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Cryo-electron tomography is a rapidly developing field for studying macro-

molecular complexes in their native environments and has the potential to

revolutionize our understanding of protein function. However, fast and accurate

identification of particles in cryo-tomograms is challenging and represents a

significant bottleneck in downstream processes such as subtomogram averaging.

Here, we present tomoCPT (Tomogram Centroid Prediction Tool), a transformer-

based solution that reformulates particle detection as a centroid-prediction task

using Gaussian labels. Our approach, which is built upon the SwinUNETR

architecture, demonstrates superior performance compared with both conven-

tional binary labelling strategies and template matching. We show that

tomoCPT effectively generalizes to novel particle types through zero-shot

inference and can be significantly enhanced through fine-tuning with limited

data. The efficacy of tomoCPT is validated using three case studies: apoferritin,

achieving a resolution of 3.0 Å compared with 3.3 Å using template matching,

SARS-CoV-2 spike proteins on cell surfaces, yielding an 18.3 Å resolution map

where template matching proved unsuccessful, and rubisco molecules within

carboxysomes, reaching 8.0 Å resolution. These results demonstrate the ability

of tomoCPT to handle varied scenarios, including densely packed environments

and membrane-bound proteins. The implementation of the tool as a command-

line program, coupled with its minimal data requirements for fine-tuning, makes

it a practical solution for high-throughput cryo-ET data-processing workflows.

1. Introduction

Cryo-electron microscopy (cryo-EM) is a powerful method

enabling the visualization of macromolecular complexes at

near-atomic resolution. This technique generates detailed

Coulomb potential maps by imaging macromolecules

embedded in thin vitreous ice slabs. While single-particle

analysis (SPA) remains the most popular method for

computing 3D macromolecular structures with electrons, cryo-

electron tomography (cryo-ET) offers distinct advantages in

certain scenarios. Cryo-ET involves the acquisition of multiple

projection images of the same specimen at systematically

varied tilt angles, allowing the 3D reconstruction of unique

cellular landscapes. This approach is particularly advanta-

geous for studying macromolecular complexes in their native

context, revealing both their structure and their spatial rela-

tionships with surrounding components. Furthermore, cryo-

ET coupled with cryo-focused ion beam milling (cryo-FIB) for

sample preparation of vitrified biological samples such as cells

(Hong et al., 2023; Lučić et al., 2005), tissues (Zhang et al.,

2021; Leistner et al., 2023; Wang et al., 2023) and whole

organisms (Schiøtz et al., 2024; Nguyen et al., 2024) represents
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a powerful tool for linking protein structures with their

cellular context, facilitating an integrative understanding of

biological phenomena.

The computational workflow for cryo-ET data processing

involves several steps that are included in a number of soft-

ware packages. These steps include motion correction, CTF

estimation, tilt-stack generation and alignment and tomogram

reconstruction (Turoňová & Wan, 2024). Other optional steps

can be used to enhance the contrast of the tomograms, typi-

cally by using filtering processes, including denoising (Fran-

gakis, 2021) and missing-wedge compensation (Liu et al.,

2022). The detection of particles in tomograms (also known

as particle picking) presents significant computational chal-

lenges. While there are some template-free approaches, most

of the current methods rely on template matching using

templates generated for the protein assembly of interest.

Template matching is a computationally intensive process that

involves the generatation of thousands of template orienta-

tions and the computation of similarity scores for every

position in the tomogram (Castaño-Dı́ez et al., 2017; Chaillet et

al., 2024; Wan et al., 2024; Tegunov et al., 2021). Recent studies

have shown that achieving high-confidence identification

requires fine-grain sampling regimes, further escalating

computational demands (Cruz-León et al., 2024; Chaillet et al.,

2023). Among template-free methods, deep-learning models

offer a potentially more efficient solution for localizing the

particle, with the added advantages of improved general-

izability and reusability compared with template matching,

with recent advances showing considerable promise (Zeng

et al., 2023; Moebel et al., 2021; Rice et al., 2023; de Teresa-

Trueba et al., 2023; Kiewisz et al., 2023; Liu et al., 2024; Huang

et al., 2024). Particularly noteworthy is the development of

transformer-based models, which have demonstrated signifi-

cant improvements in various computer vision tasks (Doso-

vitskiy et al., 2020).

The transformer architecture, initially designed for natural

language processing, has been successfully adapted for image

analysis through vision transformers (ViTs; Dosovitskiy et al.,

2020) and their variants (Han et al., 2023). Building upon these

innovations, the Swin transformer architecture introduced a

hierarchical structure and shifted-window approach, enabling

the efficient processing of large images while maintaining

the ability to model spatially distant but semantically related

features in a given image (Tang et al., 2021).

SwinUNETR (He et al., 2023; Tang et al., 2021) represents

a powerful fusion of Swin transformers and the U-Net archi-

tecture (Ronneberger et al., 2015), which is particularly well

suited for medical image-analysis tasks. This model combines

the strengths of Swin transformers in capturing complex

spatial relationships with the ability of U-Net to generate

high-resolution outputs, making it a promising candidate for

particle localization in cryo-ET data.

