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Predicting the 3D structure of RNA is a significant challenge despite ongoing

advancements in the field. Although AlphaFold has successfully addressed this

problem for proteins, RNA structure prediction raises difficulties due to the

fundamental differences between proteins and RNA, which hinder its direct

adaptation. The latest release of AlphaFold, AlphaFold3, has broadened its

scope to include multiple different molecules such as DNA, ligands and RNA.

While the AlphaFold3 article discussed the results for the last CASP-RNA data

set, the scope of its performance and the limitations for RNA are unclear.

In this article, we provide a comprehensive analysis of the performance of

AlphaFold3 in the prediction of 3D structures of RNA. Through an extensive

benchmark over five different test sets, we discuss the performance and

limitations of AlphaFold3. We also compare its performance with ten existing

state-of-the-art ab initio, template-based and deep-learning approaches. Our

results are freely available on the EvryRNA platform at https://evryrna.ibisc.

univ-evry.fr/evryrna/alphafold3/.

1. Introduction

Ribonucleic acids (RNA) are fundamental molecules that are

crucial to cellular activities. While their functions are directly

linked to their structures, prediction of the latter remains an

open challenge to be addressed. Knowledge of the structure

of RNA could be of great interest for drug design or for the

comprehension of biological processes such as cancer (Zhu et

al., 2022). While experimental methods such as X-ray crys-

tallography, NMR and cryo-EM can determine 3D structures

of RNA, their use is costly (in terms of time and resources)

and is hardly scalable to the number of RNA molecules that

are found in life. Computational approaches have emerged

using ab initio, template-based and, more recently, deep-

learning methods. Ab initio methods (Li & Chen, 2023;

Krokhotin et al., 2015; Zhang, Chen et al., 2021; Zhang, Li

et al., 2021; Boniecki et al., 2016; Cragnolini et al., 2015;

Kerpedjiev et al., 2015; Šulc et al., 2014; Jonikas et al., 2009;

Frellsen et al., 2009) tend to reproduce the physics of the

system, with a force field applied to a coarse-grained repre-

sentation (low resolution, in which a nucleotide is replaced by

some of its atoms). Template-based approaches (Li et al., 2022;

Zhou et al., 2022; Watkins et al., 2020; Xu & Chen, 2017;

Zhang, Wang et al., 2022; Popenda et al., 2012; Cao & Chen,

2011; Rother et al., 2011; Flores et al., 2010; Das & Baker,

2007) create a mapping between sequences and fragments of

structure before refining the assembled structures.

With the recent success of AlphaFold for proteins (Senior et

al., 2020; Jumper et al., 2021), approaches have been made to

replicate its success with RNA. The direct use of protein

methods to infer 3D structures of RNA is impossible, as RNA

and proteins are chemically and physically different molecules.

Current methods, such as DeepFoldRNA (Pearce et al., 2022),

RhoFold (Shen et al., 2022), DrFold (Li et al., 2023), NuFold

https://doi.org/10.1107/S2059798325000592
https://journals.iucr.org/d
https://scripts.iucr.org/cgi-bin/full_search?words=3D%20RNA%20structure&Action=Search
https://scripts.iucr.org/cgi-bin/full_search?words=AlphaFold3&Action=Search
https://scripts.iucr.org/cgi-bin/full_search?words=deep%20learning&Action=Search
https://scripts.iucr.org/cgi-bin/full_search?words=deep%20learning&Action=Search
https://scripts.iucr.org/cgi-bin/full_search?words=structure%20quality%20assessment&Action=Search
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
mailto:guillaume.postic@universite-paris-saclay.fr
mailto:fariza.tahi@univ-evry.fr
https://evryrna.ibisc.univ-evry.fr/evryrna/alphafold3/
https://evryrna.ibisc.univ-evry.fr/evryrna/alphafold3/
http://crossmark.crossref.org/dialog/?doi=10.1107/S2059798325000592&domain=pdf&date_stamp=2025-01-27


(Kagaya et al., 2025) and trRosettaRNA (Wang et al., 2023),

try to adapt what already exists for proteins to RNA. They

consider coarse-grained representations and predict Eucli-

dean transformations before reconstructing the full-atom

structure. The use of torsio angles is also adapted to RNA,

using either the standard torsion angles (Shen et al., 2022;

Kagaya et al., 2025) or angles from their coarse-grained

representations (Pearce et al., 2022; Li et al., 2023).

While being better than existing template-based or ab initio

methods, deep-learning approaches do not solve the predic-

tion of RNA structures yet, as shown in CASP-RNA (Das

et al., 2023) and in our recent benchmark State-of-the-RNArt

(Bernard et al., 2024b). Recently, a critical review (Schneider

et al., 2023) explained the reasons why AlphaFold for RNA

has not yet arrived and might not arrive for some decades.

However, AlphaFold has released its latest version, named

AlphaFold3 (Abramson et al., 2024), that extends its predic-

tions to different molecules, including RNA. In this work, we

aim to provide a response to Schneider et al. (2023) in order to

determine whether AlphaFold3 achieves success for RNA.

To extend its range of molecules, AlphaFold3 has made

changes in its architecture in order to better adapt to the

variety of available inputs. It no longer relies on torsion angles,

which restricted it to specific molecules, as was the case in

AlphaFold2 (Jumper et al., 2021). It directly predicts atom

coordinates with the use of a multi-cross-diffusion model.

The authors mentioned good results through a benchmark on

CASP-RNA (Abramson et al., 2024), but AlphaFold3 did not

outperform human-assisted methods. Furthermore, it is not

clear what the current limitations are and how well it performs

compared with state-of-the-art solutions.

This article aims to provide a comprehensive extension of

the evaluation and benchmarking of AlphaFold3 for RNA. We

first describe the main differences between RNA and proteins

to highlight the challenges of RNA 3D structure prediction

and describe the AlphaFold3 solution before discussing the

benchmark that we performed. We then evaluate AlphaFold3

and comment on the results of AlphaFold3 and the current

limitations of the model. Our benchmark also compares the

performances with state-of-the-art solutions to provide a

complete comparison. The results and the data are freely

available and usable in the EvryRNA platform at https://

evryrna.ibisc.univ-evry.fr/evryrna/alphafold3/.

