evans, G., Evans, P. R., Fando, M., Foadi, J., Fuentes-Montero, L., Garman, E. F., Gerstel, M., Gildea, R. J., Hatti, K., Hekkelman, M. L., Heuser, P., Hoh, S. W., Hough, M. A., Jenkins, H. T., Jiménez, E., Joosten, R. P., Keegan, R. M., Keep, N., Krissinel, E. B., Kolenko, P., Kovalevskiy, O., Lamzin, V. S., Lawson, D. M., Lebedev, A. A., Leslie, A. G. W., Lohkamp, B., Long, F., Malý, M., McCoy, A. J., McNicholas, S. J., Medina, A., Millán, C., Murray, J. W., Murshudov, G. N., Nicholls, R. A., Noble, M. E. M., Oeffner, R., Pannu, N. S., Parkhurst, J. M., Pearce, N., Pereira, J., Perrakis, A., Powell, H. R., Read, R. J., Rigden, D. J., Rochira, W., Sammito, M., Sánchez Rodríguez, F., Sheldrick, G. M., Shelley, K. L., Simkovic, F., Simpkin, A. J., Skubak, P., Sobolev, E., Steiner, R. A., Stevenson, K., Tews, I., Thomas, J. M. H., Thorn, A., Valls, J. T., Uski, V., Usón, I., Vagin, A., Velankar, S., Vollmar, M., Walden, H., Waterman, D., Wilson, K. S., Winn, M. D., Winter, G., Wojdyr, M. & Yamashita, K. (2023). Acta Cryst. D79, 449–461.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBarbarin-Bocahu, I. & Graille, M. (2022). Acta Cryst. D78, 517–531.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBerman, H., Henrick, K. & Nakamura, H. (2003). Nat. Struct. Mol. Biol. 10, 980.  Web of Science CrossRef Google Scholar
First citationBibby, J., Keegan, R. M., Mayans, O., Winn, M. D. & Rigden, D. J. (2012). Acta Cryst. D68, 1622–1631.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBond, P. S. & Cowtan, K. D. (2022). Acta Cryst. D78, 1090–1098.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBreugel, M. van, Rosa e Silva, I. & Andreeva, A. (2022). Commun. Biol. 5, 312.  Google Scholar
First citationCaballero, I., Sammito, M., Millán, C., Lebedev, A., Soler, N. & Usón, I. (2018). Acta Cryst. D74, 194–204.  Web of Science CrossRef IUCr Journals Google Scholar
First citationChowdhury, R., Bouatta, N., Biswas, S., Floristean, C., Kharkar, A., Roy, K., Rochereau, C., Ahdritz, G., Zhang, J., Church, G. M., Sorger, P. K. & AlQuraishi, M. (2022). Nat. Biotechnol. 40, 1617–1623.  Web of Science CrossRef CAS PubMed Google Scholar
First citationCretin, G., Galochkina, T., Vander Meersche, Y., de Brevern, A. G., Postic, G. & Gelly, J. C. (2022). Nucleic Acids Res. 50, W732–W738.  Web of Science CrossRef CAS PubMed Google Scholar
First citationEl Omari, K., Duman, R., Mykhaylyk, V., Orr, C. M., Latimer-Smith, M., Winter, G., Grama, V., Qu, F., Bountra, K., Kwong, H. S., Romano, M., Reis, R. I., Vogeley, L., Vecchia, L., Owen, C. D., Wittmann, S., Renner, M., Senda, M., Matsugaki, N., Kawano, Y., Bowden, T. A., Moraes, I., Grimes, J. M., Mancini, E. J., Walsh, M. A., Guzzo, C. R., Owens, R. J., Jones, E. Y., Brown, D. G., Stuart, D. I., Beis, K. & Wagner, A. (2023). Commun. Chem. 6, 219.  Web of Science CrossRef PubMed Google Scholar
First citationEvans, R., O'Neill, M., Pritzel, P., Antropova, N., Senior, A., Green, T., Žídek, A., Bates, R., Blackwell, S., Yim, J., Ronneberger, O., Bodenstein, S., Zielinski, M., Bridgland, A., Potapenko, A., Cowie, A., Tunyasuvunakool, K., Jain, R., Clancy, E. Kohli, P., Jumper, J. & Hassabis, D. (2021). bioRxiv, 2021.10.04.463034.  Google Scholar
First citationFu, R., Su, W. & He, H. (2022). Crystals, 12, 1674.  Web of Science CrossRef Google Scholar