While these advanced architectures have significantly

improved the accuracy of semantic segmentation in various

domains, the application of these models to particle localiza-

tion in cryo-ET presents unique challenges where the signal-

to-noise ratio (SNR) is thought to be among the lowest among

imaging methods and does not exceed a value of 0.1 (Baxter et

al., 2009). In typical semantic segmentation tasks, the network

output can be treated as a confidence map of object locations.

However, translating these predictions into precise protein

localizations requires additional steps.

Traditional object detection in cryo-ET typically aims to

identify objects in a given image by predicting a mask around

the object. Whilst this approach has value in identifying large-

scale morphological features (for example membranes) in a

given tomogram, these segmentation masks can be less

effective in identifying macromolecular assemblies. Indeed,

the best confirmation for an assembly identified by any of the

aforementioned methods is through subtomogram averaging

and classification steps to differentiate between true-positive

and false-positive picks. Conventionally, object localization

from predicted segmentation masks involves computer vision

operations such as thresholding, morphological operations

and non-maximum suppression to assign centroid values to

the detected objects. While these post-processing steps can

often achieve good-quality results, they are computationally

expensive, require extensive fine-tuning and may not gener-

alize well across different data sets or particle types. For

instance, there is a risk of excluding particles that are too close

together and missing them from the analysis, which is likely to

impact subsequent biological inferences.

Considering these disadvantages, we sought to reformulate

the problem of particle detection in tomograms as a centroid-

detection task. This approach has advantages over a full-

object detection task since a strong prior can be placed on the

location of the particle centroid during training by way of a

Gaussian label that tapers off as a function of distance from

the particle centre. This strategy has successfully been used for

tasks as varied as cell counting in microscopic images, moni-

toring crowds in surveillance systems and wildlife censuses

(Lempitsky & Zisserman, 2010).

In this paper, we describe our program Tomogram Centroid

Prediction Tool (tomoCPT), which aims to improve upon

classical approaches by directly predicting masks with the

centroids of the particles rather than the entire particle

volume. We demonstrate that this method is generalizable and

improves particle-picking efficiency compared with classical

particle binary labelling strategies. It also addresses the

limitations of current methods by reducing the need for post-

processing steps and enhancing the accuracy of centroid

assignment.

2. Methods

2.1. Label generation for particle centroid annotation

For supervised training of the SwinUNETR-V2 model (He

et al., 2023), pairs of experimental tomograms and label

tomograms need to be generated. Because manual annotation

of particles is tedious and time-consuming, we aim to ease the

process of generating the labelled data by considering only

the particle centroids that can be provided in the form of

RELION STAR files or IMOD .mod files.
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For our method, training labels for each particle were

generated by combining two Gaussians of differing widths:

one with a sigma value of 32% of the particle radius (or the

longest axis for nonspherical particles) and a second Gaussian

with a sigma value of 16% of the particle radius (see Figs. 2a

and 2b for a visual representation of the employed labels).

Note that this corresponds to Gaussians of width 95% and

50% of the particle diameter, where width is defined as �3

times sigma. The summed Gaussian mask aims to more

accurately represent the probability density of particle loca-

tions compared with binary labels, which cannot encode

uncertainty.

Specifically, for each particle i of radius R, the intensity Ii at

any point (x, y, z) is given by

Ii
ðx;y;zÞ ¼ exp

� r2

2�2
1

� �

þ exp
� r2

2�2
2

� �

; ð1Þ

where r = (x2 + y2 + z2)1/2 is the distance from the centre and �1

and �2 are calculated as

�1 ¼
f1R

3
; �2 ¼

f2R

3
: ð2Þ

Here, f1 and f2 are the fraction of the particle diameter for the

first and second Gaussian functions (by default set to 0.95 and

0.5, respectively). The combined Ii is then truncated at radius

R and normalized as

Ii
ðx;y;zÞ ¼

Ii
ðx;y;zÞ

maxðIi
ðx;y;zÞÞ

if r � R,

0 if r>R.

8
<

:
ð3Þ

Finally, the label tomogram is obtained by combining the

representation of all particles as

Lðx; y; zÞ ¼ max
i

Iiðx; y; zÞ 8 i: ð4Þ

2.1.1. Data pre-processing

Tomograms are resized to the sampling rate at which the

particle size is 10 pixels. Then, each tomogram (Tinput) is

normalized using a robust normalization strategy:

Tnormalized ¼
Tinput � medianðTinputÞ

percentileðTinput; 95Þ � percentileðTinput; 5Þ
: ð5Þ

The normalized tomograms are then divided into overlapping

cubes of 64 � 64 � 64 pixels using a stride of 32 pixels. To

address the class imbalance, all cubes containing at least one

positively annotated voxel are retained, while an equal

number of negative cubes (containing no positive voxels) are

randomly sampled.

2.2. Training

The training process spanned at most 150 epochs. To

prevent overfitting and unnecessary computational expense,

we implemented an early stopping mechanism with a patience

of 36 epochs. We processed the data in batches of ten cubes

using an initial learning rate of 0.0004. The learning rate was

halved when the validation loss did not improve for six

consecutive epochs. As the optimizer, we employed AdamW

(Loshchilov & Hutter, 2017) with a weight decay of 1� 10� 10.