2. RNA versus proteins

RNA and proteins are both molecules that play crucial roles in

life. They share the characteristic of having a 3D structure that

directly defines their function. However, it is important to

acknowledge that dynamics, transient structures and unstruc-

tured proteins also play a significant role in protein function,

making this relationship more complex. This section discusses

the differences between RNA and proteins, highlighting the

reasons why adapting existing protein models has been chal-

lenging.

RNA comprises four nucleotides (A, C, G and U), whereas

proteins comprise 20 amino acids. This difference has a large

consequence for the adaptation of protein algorithms to RNA.

The vocabulary available for RNA is limited to four unique

elements, making the protein vocabulary not directly adap-

table. The sequence length of RNA molecules also has a high

variability (from a dozen to thousands of nucleotides)

compared with proteins (from a dozen to hundreds of amino

acids).

A major difference between RNA and proteins lies in the

folding stabilization. RNA structure is maintained by base

pairing and base stacking, while protein structure is supported

by hydrogen interactions in the skeleton. The protein back-

bone is also modelled by torsion angles (� and �) for each

amino acid because the peptide bond is planar. This is not the

case for RNA, where each nucleotide can be described by

seven torsion angles (�, �, �, �, ", � and �) and the sugar-

pucker pseudorotation phase P. An approximation usually

involves pseudo-torsions � and � (Wadley et al., 2007).

However, the complexity of the RNA backbone arises not

only from the number of torsional degrees of freedom but also

from their intricate correlations. Specifically, the structural

divergence at the phosphodiester linkage is influenced by

the sugar pucker and glycosidic bond orientation of both

nucleotides connected to the phosphate group. This inter-

dependence often necessitates the description of RNA struc-

ture using dinucleotide-like fragments to accurately capture

the backbone geometry (Černý et al., 2020). Protein models

therefore have a conformational mechanism that is funda-

mentally different from the RNA folding process, where such

adaptations and structural dependencies must be carefully

accounted for.

The nature of pairwise interactions in 3D RNA molecules

differs from those in proteins. RNA interactions can be made

through three different edges of the RNA base: the WC edge,

Hoogsteen edge and sugar edge (Westhof & Fritsch, 2000), as

shown in Fig. 1. In addition, the orientation of the glycosidic

bonds gives another property to an interaction: cis or trans.

The combination of edge and orientation gives 12 possibilities

for interaction between bases. The standard Watson–Crick

(WC) base pair corresponds to a cis WC/WC pairing. Given
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Figure 1
Description of the three different edges of the adenine RNA nucleotide:
Watson–Crick edge, Hoogsteen edge and sugar edge. The three other
nucleotides share similar edges.
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the orientations (cis or trans), the edges and the base pairing,

there are more than 200 possible base pairs. Only the standard

WC pairs (cis WC/WC) AU and CG (and also the GU wobble

pair) are used in the 2D structure representation. RNA bases

also have common patterns of interactions, where a base

stacks on another one. The base stacking (Gendron et al., 2001;

Gabb et al., 1996) refers to the four base-stacking types in

relative orientations (upwards, downwards, outwards and

inwards; Parisien et al., 2009). The extended secondary and

tertiary interactions (long-range base pairs) play a crucial role

in the overall topology of the RNA folding process. They help

to stabilize the structure and cannot be ignored when working

on 3D structures of RNA.

The stability of RNA and protein structures is different.

More than five decades ago, the Nobel Prize-winning work of

Christian B. Anfinsen established that, under physiological

conditions, the protein chain spontaneously folds into its

native structure, which is the conformation corresponding to

a minimum of the Gibbs free energy that is both kinetically

accessible and thermodynamically stable (Anfinsen, 1973).

This native structure of the protein is also characterized by its

uniqueness; although it may be altered by dynamic behaviours

such as domain motions, the global fold of the protein remains

the same. In contrast, RNA molecules often have a more

rugged Gibbs free-energy landscape, thus populating multiple

conformational states (Jang et al., 2023). Switching between

these conformations supports some functions of RNA, such as

riboswitches or ribozymes, and may be driven by environ-

mental changes, such as ions (notably Mg2+), pH, temperature

or ligand binding (Yamagami et al., 2021; Chheda et al., 2024).

There is a huge disparity between protein and RNA data.

Even if there is a higher proportion of RNA than proteins in

life, this is not reflected in the available data: only a small

number of 3D structures of RNA are known. Up to June 2024,

7759 RNA structures had been deposited in the Protein Data

Bank (PDB; Berman et al., 2000), compared with 216 212

protein structures. The quality and diversity of the data are

also different: a huge proportion of RNA structures come

from the same families. This implies several redundant struc-

tures that could prevent a model from being generalized to

other families. In addition, a huge amount of RNA families do

not yet have solved structures in the PDB, usually those of

long RNA. This means there is no balanced and representative

proportion of RNA families among the known structures.

Finally, no standard data set has been used for RNA

throughout the community. Each research group uses a data

set with different associated preprocessing. This prevents the

use of deep-learning methods, as a lot of work is needed to

obtain a clean data set. While the community has agreed to use

RNA-Puzzles (Cruz et al., 2012; Miao et al., 2015, 2017, 2020)

or the new CASP-RNA (Das et al., 2023) to test the gener-

alization of proposed models, no clear training set is available.

The first solution was RNANet (Becquey et al., 2021), which

was developed in our laboratory to solve this issue. It is a

database that uses MySQL and gathers diverse RNA infor-

mation to train deep-learning methods. A new approach,

RNA3DB (Szikszai et al., 2024), creates independent data sets

for deep-learning approaches, where clustering is performed

based on sequence and structural disparity.

3. AlphaFold3

Building on the recent success of AlphaFold2 (Jumper et al.,

2021) in protein structure prediction, AlphaFold3 (Abramson

et al., 2024) has expanded its predictions to the structures of

all molecules available in the PDB (Berman et al., 2000).