First citationJing, X., Wu, F., Luo, X. & Xu, J. (2024). Proc. Natl Acad. Sci. USA, 121, e2308788121.  Web of Science CrossRef PubMed Google Scholar
First citationJohnson, L. S., Eddy, S. R. & Portugaly, E. (2010). BMC Bioinformatics, 11, 431.  Google Scholar
First citationJumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., Bridgland, A., Meyer, C., Kohl, S. A. A., Ballard, A. J., Cowie, A., Romera-Paredes, B., Nikolov, S., Jain, R., Adler, J., Back, T., Petersen, S., Reiman, D., Clancy, E., Zielinski, M., Steinegger, M., Pacholska, M., Berghammer, T., Bodenstein, S., Silver, D., Vinyals, O., Senior, A. W., Kavukcuoglu, K., Kohli, P. & Hassabis, D. (2021). Nature, 596, 583–589.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKandathil, S. M., Lau, A. M. & Jones, D. T. (2024). bioRxiv, 2024.03.25.586696.  Google Scholar
First citationKarlin, D. G. (2024). J. Gen. Virol. 105, https://doi.org/10.1099/jgv.0.001948Web of Science CrossRef Google Scholar
First citationKrissinel, E. (2012). J. Mol. Biochem. 1, 76–85.  CAS PubMed Google Scholar
First citationKrissinel, E., Lebedev, A. A., Uski, V., Ballard, C. B., Keegan, R. M., Kovalevskiy, O., Nicholls, R. A., Pannu, N. S., Skubák, P., Berrisford, J., Fando, M., Lohkamp, B., Wojdyr, M., Simpkin, A. J., Thomas, J. M. H., Oliver, C., Vonrhein, C., Chojnowski, G., Basle, A., Purkiss, A., Isupov, M. N., McNicholas, S., Lowe, E., Triviño, J., Cowtan, K., Agirre, J., Rigden, D. J., Uson, I., Lamzin, V., Tews, I., Bricogne, G., Leslie, A. G. W. & Brown, D. G. (2022). Acta Cryst. D78, 1079–1089.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKshirsagar, M., Meller, A., Humphreys, I., Sledzieski, S., Xu, Y., Dodhia, R., Horvitz, E., Berger, B., Bowman, G., Lavista Ferres, J., Baker, D. & Baek, M. (2024). Research Square, https://doi.org/10.21203/rs.3.rs-4215086/v1Google Scholar
First citationKumar, P. & Woolfson, D. N. (2021). Bioinformatics, 37, 4575–4577.  Web of Science CrossRef CAS PubMed Google Scholar
First citationLi, Z., Liu, X., Chen, W., Shen, F., Bi, H., Ke, G. & Zhang, L. (2022). bioRxiv, 2022.08.04.502811.  Google Scholar
First citationLiebschner, D., Afonine, P. V., Baker, M. L., Bunkóczi, G., Chen, V. B., Croll, T. I., Hintze, B., Hung, L.-W., Jain, S., McCoy, A. J., Moriarty, N. W., Oeffner, R. D., Poon, B. K., Prisant, M. G., Read, R. J., Richardson, J. S., Richardson, D. C., Sammito, M. D., Sobolev, O. V., Stockwell, D. H., Terwilliger, T. C., Urzhumtsev, A. G., Videau, L. L., Williams, C. J. & Adams, P. D. (2019). Acta Cryst. D75, 861–877.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLin, Z., Akin, H., Rao, R., Hie, B., Zhu, Z., Lu, W., Smetanin, N., Verkuil, R., Kabeli, O., Shmueli, Y., dos Santos Costa, A., Fazel-Zarandi, M., Sercu, T., Candido, S. & Rives, A. (2023). Science, 379, 1123–1130.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMadaj, R., Martinez-Goikoetxea, M., Kaminski, K., Ludwiczak, J. & Dunin-Horkawicz, S. (2024). bioRxiv, 2024.03.07.583852.  Google Scholar
First citationMadeo, G., Savojardo, C., Manfredi, M., Martelli, P. L. & Casadio, R. (2023). Bioinformatics, 39, btad495.  Web of Science CrossRef PubMed Google Scholar
First citationMcCoy, A. J., Sammito, M. D. & Read, R. J. (2022). Acta Cryst. D78, 1–13.  Web of Science CrossRef IUCr Journals Google Scholar