2.3. Loss function

We use a loss function that combines a weighted Huber loss

(Huber, 1964) that operates at the pixel level with a spatial

gradient loss that tries to improve edge-detection sensitivity,

L ¼ Lweighted þ 10Lgradient; ð6Þ

where

Lweighted ¼ wðyÞ � Hðy; ypredÞ ð7Þ

and

Lgradient ¼ Hðr
2y;r2ypredÞ: ð8Þ

Here, y 2 RM�M�M is the label tomogram, ypred 2 R
M�M�M is

the predicted centroid tomogram, Hð�; �Þ denotes the Huber

loss, � represents element-wise multiplication and r2 is the

second-order derivative operator.

The weight function w(y) generates a per-voxel weight array

wijkðyÞ ¼

M3

jPj
if yijk > 0 ðpositive voxelsÞ;

M3

jNj
if yijk ¼ 0 ðnegative voxelsÞ;

8
>><

>>:

ð9Þ

where |P| and |N| are the number of positive and negative

voxels, respectively.

The r2 operator is implemented using the Kornia function

kornia.filters.spatial_gradient3d (Riba et al.,

2020).

2.4. Centroid extraction from the predicted labels

The scikit-image (van der Walt et al., 2014) function

peak_local_max was directly employed over the

predicted tomogram to retrieve the coordinates of the

centroids. This function performs a neighbourhood-based

search to detect local peaks, which are defined as pixels whose

intensity values are higher than those of their neighbours.

Specifically, the algorithm compares each pixel with the values

in a cubic neighbourhood of size min_distance (by default

the particle diameter). Pixels that do not surpass their

neighbours within this distance are suppressed, and only the

most prominent peak in each neighbourhood is retained.

After this, the coordinates of the remaining peaks whose

confidence is larger than a user-provided threshold (typically

0.3) are reported as the predicted centroids. We observed that

a threshold of 0.3 provided a good balance between false-

positive and true-positive picks. However, this value should

be chosen by the user on a case-by-case basis following the

inspection of confidence maps.

2.5. Calculating metrics for particle detection

To evaluate the performance of tomoCPT in predicting

particle centroids from tomograms of different data sets, we

implemented two types of computations: estimates of preci-

sion and recall, and estimations of root-mean-squared error of
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the centroid locations. In both cases the list of predicted

coordinates is obtained by applying a given confidence

threshold. After this, we associate each ground-truth coordi-

nate with its nearest predicted coordinate using the Jonker–

Volgenant algorithm (Jonker & Volgenant, 1988) with the

Euclidean distances matrix as the cost matrix. We note that

when working with experimental data there are no real

ground-truth coordinates, but for simplicity we consider the

coordinates obtained with our processing pipeline (see Section

2.6) as the ground-truth coordinates.

Once the predicted and ground-truth coordinates have been

matched, a distance threshold, defined as half the object

diameter, was applied to classify the matches. Predicted

centroids within this threshold of their corresponding ground-

truth points were categorized as true positives, whilst those

exceeding this criterion were labelled as false positives.

Ground-truth points without a corresponding prediction

within the specified threshold were classified as false negatives.

We determined optimal detection thresholds by performing

a percentile sweep (2–98% in steps of 8%) on the confidence

values of tomoCPT-predicted centroids to identify the

percentile yielding the highest F1 score (F1max) for each

particle specimen (Supplementary Fig. S2).

Following this classification, we quantified the predictive

performance of the model using standard metrics: precision,

recall and F1 score (Sasaki, 2007; Hicks et al., 2022). These

metrics were calculated as follows:

precision ¼
true positive

true positive þ false positive
; ð10Þ

recall ¼
true positive

true positive þ false negative
; ð11Þ

F1 ¼ 2�
precision � recall

precision þ recall
: ð12Þ

Additionally, we report the root-mean-square error (RMSE)

normalized by the particle dimension at F1max, which was

calculated as

RMSE ¼
1

N

PN

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jjxGT
i � x

pred
i jj

2

q

; ð13Þ

where xGT
i is the ground-truth coordinate matched to the ith

predicted coordinate xPred
i and N is the number of ground-

truth coordinates or the number of predicted coordinates,

whichever is smaller. Only true-positive predicted coordinates

were employed in this calculation.

2.6. Characteristics of the data sets used for training and

validation

The data sets represent a wide range of particles, ranging

from 1000 Å (rotavirus) to 135 Å (influenza haemagglutinin;

HA). Additionally, the data sets consist of a mixture of

tomograms generated from two different software packages,

Warp (Tegunov & Cramer, 2019) and NOVACTF (Turoňová

et al., 2017), and diverse filtration methods such as CTF

correction, CTF-aware Wiener-like filtering (Warp) and

CNN-based denoising (Warp). Together these data represent

different SNR levels, contributing to the versatility of

tomoCPT.

2.6.1. Pre-processing of in-house tilt-series data and particle

centroid annotation

The data sets used in the particle-picking case studies were

processed in the Warp software package (version 1.0.9;

Tegunov & Cramer, 2019). The pre-processing steps consisted

of simultaneous 2D motion correction and CTF estimation on

individual frames of the tilt series. Due to the limited dose per

tilt, a simplified 2 � 2 � N (where N is the number of frames)

motion and CTF model was used. Tilt stacks were then built

from the frame-series data utilizing information stored in the

microscope metadata files and subjected to IMOD tilt-series

alignment using either fiducial-based alignment or patch

tracking depending on whether or not the images contained

fiducials. The aligned parameters were then imported into

WarpTools and dose-weighted 3D CTF parameters were

estimated for the tilt series. Following this step, CTF-corrected

tomograms were generated and used for particle centroid

annotation.

Coordinates used in a previous subtomogram averaging

study of rotavirus assembly intermediates (Shah et al., 2023)

were annotated using Wiener-like filtered tomograms recon-

structed at a pixel size of 10 Å per pixel using crYOLO

(version 1.8.0; Wagner et al., 2019). In the case of influenza HA

spike, crYOLO was used to localize centroids in denoised

tomograms reconstructed at a pixel size of 15 Å per pixel.

Equine rhinitis A virus (ERAV) and Murine norovirus

(MuNoV) particle centroids were manually annotated in

denoised and Wiener-like filtered tomograms, respectively,

sampled at 15 Å per pixel using IMOD (version 4.12.64;

Mastronarde & Held, 2017; Kremer et al., 1996).

Subsequently, subtomograms generated using Warp were

subjected to 3D classification followed by 3D refinement for

particle-pose determination using RELION (veresion 3.1.2;

Zivanov et al., 2019). These particle coordinates served as

ground-truth data against which the performance of the

network was measured.

2.6.2. Publicly available data sets

In addition to the four in-house data sets, we incorporated

two publicly available data sets accessed from the Chan–

Zuckerberg Cryo-ET Data Portal (Ermel et al., 2024). Data set

ID 10003 consists of tomograms of Mycobacterium pneumo-

niae bacterial cells treated with the ribosome-binding anti-

biotic chloramphenicol (Tegunov et al., 2021). The deposited

tomograms were CTF-corrected and reconstructed using the

Warp software package. The raw data were deposited in

EMPIAR with accession ID 10731. Data set ID 10006

comprises CTF-corrected tomograms of purified SARS-CoV-2

particles reconstructed with weighted back-projection (WBP)

using NOVACTF (Ke et al., 2020). The raw data were

deposited in EMPIAR with accession ID 10493. In addition to
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the tomograms, the data sets include expertly curated ground-

truth centroids, which were also obtained from the portal.

2.6.3. Training/validation/testing split of data

During training to ensure robust validation, we allocated

20% of the combined training and validation data for vali-

dation purposes. Furthermore, from each particle specimen

data set used for training, a randomly chosen subset of five

tomograms were included into a test set. The performance of

the network for different particle specimens was measured

using the performance metrics described in Section 2.5.

2.6.4. Pre-processing of tilt-series data used in case studies

The sata sets used in the case studies were pre-processed as

described before, with the exception of using the WarpTools/

M software package, which is the Linux-compatible version of

Warp.

2.6.5. Centroid identification and subtomogram averaging

for apoferritin (EMPIAR 10491)

EMDB entry EMD-11334 was used as a template for

identifying apoferritin molecule centroids in tomograms

reconstructed at a pixel size of 8 Å per pixel. The angular

search was performed on a sphere sampled every 7.5�. Only

centroids with peak values of �6 were retained for down-

stream steps of subtomogram averaging and refinement in M.

In the case of tomoCPT, only centroids with confidence values

of �0.7 were retained. Additionally, points closer than the

diameter of the molecule were excluded.

Initial pose estimation was performed on defocus-corrected

subtomograms resampled on a 4 Å per pixel grid with a box

size of 64 pixels in RELION (version 4.0.2; Kimanius et al.,

2021) using gold-standard refinement parameters. The orien-

tations and poses determined from this step served as inputs

for M, which iteratively optimizes the electron-optical and

sample deformation-related parameters in the imaging

(forward) mode simultaneously with the particle poses in a

supervised manner (Tegunov et al., 2021).

2.6.6. Centroid identification and subtomogram averaging of

SARS-CoV-2 spike

Centroids predicted by tomoCPT were used to generate

subtomograms at a pixel size of 8 Å per pixel and a box size of

42 pixels. The subtomograms were imported into RELION

and subjected to an initial round of 3D classification, and

classes representing spike molecules were selected and their

poses were refined using the gold-standard refinement stan-

dards in RELION (version 4.0.2; Kimanius et al., 2021). The

initial poses were imported into M and subjected to iterative

rounds of refinement in which parameters such as stage angles,

image and volume warping were refined until no improvement

in resolution was observed.

2.6.7. Centroid identification and subtomogram averaging of

rubisco (EMPIAR 11125)

To fine-tune the base model for picking rubisco molecules

within carboxysomes, Halothiobacillus neapolitanus carboxy-

some tomograms deposited in the Chan–Zuckerberg CryoET

Data Portal (Ermel et al., 2024; accession ID 10021) were used.

The tomograms (8.832 Å per pixel) were reconstructed using

NOVACTF, which uses a WBP algorithm (Radermacher,

1988) for tomogram reconstruction. A total of five tomograms

(lma2019-08-21-1, lma2019-08-21-10, lma2019-08-21-11,

lma2019-08-21-2 and lma2019-08-21-6) together with expertly

annotated ground-truth coordinates obtained from the

authors (Lauren Ann Metskas, personal communication) were

used to fine-tune the base model for 20 epochs with a starting

learning rate of 0.00005.

To be able to verify the quality of particles identified by

tomoCPT, subtomogram averaging was performed using the

raw data deposited in EMPIAR under accession ID 11125

(Metskas, Ortega et al., 2022). This entry consists of three tilt

series with raw frame-series data (CB_02, CB_29 and CB_59)

and is a subset of the data deposited in the CryoET Data

Portal. The raw data were pre-processed as described in the

preceding sections, and tomoCPT with fine-tuned weights was

used to predict rubisco centroids from CTF-corrected tomo-

grams sampled on an 8 Å per pixel grid. Particle centroids

with a probability score of less than 0.4 were excluded from

the subtomogram-averaging analysis.

3. Results

3.1. Software design and workflow

TomoCPT is a user-friendly command-line program written

in Python to facilitate the automatic extraction of particle

centroids from cryo-electron tomograms. The standard use

case involves three key steps.

(i) Generation of label volume pairs using centroids from

RELION-formatted STAR files (Hall, 1991) or IMOD model

files (Kremer et al., 1996) for manually generated centroids

(Fig. 1a).

(ii) Training of the network with inputs that are normalized

and rescaled such that the target particle radius (or longest

axis dimension) is large enough to be enclosed within a single

chunk. In our experiments we used a chunk size of 64 pixels

and a particle radius of 10 pixels (we note that altering this

parameter had an insignificant effect on centroid detection;

Supplementary Fig. S1), followed by an overlapping data-

chunking strategy to manage memory constraints (see Section

2). The network underpinning tomoCPT is the SwinUNETR-

V2 architecture (He et al., 2023), implemented in the MONAI

framework (Cardoso et al., 2022), and has been shown to be

particularly effective for medical image-segmentation tasks.

We leverage the capabilities of the PyTorch Lightning

framework (Falcon et al., 2020) to perform multi-GPU training

and monitor a custom loss function (equation 6) for conver-

gence (Fig. 1b). The training step outputs the best-scoring
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checkpoint file that can either be used for inference or used

for further fine-tuning with new data.

(iii) Finally, at inference time, the input tomograms are

rescaled and passed through the network, resulting in a

confidence map of centroids. After this, centroid extraction is

performed using a user-defined confidence threshold and

the shortest allowed nearest-neighbour distance. Predicted

centroids are stored in the form of a STAR file which is

amenable for use with downstream software packages such as

Warp (Tegunov & Cramer, 2019) and RELION (Scheres,

2012) (Fig. 1c).

3.2. Gaussian labels enable more precise detection of particle

centroids compared with binary labels

The development of our approach for training a neural

network to predict particle centroids was significantly influ-

enced by the cross-correlation maps typically generated in

conventional template-matching programs used to localize

particles in tomograms (Tegunov & Cramer, 2019; Castaño-

Dı́ez et al., 2017; Wan et al., 2024; Cruz-León et al., 2024;

Chaillet et al., 2024). Cross-correlation maps record regions of

high similarity between the template and the local subvolumes

and are represented as intensity maxima. A peak-finding

procedure is subsequently employed to extract centroids and

orientations from the highest-scoring voxels, utilizing a user-

defined threshold and inter-peak distance.

Inspired by these cross-correlation maps, we designed our

training labels as Gaussian probability density functions that

are characterized by a sharp peak at the particle centroid and

a gradual fall-off (equation 1; Fig. 2a). Next, we evaluated the

efficacy of Gaussian labels for centroid prediction using six

distinct data sets, namely rotavirus (1000 Å), Equine rhinitis A

virus (ERAV; 300 Å), Murine norovirus (MuNoV; 400 Å),

ribosomes (250 Å), SARS-CoV-2 spike (240 Å) and influenza

virus haemagglutinin (HA; 135 Å), which were either acquired

in-house or accessed from public repositories (Table 1).

A comparative analysis of Gaussian labels versus binary

labels reveals superior performance, as demonstrated by the

overlay heat maps of prediction tomograms (Fig. 2b and
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Figure 1
TomoCPT design and workflow. The program consists of three main steps. (a) Tomogram–label pair generation using centroids provided either in the
form of RELION STAR files or IMOD model files. (b) Tomogram resizing followed by data chunking and training until the model converges or training
loss does not improve for 36 consecutive epochs. (c) Centroid prediction with the trained model; centroids are stored in the form of a STAR file.



Supplementary Fig. S2). The heat maps show enhanced loca-

lization of particle centroids with Gaussian labels, as shown by

a more focused and accurate overlay on the viral components.

For quantitative performance assessment across diverse

biological specimens, we computed F1 scores, a harmonic

mean of precision (equation 10) and recall (equation 11),

defined by equation (12) (Sasaki, 2007; Hicks et al., 2022). The

F1 score ranges from 0 to 1, with 1 being the best possible value.

Analysis of the results (Fig. 2c, top row) shows that particles

detected using Gaussian labels achieve consistently higher F1

scores compared with binary labels across all particle types but

one. This superior performance extends to the accuracy of

centroid assignments for particles identified in the test-set

tomograms (Fig. 2c, bottom row). These results establish the

robustness and versatility of the Gaussian label approach for

accurate particle centroid detection across diverse biological

structures in cryo-electron tomography. In the next sections,

we refer to the ‘base model’ as the model weights that have

been obtained by training our model with the data from these

six data sets.

3.3. Model evaluation: zero-shot inference versus

incremental fine-tuning

Zero-shot inference is an evaluation mode in which the

model predicts instances of data classes that are not present

during the model-training steps. Following our experiments

comparing the suitability of using Gaussian labels for centroid

assignment, we sought to assess the ability of tomoCPT to

predict the centroids of particles that it had not encountered

during training. To this end, we used an apoferritin data set

(EMPIAR 10491; Tegunov et al., 2021) and compared the

performance of tomoCPT against ground-truth coordinates

that were assigned using template matching and refined using

subtomogram averaging (see Section 2).

From inspection of Fig. 3(a), it is apparent that the

tomoCPT base model generalizes well enough to assign

centroids to individual apoferritin molecules, albeit with low

confidence (Fig. 3b). To determine the amount of data that

are required to improve the ability of tomoCPT to assign

centroids to this data set, we conducted a series of fine-tuning

experiments using two, three and five tomograms of apo-

ferritin data, which correspond to 849, 1001 and 1850 particles,

respectively. With just two tomograms for fine-tuning, the F1

score improved; however, F1 did not significantly increase

further as we increased the number of tomograms to three and

then five (Fig. 3c, Supplementary Fig. S4). We note that in all

cases the median accuracy of the networks in predicting the

centroids of the apoferritin molecules was within 6% of the

accuracy of the diameter of the molecule (Fig. 3d). Impor-

tantly, we note that using as few as two tomograms for fine-

tuning may be sufficient for robust centroid assignments.

Taken together, we show that tomoCPT generalizes well

enough to identify bona fide particle coordinates, but its

performance improves significantly when trained with limited

amounts of data.

3.4. Centroid prediction and subtomogram averaging of

apoferritin

To assess the quality of centroid predictions by tomoCPT,

we performed subtomogram averaging on high-confidence

centroids (probability score � 0.7) predicted by our best-

performing model (Figs. 3c and 3d). This yielded 3931 particles

across all tomograms. For a direct comparison, we processed

an identical number of centroids identified by template

matching, maintaining the same per-tomogram particle

distribution as tomoCPT (Supplementary Table S1). The

resulting subtomograms were processed identically using the

Warp–RELION–M pipeline using a developer-provided script

(https://github.com/warpem/warp/blob/main/scripts/EMPIAR-

10491_5TS_e2e.sh). Subtomograms that were generated using

tomoCPT-predicted centroids yielded a map with a mean

global resolution of 3.03 Å (Figs. 4a and 4b), whereas using

subtomograms identified by template matching yielded a map

with a mean resolution of 3.34 Å (Fig. 4b).

Furthermore, the average calculated from the tomoCPT-

predicted centroids demonstrates better local resolution,
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Table 1
Data sets used in the study.

No. of particles No. of tomograms

Training set Test set Training set Test set Accession ID Reference

Data set 1
Rotavirus 701 23 51 5 In-house Shah et al. (2023)
SARS-CoV-2 spike 1098 227 40 5 EMPIAR 10493 Ke et al. (2020)
Equine rhinitis A virus 108 22 8 5 In-house Unpublished
Murine norovirus 335 42 19 5 In-house Unpublished

M. pneumoniae ribosomes 3292 1271 10 5 EMPIAR 10731 Tegunov et al. (2021)
Influenza virus HA 1629 171 15 5 In-house Unpublished

Data set 2
Apoferritin_2 849 — 2 — EMPIAR 10248 Tegunov et al. (2021)
Apoferritin_3 1001 — 3 — EMPIAR 10248 Tegunov et al. (2021)
Apoferritin_5 1850 — 5 — EMPIAR 10248 Tegunov et al. (2021)

Data set 3
ChAdOx1 SARS-CoV-2 spike 667 — 11 — In-house Ni et al. (2023)

Data set 4
Rubisco 3070 — 5 — DS-10021/EMPIAR 11125 Metskas, Ortega et al. (2022)

http://doi.org/10.1107/S2059798325000865
http://doi.org/10.1107/S2059798325000865
http://doi.org/10.1107/S2059798325000865
https://github.com/warpem/warp/blob/main/scripts/EMPIAR-10491_5TS_e2e.sh
https://github.com/warpem/warp/blob/main/scripts/EMPIAR-10491_5TS_e2e.sh
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Figure 2
Comparing the Gaussian label approach with the binary label approach for centroid annotation. (a) 2D representation of Gaussian labels used to
annotate the particle centroids. (b) Heatmap of predicted labels using Gaussian (left) and binary (right) labels on rotavirus particles and SARS-CoV-2
spike particles. The scale bar is 100 nm. (c) Top: a boxplot of F1 score plotted at the percentile score that yielded its highest value. Cyan bars represent
Gaussian labels and pink bars represent Gaussian labels. Bottom: the RMSE deviation as a ratio of particle size is depicted. Blue bars represent Gaussian
labels (GL); orange bars represent binary labels (BL).



ranging from 2.3 to 3.0 Å, compared with the TM-derived

average, which spans 2.6–3.4 Å (Fig. 4c). The improvement

in the maps is further shown by a lower global B factor

(� 41 Å2) for the tomoCPT-derived map compared with the

template-matching-derived map, which required a higher

global B factor (� 66 Å2). Together, these results demonstrate

that the tomoCPT-based centroid-prediction approach not

only equals but can surpass the performance of traditional

template matching in identifying particles for subtomogram

averaging, at least for the data sets tested in this manuscript.

The improved resolution and quality of the resulting struc-

tures underscore the potential of our method to enhance

structure-determination workflows in cryo-electron tomo-

graphy studies.

3.5. Centroid prediction and subtomogram averaging of

ChAdOx1 COVID vaccine-expressed SARS-CoV-2 spike

molecules

We next evaluated the ability of tomoCPT to predict

particle centroids from a significantly more difficult and

medically relevant data set of SARS-CoV-2 spike proteins
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Figure 3
Comparing the performance of tomoCPT. (a) A section through a tomogram of apoferritin particles with centroids predicted by the model without any
fine-tuning and with fine-tuning with two, three and five tomograms. The contours encircling the apoferritin molecules are coloured by the confidence
score attributed to that centroid by tomoCPT, with cool colours representing low confidence and warmer colours representing high confidence. The scale
bar is 25 nm. (b) Histograms plotting the distribution of the confidence scores attributed by tomoCPT. (c) A boxplot of F1 score plotted at the percentile
score that yielded its highest value when using the base model and the base model fine-tuned with two, three and five tomograms. (d) The RMSE
deviation at the maximum F1 score as a ratio of particle size using the base model and the base model fine-tuned with two, three and five tomograms.



transiently expressed on the surface of U2OS cells and

resolved to 9 Å resolution from 29 972 particles using a

combination of template matching using emClarity (Himes &

Zhang, 2018) and extensive manual cleaning (Ni et al., 2023).

This data set presents challenges for particle picking as the

spike molecules are densely clustered and are surrounded by

cellular components and other nonspecific contaminants. A

conventional method for tackling such a task involves manu-

ally tracing the membrane surface through different sections

of the tomograms, oversampling the surface and then

discarding false-positive picks through multiple rounds of 3D

classification procedures. However, this strategy is impractical

for large data sets.

Approximately 600 spike centroids from 11 denoised

tomograms were manually annotated using the IMOD

package (Mastronarde & Held, 2017) and centroid labels were

generated. The tomogram–label pairs were then used to fine-

tune the base model (described earlier) and used to predict

spike centroids from all tomograms. To minimize the extrac-

tion of false-positive picks from the tomograms, we imple-

mented an additional feature in tomoCPT that enables

users to provide a mask for targeted centroid extraction

(Supplementary Fig. S5). A total of 3400 particles were

subjected to 3D classification in RELION (version 4.0.2;

Kimanius et al., 2021), from which 1700 bona fide spike

molecules were selected and subjected to gold-standard 3D

refinement in RELION. This process yielded a map resolved

to 18.3 Å resolution (Figs. 5b and 5c) and is reasonably

congruent with the atomic model fitted into the density.

Taken together, we show that tomoCPT can successfully

identify particles in challenging environments and enable the

calculation of Coulomb potential maps at mesoscale resolu-

tion with a fraction of the data and minimal user involvement.

3.6. Centroid prediction of rubisco molecules in

carboxysomes

Small object detection in crowded environments remains a

challenge for object localization-type tasks. We reasoned that

our approach of using Gaussian labels could be particularly

suited for identifying particle centroids in such environments.

To this end, we tested our approach on a publicly available

data set of rubisco molecules enclosed within polyhedral

carboxysome shells (Metskas, Ortega et al., 2022). These

micro-compartments have a mean diameter of 120 nm and can

enclose up to 250 rubisco molecules (Ni et al., 2022; Metskas,

Ortega et al., 2022).

Metskas and coworkers used a combination of geometric

picking by manually segmenting individual carboxysome

shells and generating an oversampled 3D grid of points from
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Figure 4
Subtomogram averaging of apoferritin. (a) Fit of human apoferritin coordinates (PDB entry 6zsu) in the Coulomb potential map derived from particles
predicted by tomoCPT. (b) Fourier shell correlation (FSC) curves comparing the resolution of maps derived from using tomoCPT (green) and template
matching (pink). (c) Isosurface renderings of the Coulomb potential maps coloured by local resolution using tomoCPT (left) and template matching
(right).

http://doi.org/10.1107/S2059798325000865


which subtomograms were extracted and extensively classified

to yield a map resolved at 4.5 Å using 32 930 particles

(Metskas, Wilfong et al., 2022; Metskas, Ortega et al., 2022).

In an initial inference run using the base model without any

fine-tuning, only 420 rubisco particle centroids were identified

(confidence threshold of 0.3); however, the efficiency of

detection was low as the base model had not been trained on

points as closely clustered as the rubisco molecules (Fig. 6a),

thus requiring a further fine-tuning step. Fig. 6(b) shows

centroids coloured by the probability score attributed by

tomoCPT, showing that rubisco particles within the carboxy-

somes have higher scores than false-positive centroids that lie

outside it. Subtomograms extracted from these centroids were

then extracted and subjected to a round of 3D classification,

which enabled the identification of 1452 bona fide particles

whose pose parameters were refined using RELION following

further refinement in M, which yielded a map with a mean

resolution of 8.0 Å (Figs. 6c and 6d). This shows that tomoCPT

can identify particle centroids in crowded environments that

can yield subtomogram averages with subnanometre resolu-

tion.