The authors highlight several differences from the previous

architecture that contribute to successful predictions of a wide

range of molecules. One key difference is the introduction of a

diffusion model that reconstructs coordinates from the residue

level to the atomic level. AlphaFold3 also directly outputs the

coordinate atom positions, compared with the prediction of

rotation/translation vectors (and torsion angles) in the

previous version. It also weights the multiple sequence

alignment (MSA) less in the overall model. In the case of

RNA, AlphaFold3 has been evaluated on the CASP-RNA

data set (Das et al., 2023), demonstrating improved predictions

compared with RosettaFold2NA (Baek et al., 2024) and

AIchemy_RNA (the best AI-based submission in the compe-

tition; Shen et al., 2022). Despite these advancements, the

performance of AlphaFold3 lags behind that of AIchemy_

RNA2 (the top human-expert-aided submission; Chen et al.,

2023). Further details of the architecture, the training proce-

dure and the differences between AlphaFold2 and Alpha-

Fold3 are provided in the supporting information.

4. Benchmark

To assess the performance of AlphaFold3, we have evaluated

it and compared it with other state-of-the-art methods on five

data sets. This section describes the data sets and the methods

as well as the metrics used to evaluate AlphaFold3.

4.1. Data sets

To evaluate the prediction of RNA structures, we consid-

ered the following five test sets, with the first three being used

in our previous work (Bernard et al., 2024b).

(i) RNA-Puzzles. The first data set is composed of the

single-stranded structures from RNA-Puzzles (Cruz et al.,

2012; Miao et al., 2015, 2017, 2020), a community initiative to

benchmark RNA structures. We considered only single-

stranded solutions in order to have a fair comparison between

the benchmarked models. It is composed of 22 RNAs with

lengths between 27 and 188 nt (with a mean of 83 nt).

(ii) CASP-RNA. The second test set is composed of the

CASP-RNA (Das et al., 2023) structures from a collaboration

between the CASP team and RNA-Puzzles. It is composed of

12 RNAs with a wide range of sequences from 30 to 720 nt

(with a mean of 209 nt).

(iii) RNASolo. The third test set is a custom test set

composed of independent structures from RNAsolo

(Adamczyk et al., 2022). We downloaded representative RNA

molecules from RNAsolo (Adamczyk et al., 2022) with reso-

lutions below 4 Å and removed structures with a sequence

identity of higher than 80%. We then considered only the
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structures with a unique Rfam family ID (Kalvari et al., 2020),

leading to 25 nonredundant RNA molecules with a sequence

of between 45 and 298 nt (and a mean of 100 nt). It cannot be

ensured that the structures from this data set were not used in

the training sets for the different models. We keep this data

set for comparison, as we already have the results for the

benchmarked methods.

(iv) RNA3DB_0. This data set is composed of a non-

redundant set of structurally and sequentially independent

structures from RNA3DB (Szikszai et al., 2024). It comprises

the component #0, which is composed of orphan structures

that are advised to be used as a test set. These structures do

not belong to Rfam families (Kalvari et al., 2021) and include

synthetic RNAs and small messenger RNAs crystallized as

part of larger complexes. After removing structures with

sequences below ten nucleotides and sequence identity below

80% (using CD-HIT; Fu et al., 2012), we ended up with a data

set of 224 structures from 10 to 339 nt (with a mean of 55 nt).

Nonetheless, these structures come from complexes, meaning

that they do not behave well in isolation, and thus their

experimentally observed conformations depend on other

chains. To account for this, in evaluating the models we

considered 113 structures with their full context and predicted

the structures with AlphaFold3 (the other structures have too

large a context and we failed to predict them using Alpha-

Fold3). We name this subset RNA3DB_0 (Context).

(v) RNA3DB_Long. The last data set comprises long RNA

structures from RNA3DB (Szikszai et al., 2024). We consid-

ered structures with a release date after January 2023 to avoid

any structure leakage for fair comparison. We considered

structures with sequences between 800 nt (800 nt being the

limit from previous test sets) and 5000 nt, as we wanted to

study the performance of long RNAs. This led to 58 structures

with a sequence of between 828 and 3619 nt (with a mean of

2005 nt). They comprise 57 ribosomal RNAs and one structure

of a group II intron.

We have also ensured that all of the data sets (except RNA-

Puzzles and CASP-RNA) have a sequence identity below 80%

in order to have nonredundant structures for robust evalua-

tion.

To comprehend and detail the predictions by AlphaFold3,

we studied the three main interactions in the folding of

3D structures of RNA in detail: Watson–Crick (WC), non-

Watson–Crick (nWC) and stacking (STACK). The proportion

of these interactions is presented in Table 1. All data sets have

the same proportion of stacking (around 75%), except for the

RNA3DB_0 data set (around 56%). As RNA3DB_0 contains

orphan structures, this implies structures with less common

folding, as reflected by the lower proportion of stacking

interactions. For all of the data sets there is a higher propor-

tion of stacking interactions, followed by Watson–Crick and

non-Watson–Crick interactions. The number of non-Watson–

Crick interactions ranges from 5% to 10%, meaning that these

interactions would be challenging for predictive models as

they are rare in the original structures. When comparing

RNA3DB_0 with or without context, we observe a greater

proportion of stacking and Watson–Crick interactions in the

presence of context. However, the number of non-Watson–

Crick interactions remains unchanged.

4.2. State-of-the-art methods

Existing solutions for the prediction of 3D structures of

RNA are based on three main types of methods: ab initio,

template-based and deep-learning methods. As discussed

previously in our work (Bernard et al., 2024b), ab initio

methods (Boniecki et al., 2016; Zhang, Li et al., 2021; Li &

Chen, 2023) usually integrate the physics of the system by

simplifying the representation of nucleotides (coarse-grained).

Instead of using all of the atoms for one nucleotide, they

create a low-resolution representation that simplifies the

computation time while losing information. They use

approaches such as molecular dynamics (Qiang et al., 2022) or

Monte Carlo (Liu & Ou-Yang, 2005) to perform sampling in

conformational space and use a force field to simulate real

environmental conditions. On the other hand, template-based

methods (Parisien & Major, 2008; Cao & Chen, 2011; Popenda

et al., 2012; Zhang, Wang et al., 2022; Li et al., 2022) create a

mapping between sequences and known motifs with, for

instance, secondary-structure trees (SSEs) before recon-

structing the full structure from its subfragments. Finally,

recent methods tend to incorporate deep-learning methods

(Wang et al., 2023; Kagaya et al., 2025; Li et al., 2023; Pearce

et al., 2022; Shen et al., 2022) by using attention-based archi-

tectures with self-distillation and recycling, as performed in

AlphaFold2 (Jumper et al., 2021).

To compare the performance of AlphaFold3 (Abramson et

al., 2024), we benchmarked ten approaches, those used in our

previous work (Bernard et al., 2024b). For the ab initio

methods, we benchmarked SimRNA (Boniecki et al., 2016),

IsRNA1 (Zhang, Li et al., 2021) and RNAJP (Li & Chen,

2023). Only RNAJP was used locally. For the template-based

approaches, we benchmarked MC-Sym (Parisien & Major,

2008), Vfold3D (Cao & Chen, 2011), RNAComposer

(Popenda et al., 2012), 3dRNA (Zhang, Wang et al., 2022) and

Vfold-Pipeline (Li et al., 2022). For the deep-learning methods,

we benchmarked trRosettaRNA (Wang et al., 2023) and

RhoFold (Shen et al., 2022). Further details of each method

have been provided in our previous article (Bernard et al.,

2024b). For RNA-Puzzles and CASP-RNA, we included the

predictions from the official results of the competitions in the
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Table 1
Proportion of key RNA interactions in the five test sets (and the subset of
RNA3DB with context).

The interactions are normalized by the number of residues. Interactions are
either stacking (STACK), Watson–Crick (WC) or non-Watson–Crick (nWC),
as extracted from MC-Annotate (Gendron et al., 2001). Interactions for

RNA3DB_0 are computed without context, while RNA3DB_0 (C) includes
context.

Interaction type STACK WC nWC

RNA-Puzzles 0.78 0.33 0.10
CASP-RNA 0.75 0.35 0.05
RNASolo 0.77 0.31 0.09
RNA3DB_0 0.56 0.14 0.04
RNA3DB_0 (C) 0.61 0.16 0.04
RNA3DB_Long 0.74 0.29 0.10



benchmark. We refer to these as ‘challenge best’ and they

correspond to different methods for each RNA. We normal-

ized each prediction using RNA-tools (Magnus et al., 2020) to

give a standard format for all structures. It gives standardized

names for chains, residues and atoms and removes ions and

water.

We used the web servers with default parameters to

compare available models fairly, so that users could reproduce

our experiments. As we made most of the predictions using

web servers, the predictions for RNA3DB_0 were hardly

applicable to all of the methods. Therefore, we benchmarked

the RNA3DB_0 data set with one method per approach (the

quickest method per approach): RhoFold (Shen et al., 2022)

for deep learning, RNAComposer (Popenda et al., 2012) for

template-based and RNAJP (Li & Chen, 2023) for ab initio.

For the RNA3DB_Long data set, only AlphaFold3 could

predict structures with sequences up to 3000 nt. For this data

set, we only considered the predictions from AlphaFold3.

4.3. Evaluation metrics

To compare the predictions, we used the RNAdvisor tool

developed by our team (Bernard et al., 2024a), which enables

the computation of a wide range of existing metrics on one

command line. For the evaluation of 3D structures of RNA,

a general assessment of the folding of the structure can be

performed with either the root-mean-square deviation

(RMSD) or its extension adding RNA features "RMSD

(Bottaro et al., 2014). Protein-inspired metrics can also be

adapted to assess structure quality, such as the TM-score

(Zhang & Skolnick, 2004; Gong et al., 2019) or the GDT-TS

(which counts the number of superimposed atoms; Zemla et

al., 1999). There are also the CAD-score (which measures the

structural similarity in a contact-area difference-based func-

tion; Olechnovič et al., 2013) and the lDDT (which assesses the

interatomic distance differences between a reference structure

and a predicted structure; Mariani et al., 2013). Finally, RNA-

specific metrics have been developed, such as the P-value

(which assesses the non-randomness of a given prediction;

Hajdin et al., 2010). The INF-ALL (Parisien et al., 2009) and

DI (Parisien et al., 2009) have been developed to consider

RNA-specific interactions. The INF score incorporates cano-

nical and noncanonical pairing with Watson–Crick (INF-WC),

non-Watson–Crick (INF-NWC) and stacking (INF-STACK)

interactions. The consideration of torsion angles has been

developed with the mean of circular quantities (MCQ; Zok et

al., 2014) and LCS-TA (longest continuous segments in torsion

angle space; Wiedemann et al., 2017). As discussed in Bernard

et al. (2024a), all of these metrics are complementary and can

infer different aspects of RNA 3D structure behaviour. For the

rest of the article, we will discuss the RMSD, INF-ALL, lDDT,

TM-score and MCQ; the results for the other metrics are given

in the supporting information. Indeed, the RMSD is the most

used metric in the literature, and the INF-ALL incorporates

key RNA interactions. The lDDT and TM-score allow the

evaluation of global conformations (widely used in Alpha-

Fold3), and MCQ gives the torsional deviation. We only

mention all of the metrics when comparing the different

models to ensure a complete evaluation.

5. Results

This section presents the results of AlphaFold3 predictions on

the discussed test sets. We start by comparing the results of

AlphaFold3 with existing solutions and then discuss in detail

the link between the performance and the sequence length.

Next, we discuss the results of AlphaFold3 on ribosomal

structures (RNA3DB_Long data set) and orphan structures

(RNA3DB_0 data set). We then discuss the results of specific

RNA key interactions in detail before shedding light on the

computation time.

5.1. AlphaFold3 compared with the state of the art

We compare the predictions of the ten existing methods

presented above and AlphaFold3 on our different test sets.

Fig. 2 presents the different normalized metrics computed for

the prediction of the different models over the five test sets.

We included all metrics to show the cumulative performance.

The RNA3DB_Long data set only has predictions from

AlphaFold3, which is the only method that is capable of

processing long sequences. All of the metrics are normalized

by the maximum values and converted to be better when near

to 1 and worse when near to 0. Real values for each metric for

the five test sets are reported in Supplementary Tables S1, S2,

S3, S4 and S5.

The best models from the CASP-RNA competition, which

are human-guided, outperform AlphaFold3 (p-value = 0.007;

Wilcoxon signed-rank test) for every metric (except for LCS-

TA, with a threshold of 10�, and MCQ) for the CASP-RNA

data set. On the other hand, AlphaFold3 shows a cumulative

sum of metrics greater than the other methods for the other

test sets (p-value < 10� 5 for RNA-Puzzles, p-value < 10� 4 for

RNASolo). For RNA-Puzzles, the challenge-best solutions

are from older solutions with less advanced architectures

compared with the more recent CASP-RNA solutions. For the

RNA3DB_0 data set, the performance of AlphaFold3 is

slightly better compared with RhoFold, which gives a better

RMSD but a worse MCQ and LCS-TA. AlphaFold3 always

has a high MCQ value, indicating that it returns structures

which are more physically plausible than ab initio methods

(which use physics properties in their predictions). None-

theless, it does not always have the best RMSD (outperformed

in CASP-RNA and RNA3DB_0), suggesting that AlphaFold3

does not always have the best alignment (in terms of all atoms)

compared with the reference structure.

To compare the global performance of each type of

approach, in Fig. 3 we report the averaged metrics over the

different types of approach depending on the sequence length.

We grouped the results for structures in a sequence-length

window of 25 nt (each point represents the mean computed on

the best results per approach with sequence length from this

25-nucleotide window). Results of the other metrics are shown

in Supplementary Fig. S2. None of the benchmarked ab initio

methods successfully predicted structures for sequences
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exceeding 200 nt, particularly when using web servers. The

best results from the CASP-RNA and RNA-Puzzles chal-

lenges outperform AlphaFold3 across most metrics, except for

sequences between 150 and 250 nt, where AlphaFold3 showed

comparable results. The values of RMSD, TM-score, MCQ

and lDDT tend to worsen with sequence length, reflecting a

general trend of loss of accuracy with longer RNA structures.

For INF, there is no clear degradation tendency, meaning that

the reproduction of the interactions does not have a strong

link to the sequence length. Ab initio and template-based

methods have competitive MCQ values, while ab initio

methods tend to have a global alignment that is worse than the

other methods (due to the high simulation time, which is a

bottleneck for web-server usage). Deep-learning approaches,

in particular, produced worse MCQ scores than traditional

methods. AlphaFold3 demonstrated an especially strong MCQ

performance, with comparative results for the best solutions of

challenges for sequences greater than 250 nt.

These results suggest that AlphaFold3 achieves a competi-

tive performance, particularly in capturing more realistic

torsion angles through better MCQ scores (which is not the

case for other existing deep-learning methods), although it

remains outperformed by global assessment for structures of

more than 200 nt.

5.2. The performance of AlphaFold3 relative to sequence

length

As seen previously, the prediction of 3D structures of RNA

usually becomes harder when the sequence length increases.

Indeed, the ab initio methods fail to predict long interactions

as the computation time increases greatly with sequence

length. The template-based approaches, as well as the deep-

learning methods, are limited by the small number of long

RNA structures, as shown in Bernard et al. (2024b). To

observe the relation between sequence length and AlphaFold3

performance in more detail, in Fig. 4 we report the RMSD,

MCQ, TM-score, lDDT and INF-ALL metrics depending on

sequence length (for the five test sets). The links between
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Figure 2
Cumulative normalized metrics (the higher the better) for each of the benchmarked methods for our five test sets. Each metric is normalized by the
maximum value over the five test sets, and the decreased metrics are inverted to have better values close to 1. Challenge-best means the best solutions
from the RNA-Puzzles and CASP-RNA competitions (and corresponds to different solutions for each challenge). The types of methods are also
mentioned with the abbreviations DL for deep learning, TP for template-based and Ab for ab initio. Methods are sorted by release time (except for
challenge-best). AlphaFold3 (Context) represents the predictions of AlphaFold3 for 113 structures of the RNA3DB_0 data set with the context of the
structures added as input.



the other metrics and the sequence length are available in

Supplementary Fig. S3.

Fig. 4 indicates that, except for the RNA3DB_0 data set, the

RMSD becomes worse for sequences between 0 and 1000 nt.

For the RNA3DB_Long data set with sequences longer than

1000 nt the predictions have good results for every metric. We

also observe a tendency for degradation in the lDDT, TM-

score and INF-ALL (smaller decrease) when the structures

have sequences of longer than 100 nt (and below 1000 nt). For

every metric, the predictions for the RNA3DB_0 (with or

without context) data set seem to have no clear dependence

on the sequence length. For the other test sets with structures

with sequences between 200 and 1000 nt, there is a common

tendency to worsen in terms of performance for the Alpha-

Fold3 predictions.

5.3. AlphaFold3 results on long RNA

Current methods for the prediction of RNA 3D structures

are limited for long RNA and hardly predict structures with

sequences longer than 200 nt. AlphaFold3 is, to the best of

our knowledge, the only method that can predict long RNA

structures (with sequences longer than 1000 nt). Its predic-

tions on RNA3DB_Long show a good performance, as shown

in Fig. 2. The only metrics for which the results are not good

are GDT-TS, CAD-score and LCS-TA (threshold of 10�),

which might be due to an error in computation. For LCS-TA,

the low score could be explained by the difficulty of keeping

a low MCQ for a high proportion of the structure, as the

sequences are long for this data set.

The good results for long RNA can be explained by the

types of structures used in RNA3DB_Long. Indeed, all of the

structures (except for one) are ribosomal RNAs and thus they

have a high redundancy. This might be reflected in the PDB,

which has been memorized by AlphaFold3 during its training.

As AlphaFold3 uses the MSA as inputs, it could find simila-

rities with trained structures and thus return excellent

predictions if the families are well known. Most of the long

RNAs in the PDB share common structures in the ribosomal

family. Therefore, these results show a good generalization of

previously observed families from AlphaFold3.

We report the two worst predictions of AlphaFold3 on the

RNA3DB_Long data set in Fig. 5. The two worst predictions

for the other test sets are provided in Supplementary Fig. S4.

The RMSD for the two structures is relatively high (greater

than 19 Å). The second worst structure has a high TM-score
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Figure 3
Averaged metrics depending on the sequence length for the different approaches (AlphaFold3, ab initio, deep-learning, template-based and challenge-
best). Each point represents the metric averaged over the best models of each approach for a window of 25 nt from 25 to 750 nt. Ab initio methods group
RNAJP, IsRNA1 and SimRNA, while template-based methods group Vfold-Pipeline, 3dRNA, RNAComposer, Vfold3D and MC-Sym. Deep-learning
methods group trRosettaRNA and RhoFold. Metrics are computed for the RNA-Puzzles, CASP-RNA and RNASolo data sets. Challenge-best corre-
sponds to the best results from either the RNA-Puzzles or CASP-RNA competitions but does not appear for the RNASolo data set. The metrics are
RMSD, MCQ, TM-score, lDDT and INF-ALL. RMSD and MCQ are reversed to have the best values near the top and the worst values at the bottom.

http://doi.org/10.1107/S2059798325000592
http://doi.org/10.1107/S2059798325000592


(0.74), meaning that even for a long structure (1487 nt) the

global alignment of atoms is well predicted. INF-ALL is also

high for these structures (higher than 0.68), meaning that it

returns a high proportion of key RNA interactions. In detail, it

is most likely to be no coincidence that the worst prediction

(TM-score = 0.38) corresponds to the only nonribosomal RNA

in the RNA3DB_Long data set, while the overwhelming

majority of available native structures for long RNA

sequences belong to ribosomes. In addition, the lack of

structural context did not help AlphaFold3 either, as this

group II intron RNA can be found in complex with its large

maturase/reverse transcriptase (PDB entry 8fli; Haack et al.,

2024). The medium-to-high quality of the second-worst

prediction (TM-score = 0.74) can be explained by the fact that

it occurred for the 15S mitochondrial ribosomal RNA (PDB

entry 8om4; Ast et al., 2024). This RNA is analogous, yet

evolutionarily distant, from its bacterial and eukaryotic

counterparts (the 16S and 18S RNAs, respectively) and its 3D

structure has rarely been studied; it has been reported in only

three articles (Desai et al., 2017; Harper et al., 2023; Ast et al.,

2024).

5.4. AlphaFold3 results on orphan structures

The RNA3DB_0 data set is mainly composed of structures

without any hit in the Rfam family, and thus contains orphan

structures. The results of AlphaFold3 for this data set, as

presented in Figs. 2 and 4, show an overall lower performance

compared with the other data sets when there is no use of

context. AlphaFold3 performs slightly better than RhoFold for

this data set (p-value = 0.015). When using context, Alpha-

Fold3 produces improved results compared with those without

context (p-value < 10� 19).

We detail the two worst predictions for RNA3DB_0 and

RNA3DB_0 (Context) from AlphaFold3 in Fig. 5. We observe

poor results in terms of metrics (high RMSD and MCQ values

and low TM-score and INF-ALL) for the two structures

without context. With context, AlphaFold3 seems to under-

stand that the predictions are not only helices but still fails in

these two worst examples to predict the complex non-common

folding of these RNAs. These structures also have a small

number of nucleotides (81, 42, 45 and 58 nt), meaning that

AlphaFold3 might not fail because of long-range interactions.

Instead, these structures do not have a known family and rely

on a complex environment of other molecules. With context,

AlphaFold3 has a better chance of predicting the structural

folding well, but the generalization is not always robust for

structures without known families, even with small structures

(as shown by the mean value of TM-score, which is less than

0.5, in Supplementary Table S4).

To further study the impact of context for the prediction of

RNA structures, in Fig. 6 we report the differences per metric
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Figure 4
Dependence of metrics on the sequence length in predictions of AlphaFold3 (Abramson et al., 2024) on the five test sets. For some of the predictions, we
show the predicted structure (in blue or purple if predicted using context) aligned with the native structure (in orange) using US-align (Zhang, Shine et
al., 2022). The metrics are RMSD, MCQ (Zok et al., 2014), TM-score (Zhang & Skolnick, 2004; Zhang, Shine et al., 2022), lDDT (Mariani et al., 2013) and
INF-ALL (Parisien et al., 2009). RMSD and MCQ are reversed to have the best values near the top and the worst values at the bottom.
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between predictions of AlphaFold3 with and without context

depending on the sequence length. Details of each metric

value for each RNA are provided in Supplementary Fig. S7.

For all metrics, there is an improvement on using context:

91.1% of structures with context have a better TM-score than

those without context. For the MCQ metric, 62.5% of struc-

tures with context outperform those without context, which is

less dominant than for the other metrics. For example, in the

case of PDB entry 7wm4 (Sakaniwa et al., 2023), the context

effectively facilitates the identification of the correct scale for

one half of the double helix. Similarly, for PDB entry 8bvj

(Dendooven et al., 2023), which features a discontinuity, the

context enables AlphaFold3 to accurately detect the discon-

tinuities. However, this does not result in better alignment in

terms of the lDDT metric. Incorporating contextual infor-

mation significantly enhances the global alignment perfor-

mance, as reflected by improvements in the RMSD, TM-score

and lDDT metrics. This is followed by moderately smaller, but

still notable, improvements in reproducing key RNA inter-

actions (INF metric) and torsion angles (MCQ metric).

Among the benchmarked models, the possibility of using

context in the prediction is only available with AlphaFold3.

The other models are specialized for RNA and are not

designed to process different molecules.

5.5. AlphaFold3 results on key RNA interactions

To evaluate the ability of AlphaFold3 to predict noncano-

nical interactions, we depict the scatter plots between non-

Watson–Crick INF (INF-NWC) and Watson–Crick INF (INF-

WC) in Fig. 7. The size of the points is proportional to the

RMSD of the structures and thus to their global atom align-

ment. We observe a tendency to have a low RMSD (small

points) whenever the INF-WC and INF-NWC are high. There

are also many structures with an INF-NWC of 0, suggesting

that AlphaFold3 does not predict any of the non-Watson–

Crick interactions (mostly for the RNA3DB data set).

Examples of successful and missing non-Watson–Crick inter-

actions are shown in the figure. For the results on stacking

interactions, there are predictions where AlphaFold3 does not

predict the Watson–Crick interactions well but still predicts

the stacking interactions. This can be explained by good
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Figure 5
The worst two predicted structures (based on a cumulative sum of metrics) from AlphaFold3 (Abramson et al., 2024) for the RNA3DB_0 (left),
RNA3DB_Long (right) and RNA3DB_0 (Context) (bottom) data sets. The RMSD, MCQ (Zok et al., 2014), TM-score (Zhang & Skolnick, 2004; Zhang,
Shine et al., 2022), lDDT (Mariani et al., 2013) and INF-ALL (Parisien et al., 2009) are provided for each structure. The predictions from AlphaFold3 (in
blue) are aligned with the native structures (in orange) using US-align (Zhang, Shine et al., 2022). The predictions of AlphaFold3 with context [only for
RNA3DB_0 (Context)] are provided in purple.
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skeleton predictions while lacking the base conformations that

produce the WC interactions. Secondly, there is an increased

correlation between INF-STACK and INF-WC: when

AlphaFold3 predicts the WC interactions well, it also tends to

estimate the stacking well. Indeed, the stacking interactions

tend to align with the correct base pairing, but the correlation

is likely to be influenced by whether the sequence can fold into

the observed conformation. For instance, in Fig. 7, parts of

PDB entry 8ex9 chain B can fold, whereas others cannot.

To compare the key RNA interactions predicted from

AlphaFold3 with existing solutions, in Fig. 8 we present the

mean INF metrics (INF-WC, INF-NWC and INF-STACK)

over RNA-Puzzles, CASP-RNA and RNASolo for the ten

benchmarked models. Details for each data set are provided in

Supplementary Table S6. We only show the results on these

data sets as we only had complete predictions for each model

for these three data sets. AlphaFold3 has better values for

each INF metric compared with the other methods. The

second-best method to reproduce RNA key interactions is

RNAComposer. While having good overall results in terms of

cumulative metrics, trRosettaRNA shows poor results in terms

of key RNA interactions. Even if AlphaFold3 outperforms

other solutions for all of the INF metrics, the results for nWC

interactions remain low (below 0.5), meaning that progress is

still needed to reproduce RNA-specific interactions well.

5.6. Computation time

AlphaFold3 is a deep-learning method that has a complex

architecture. Compared with existing ab initio methods, deep-

learning methods tend to be faster for inference. We report the

computation time for a small RNA molecule (27 nt) and a long

RNA moelcule (434 nt) for RNAComposer (Popenda et al.,

2012), RhoFold (Shen et al., 2022), trRosettaRNA (Wang et al.,

2023), RNAJP (Li & Chen, 2023) and AlphaFold3 (Abramson

et al., 2024) in Table 2. We report the computation time for the

fastest methods, while the times for the rest of the methods are

available in our previous work (Bernard et al., 2024b). As we

could only run RNAJP locally and each web server has

different configurations, there is a bias in the comparison.
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Table 2
Computation time for sequences of 27 nt (PDB entry 6y0y; E. Ennifar &
E. Westhof, unpublished work) and 434 nt (PDB entry 7xd6; Luo et al.,
2023).

Computation time is computed using web servers except for RNAJP. Methods
are sorted by release time. The types of approaches are either template-based
(TP), ab initio (Ab) or deep learning (DL).

Model Approach Time (27 nt) Time (434 nt)

RNAComposer (Popenda et al., 2012) TP 1 3
RhoFold (Shen et al., 2022) DL 1 10
trRosettaRNA (Wang et al., 2023) DL 1 600

RNAJP† (Li & Chen, 2023) Ab 120 900
AlphaFold3 (Abramson et al., 2024) DL 2 5

† RNAJP computation time is computed locally with a simulation time set to 50 � 106

steps on an NVIDIA P1000.

Figure 6
Difference per metric between results from AlphaFold3 with context and without context for the common structures of the RNA3DB_0 data set
depending on the sequence length. Regions above the red line correspond to structures where the results from AlphaFold3 with context are better than
those without context. We reversed the RMSD and MCQ metrics so that higher regions always depict the same behaviour. The percentage of cases where
AlphaFold3 with context outperforms predictions without context is reported in the top-right corner of each plot. Structures are reported with the native
structure in orange, predictions with AlphaFold3 without context in blue and with context in purple.
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RNAComposer, RhoFold and trRosettaRNA all predict small

RNA very quickly (in less than a minute), while RNAJP takes

2 h (with default parameters). For a structure with a longer

sequence, it is RNAComposer that has the fastest computation

time (around 3 min). The ab initio method RNAJP takes 15 h.

AlphaFold3 returns a prediction in around 5 min, which shows

fast inference. For RNA with very long sequences (around

3000 nt), AlphaFold3 take multiple hours to predict (and

sometimes returns errors and needs to be run multiple times to

obtain results).
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Figure 8
INF metrics for the different benchmarked models averaged over three test sets: RNA-Puzzles, CASP-RNA and RNASolo. INF metrics consider
Watson–Crick (INF-WC), non-Watson–Crick (INF-NWC) and stacking (INF-STACK) interactions.

Figure 7
Link between INF Watson–Crick (WC) and non-Watson–Crick (nWC) and stacking (STACK) interactions in the predictions of AlphaFold3 for our five
test sets. The area of each point is proportional to the RMSD: the lower the better. Only structures with at least one non-Watson–Crick interaction are
shown in the figures. An INF (Parisien et al., 2009) value of 1 means accurate reproduction of key RNA interactions, while a value near 0 means that the
structure does not reproduce the interactions. Left: INF stacking (INF-STACK) depending on INF Watson–Crick (INF-WC) interactions. Right: INF
non-Watson–Crick (INF-nWC) depending on INF Watson–Crick (INF-WC) interactions.