First citationMcCoy, A. J., Grosse-Kunstleve, R. W., Adams, P. D., Winn, M. D., Storoni, L. C. & Read, R. J. (2007). J. Appl. Cryst. 40, 658–674.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMcNicholas, S., Potterton, E., Wilson, K. S. & Noble, M. E. M. (2011). Acta Cryst. D67, 386–394.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMillán, C., Keegan, R. M., Pereira, J., Sammito, M. D., Simpkin, A. J., McCoy, A. J., Lupas, A. N., Hartmann, M. D., Rigden, D. J. & Read, R. J. (2021). Proteins, 89, 1752–1769.  Web of Science PubMed Google Scholar
First citationMirdita, M., Schütze, K., Moriwaki, Y., Heo, L., Ovchinnikov, S. & Steinegger, M. (2022). Nat. Methods, 19, 679–682.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMirdita, M., von den Driesch, L., Galiez, C., Martin, M. J., Söding, J. & Steinegger, M. (2017). Nucleic Acids Res. 45, D170–D176.  Web of Science CrossRef CAS PubMed Google Scholar
First citationOeffner, R. D., Afonine, P. V., Millán, C., Sammito, M., Usón, I., Read, R. J. & McCoy, A. J. (2018). Acta Cryst. D74, 245–255.  Web of Science CrossRef IUCr Journals Google Scholar
First citationOeffner, R. D., Croll, T. I., Millán, C., Poon, B. K., Schlicksup, C. J., Read, R. J. & Terwilliger, T. C. (2022). Acta Cryst. D78, 1303–1314.  Web of Science CrossRef IUCr Journals Google Scholar
First citationPereira, J., Simpkin, A. J., Hartmann, M. D., Rigden, D. J., Keegan, R. M. & Lupas, A. N. (2021). Proteins, 89, 1687–1699.  Web of Science CrossRef CAS PubMed Google Scholar
First citationPoon, B. K., Terwilliger, T. C. & Adams, P. D. (2024). Protein Sci. 33, e4992.  Web of Science CrossRef PubMed Google Scholar
First citationQian, B., Raman, S., Das, R., Bradley, P., McCoy, A. J., Read, R. J. & Baker, D. (2007). Nature, 450, 259–264.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRead, R. J. & McCoy, A. J. (2016). Acta Cryst. D72, 375–387.  Web of Science CrossRef IUCr Journals Google Scholar
First citationRemmert, M., Biegert, A., Hauser, A. & Söding, J. (2012). Nat. Methods, 9, 173–175.  Web of Science CrossRef CAS Google Scholar
First citationRichardson, L., Allen, B., Baldi, G., Beracochea, M., Bileschi, M. L., Burdett, T., Burgin, J., Caballero-Pérez, J., Cochrane, G., Colwell, L. J., Curtis, T., Escobar-Zepeda, A., Gurbich, T. A., Kale, V., Korobeynikov, A., Raj, S., Rogers, A. B., Sakharova, E., Sanchez, S., Wilkinson, D. J. & Finn, R. D. (2023). Nucleic Acids Res. 51, D753–D759.   Web of Science CrossRef CAS PubMed Google Scholar
First citationRigden, D. J., Thomas, J. M. H., Simkovic, F., Simpkin, A., Winn, M. D., Mayans, O. & Keegan, R. M. (2018). Acta Cryst. D74, 183–193.  Web of Science CrossRef IUCr Journals Google Scholar
First citationRodríguez, D. D., Grosse, C., Himmel, S., González, C., de Ilarduya, I. M., Becker, S., Sheldrick, G. M. & Usón, I. (2009). Nat. Methods, 6, 651–653.  Web of Science PubMed Google Scholar
First citationRuiz-Serra, V., Pontes, C., Milanetti, E., Kryshtafovych, A., Lepore, R. & Valencia, A. (2021). Proteins, 89, 1888–1900.  Web of Science CAS PubMed Google Scholar