4. Discussion

Recent advancements in data-collection (Eisenstein et al.,

2023, 2024; Khavnekar et al., 2023; Liu et al., 2023) and sample-

preparation techniques (Berger et al., 2023) in cryo-electron

tomography have significantly increased data throughput,

enabling the collection of hundreds of tilt series in a single

24 h session. In this study, we have developed tomoCPT, a

deep-learning tool that predicts particle centroids in cryo-

tomograms using a transformer-based network trained on

Gaussian labels around centroids (Figs. 1a, 1b and 1c).

Several particle-picking tools utilizing various network

architectures have been described in the literature (Zeng et al.,

2023; Moebel et al., 2021; Rice et al., 2023; de Teresa-Trueba et
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Figure 5
Subtomogram averaging of SARS-CoV-2 spike. (a) A section through a tomogram of a cell expressing SARS-CoV-2 spike molecules. Centroids,
predicted by tomoCPT are highlighted. The scale bar is 25 nm. (b) Fit of PDB entry 6vxx in the Coulomb potential map of SARS-CoV-2 spike derived
using coordinates predicted by tomoCPT. (c) FSC trace of the map in (b).



al., 2023; Kiewisz et al., 2023; Liu et al., 2024; Huang et al.,

2024). Notably, DeepPicker demonstrated that the use of weak

labels for annotations and predictions instead of binary labels

is superior in performance (Liu et al., 2024) and outperforms

other state-of-the-art particle-picking tools. Similarly, our

results demonstrate that the use of Gaussian labels for

centroid prediction offers superior performance compared

with both binary labels and template matching across a diverse

range of biological specimens (Figs. 2b and 2c and Supple-

mentary Figs. S2 and S3) as shown by the higher F1 scores.

Furthermore, the use of Gaussian labels enables a precise

representation of particle positions (Fig. 2a), eliminating the

need for additional post-processing steps to extract particle

centroids.

A key advantage of deep-learning methods for object

localization is their generalizability to previously unseen data.

We demonstrate that tomoCPT generalizes effectively to

novel data types, as shown by its performance on benchmark

data (Figs. 3a–3d, Supplementary Fig. S3). While the base

model showed promising results, we observed that fine-tuning

with as few as two tomograms was sufficient to achieve a

significant increase in performance (Figs. 3a–3d, Supplemen-

tary Fig. S3), although with real-world data the target

heterogeneity and target counts per tomogram will impact the

amount of data required to fine-tune the network for optimal

performance. This finding has important implications for the

practical application of tomoCPT, as it suggests that the model

can be rapidly adapted to new protein structures with limited

amounts of data.

We assessed the impact of tomoCPT-predicted centroids

on downstream subtomogram averaging analysis. Using the

benchmark apoferritin data set, we observed that the

predicted centroids yielded a higher resolution map compared

with an equal number of particles identified through template

matching (Figs. 4a–4c). This suggests that tomoCPT may be

more effective at identifying high-quality particles for struc-

tural analysis. We also demonstrate the ability of tomoCPT

to predict coordinates in real-world data sets, such as SARS-

CoV-2 spike proteins expressed on cell surfaces (Fig. 5 and

Supplementary Fig. S4) and rubisco molecules enclosed within

carboxysomes (Fig. 6), in both cases yielding particles suitable

for subtomogram averaging.

While tomoCPT has shown promising results across various

data sets, it is important to acknowledge its current limitations.

(i) The formulation of object identification in cryo-tomo-

grams as a centroid-prediction problem means that tomoCPT

currently lacks a mechanism to pick filamentous assemblies

such as microtubules and actin.

(ii) The network was trained on data with objects of

uniform size and its capability to simultaneously annotate
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Figure 6
Subtomogram averaging of rubisco molecules. A slice through a tomogram of rubisco-containing carboxysomes with centroids identified by the
tomoCPT base model (a) and fine-tuned on a subset of data (b). The contours encircling the rubisco molecules are coloured by the confidence score
attributed to that centroid by tomoCPT, with cool colours representing low confidence and warmer colours representing high confidence. (a) Fit of PDB
entry 7zc1 into the Coulomb potential map derived from coordinates identified by the model fine-tuned on rubisco. (b) FSC trace of the map shown in
(c).
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centroids for differently sized particles in the same field of

view remains to be tested.

Self-supervised learning is a powerful paradigm within the

deep-learning field, aiming to learn the underlying repre-

sentation of data to establish a foundation model that would

reduce the need for supervised training. This aspect of deep

learning in centroid prediction remains unexplored, as insuf-

ficient data were available at the time of this study. However,

with the increasing availability of curated data in publicly

accessible resources such as the Chan–Zuckerberg CryoET

Data Portal (Ermel et al., 2024), the development of a foun-

dation model for cryo-ET data annotation will be a focus of

future research efforts.

The development of tomoCPT represents a significant step

towards more automated and efficient processing of cryo-ET

data. By reducing the need for manual intervention and

improving the accuracy of particle picking, our method has the

potential to accelerate structural studies of diverse biological

systems from individual protein complexes to intricate cellular

landscapes. Future work will focus on expanding the

capabilities of tomoCPT to handle a wider range of biological

structures and integrating it more seamlessly into existing

cryo-ET data-processing pipelines.

5. Code availability

The program can be accessed online at https://github.com/

shahpnmlab/tomocpt, where instructions to install and run the

program are available. Weights will be periodically updated

and made available via Zenodo.
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