6. Discussion

AlphaFold3 is a deep-learning method that has widened its

scope to predict RNA structures (as well as other molecules)

compared with its previous approach. Through our bench-

mark, we showed that AlphaFold3 is a competitive method

that outperforms most of the existing solutions. It yields better

results for RNA-Puzzles and RNASolo, but remains outper-

formed by the best solutions from the CASP-RNA challenge.

AlphaFold3 has achieved good generalization properties

for ribosomal structures (RNA3DB_Long data set). This

shows bias from the existing data for RNA: most of the long

RNA structures available in the PDB are of ribosomal-related

RNA.

AlphaFold3 returns results with an overall good reproduc-

tion of key RNA interactions compared with existing solu-

tions. It is also the best method to reproduce RNA torsion

angles (best results in terms of MCQ), which was lacking in the

existing deep-learning methods (Bernard et al., 2024b).

There remain limitations that need to be addressed

regarding the RNA folding problem. AlphaFold3 does not

reproduce all of the non-Watson–Crick interactions, which is

essential for the stability of 3D RNA structures. Furthermore,

AlphaFold3 fails to predict structures from orphan families

(RNA3DB_0 data set) without context. These structures are

hard to predict as there is no hint in the available data, and

reliable information is often supported by the context and the

environment of the RNA. AlphaFold3 achieves better results

when providing the context, but there remains a limitation

of generalization for these orphan RNAs in our evaluation.

Evaluating orphan structures remains challenging, as envir-

onmental information or context is lacking. There is also

no easy way to correctly evaluate the alternative solutions

proposed by AlphaFold3, whereas multiple conformations are

possible for RNA. AlphaFold3, while reducing the impact of

the MSA on its architecture, still uses it, restricting its scope

for RNA (as there are still unknown families). The compu-

tation time for the inference is very fast but remains limited by

its usage in web servers. The source code has been released but

requires huge computational resources to be easily used.

7. Conclusion

AlphaFold2 has had huge success in the prediction of protein

folding and has changed the field by the quality of its

predictions. The new release of AlphaFold, named Alpha-

Fold3, has extended the model to predict all molecules in the

PDB, such as ions, ligands, DNA and RNA.

Through an extensive benchmark on five different test sets,

we have evaluated the quality of predictions of AlphaFold3

for RNA molecules. We have also compared the results with

ten existing methods, which are easily reproducible as their

predictions are available using web servers.

Our results show that AlphaFold3 is of competitive quality,

as it outperforms most of the existing solutions. It returns

more physically plausible structures than ab initio methods. It

outclasses existing deep-learning approaches for every data

set while better reproducing key RNA interactions and torsion

angles. It also returns predictions very quickly compared with

ab initio or current template-based approaches [but does not

exceed RNAComposer (Popenda et al., 2012) for inference

time].

For ribosomal long RNAs, AlphaFold3 returns highly

accurate predictions. This could be explained by its capability

to generate structures from known families which have been

seen in its training data. As there are not a lot of data avail-

able, it is difficult to find complex structures without any

homologs to evaluate performances fairly.

Nonetheless, AlphaFold3 has not yet covered RNA with the

same success as it has proteins. Its new architecture allows the

prediction of a wide range of molecules but remains limited

and hardly predicts non-Watson–Crick interactions. It does

not generalize well to orphan structures which are not related

to any known RNA families. Prediction of these structures

requires knowledge of the context, which it is possible to

integrate with AlphaFold3.

The prediction of atom coordinates instead of base frames,

as performed in AlphaFold2, allows the extension of predic-

tions to a wide range of molecules but prevents the general-

ization of RNA-specific interactions. The lack of data is also

a limitation that prevents the robustness of deep-learning

methods in general, including AlphaFold3.

8. Related literature

The following references are cited in the supporting infor-

mation for this article: Evans et al. (2021), Ji et al. (2023), RNA

Consortium (2021), Sayers et al. (2023) and Sha et al. (2023).

Funding information

The following funding is acknowledged: Udopia (bursary No.

UDOPIA-ANR-20-THIA-0013); Labex Digicosme (bursary

No. ANR11LABEX0045DIGICOSME); Idex ParisSaclay

(bursary No. ANR11IDEX000302); GENCI/IDRIS (grant

No. AD011014250).

References

Abramson, J., Adler, J., Dunger, J., Evans, R., Green, T., Pritzel, A.,
Ronneberger, O., Willmore, L., Ballard, A. J., Bambrick, J.,
Bodenstein, S. W., Evans, D. A., Hung, C.-C., O’Neill, M., Reiman,
D., Tunyasuvunakool, K., Wu, Z., Žemgulytė, A., Arvaniti, E.,
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C. Y., Chou, F.-C., Ferré-D’Amaré, A. R., Das, R., Dawson, W. K.,
Ding, F., Dokholyan, N. V., Dunin-Horkawicz, S., Geniesse, C.,
Kappel, K., Kladwang, W., Krokhotin, A., Łach, G. E., Major, F.,
Mann, T. H., Magnus, M., Pachulska-Wieczorek, K., Patel, D. J.,
Piccirilli, J. A., Popenda, M., Purzycka, K. J., Ren, A., Rice, G. M.,
Santalucia, J., Sarzynska, J., Szachniuk, M., Tandon, A., Trausch,
J. J., Tian, S., Wang, J., Weeks, K. M., Williams, B., Xiao, Y., Xu, X.,
Zhang, D., Zok, T. & Westhof, E. (2017). RNA, 23, 655–672.

Miao, Z., Adamiak, R. W., Antczak, M., Boniecki, M. J., Bujnicki, J.,
Chen, S.-J., Cheng, C. Y., Cheng, Y., Chou, F.-C., Das, R.,
Dokholyan, N. V., Ding, F., Geniesse, C., Jiang, Y., Joshi, A.,
Krokhotin, A., Magnus, M., Mailhot, O., Major, F., Mann, T. H.,
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