First citationSammito, M., Meindl, K., de Ilarduya, I. M., Millán, C., Artola-Recolons, C., Hermoso, J. A. & Usón, I. (2014). FEBS J. 281, 4029–4045.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSammito, M., Millán, C., Rodríguez, D. D., de Ilarduya, I. M., Meindl, K., De Marino, I., Petrillo, G., Buey, R. M., de Pereda, J. M., Zeth, K., Sheldrick, G. M. & Usón, I. (2013). Nat. Methods, 10, 1099–1101.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSánchez Rodríguez, F., Simpkin, A. J., Davies, O. R., Keegan, R. M. & Rigden, D. J. (2020). Acta Cryst. D76, 962–970.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSimkovic, F., Thomas, J. M. H., Keegan, R. M., Winn, M. D., Mayans, O. & Rigden, D. J. (2016). IUCrJ, 3, 259–270.  Web of Science CrossRef CAS PubMed IUCr Journals Google Scholar
First citationSimpkin, A. J., Caballero, I., McNicholas, S., Stevenson, K., Jiménez, E., Sánchez Rodríguez, F., Fando, M., Uski, V., Ballard, C., Chojnowski, G., Lebedev, A., Krissinel, E., Usón, I., Rigden, D. J. & Keegan, R. M. (2023). Acta Cryst. D79, 806–819.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSimpkin, A. J., Elliott, L. G., Stevenson, K., Krissinel, E., Rigden, D. & Keegan, R. M. (2022). bioRxiv, 2022.06.30.497974.  Google Scholar
First citationSimpkin, A. J., Mesdaghi, S., Sánchez Rodríguez, F., Elliott, L., Murphy, D. L., Kryshtafovych, A., Keegan, R. M. & Rigden, D. J. (2023). Proteins, 91, 1616–1635.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSimpkin, A. J., Thomas, J. M. H., Simkovic, F., Keegan, R. M. & Rigden, D. J. (2019). Acta Cryst. D75, 1051–1062.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSteinegger, M., Meier, M., Mirdita, M., Vöhringer, H., Haunsberger, S. J. & Söding, J. (2019). BMC Bioinformatics, 20, 473.  Google Scholar
First citationSteinegger, M. & Söding, J. (2017). Nat. Biotechnol. 35, 1026–1028.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSuzek, B. E., Wang, Y., Huang, H., McGarvey, P. B., Wu, C. H. & UniProt Consortium (2015). Bioinformatics, 31, 926–932.  Web of Science CrossRef PubMed Google Scholar
First citationTerwilliger, T. C., Afonine, P. V., Liebschner, D., Croll, T. I., McCoy, A. J., Oeffner, R. D., Williams, C. J., Poon, B. K., Richardson, J. S., Read, R. J. & Adams, P. D. (2023). Acta Cryst. D79, 234–244.  Web of Science CrossRef IUCr Journals Google Scholar
First citationThomas, J. M. H., Keegan, R. M., Bibby, J., Winn, M. D., Mayans, O. & Rigden, D. J. (2015). IUCrJ, 2, 198–206.  Web of Science CrossRef CAS PubMed IUCr Journals Google Scholar
First citationThomas, J. M. H., Keegan, R. M., Rigden, D. J. & Davies, O. R. (2020). Acta Cryst. D76, 272–284.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWang, W., Peng, Z. & Yang, J. (2022). Nat. Comput. Sci. 2, 804–814.  Web of Science CrossRef CAS PubMed Google Scholar
First citationWells, J., Hawkins-Hooker, A., Bordin, N., Sillitoe, I., Paige, B. & Orengo, C. (2024). Bioinformatics, 40, btae296.  Web of Science CrossRef PubMed Google Scholar
First citationWu, T., Hou, J., Adhikari, B. & Cheng, J. (2020). Bioinformatics, 36, 1091–1098.  Web of Science CrossRef CAS PubMed Google Scholar
First citationYamashita, K., Wojdyr, M., Long, F., Nicholls, R. A. & Murshudov, G. N. (2023). Acta Cryst. D79, 368–373.  Web of Science CrossRef IUCr Journals Google Scholar
First citationZhang, L., Chen, C., Shen, T., Li, Y. & Sun, S. (2023). arXiv:2306.01824.  Google Scholar
First citationZhang, T., Ramakrishnan, R. & Livny, M. (1996). SIGMOD Rec. 25, 103–114.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoSTRUCTURAL
BIOLOGY
ISSN: 2059-7983
Follow Acta Cryst. D
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds