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With the advent of next-generation modelling methods, such as AlphaFold2,

structural biologists are increasingly using predicted structures to obtain struc-

ture solutions via molecular replacement (MR) or model fitting in single-particle

cryogenic sample electron microscopy (cryoEM). Differences between the

domain–domain orientations represented in a predicted model and a crystal

structure are often a key limitation when using predicted models. Slice’N’Dice is

a software package designed to address this issue by first slicing models into

distinct structural units and then automatically placing the slices using either

Phaser, MOLREP or PowerFit. The slicing step can use the AlphaFold

predicted aligned error (PAE) or can operate via a variety of C�-atom-based

clustering algorithms, extending the applicability to structures of any origin. The

number of splits can either be selected by the user or determined automatically.

Slice’N’Dice is available for both MR and automated map fitting in the CCP4

and CCP-EM software suites.

1. Introduction

In macromolecular X-ray crystallography (MX), molecular

replacement (MR) remains the dominant method for solving

the phase problem, with 92.8% of the crystal structures

deposited in the Protein Data Bank (PDB; Burley et al., 2021)

between November 2023 and October 2024 having been

solved by MR. The emergence of next-generation predicted

models has wide-reaching implications for MX, with MR being

a key application. The availability of sufficiently close homo-

logues with experimentally determined structures has always

been a limitation in MR, one which is largely solved by the

highly accurate models produced by next-generation model-

ling methods such as AlphaFold2 (Jumper et al., 2021),

RosettaFold (Baek et al., 2021) and ESMFold (Lin et al., 2023).

In MX, studies (McCoy et al., 2022; Terwilliger et al., 2024;

Keegan et al., 2024) have shown that using high-quality

predictions as search models in MR can solve the vast majority

of cases, even where the original structure determination

employed experimental phasing. To facilitate this, some

preprocessing of the predicted model is often required for

success in MR and the same is true for cryoEM map fitting.

The quality of the predicted model can vary across the target

sequence, with some regions being inaccurately predicted.

AlphaFold2, RosettaFold and ESMFold each provide

predicted quality scores on a per-residue basis that can be used

to guide the removal of any residues that are likely to have

been inaccurately modelled. AlphaFold2 and ESMFold give

the predicted local distance difference test (pLDDT) score
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(Jumper et al., 2021), a per-residue estimate of its confidence

on a scale from 0 to 100 and 0 to 1, respectively, where higher

values correspond to higher confidence. RosettaFold gives an

estimated root-mean-square deviation (r.m.s.d.), a per-residue

estimate of the r.m.s.d. to the true structure, where lower

values correspond to higher confidence. The methods store

this information in the B factor column of their output PDB

files.

While local confidence scores work well for estimating the

reliability of individual residues, they are unable to indicate

global inaccuracies in the model such as those caused by inter-

domain conformational changes. To address this problem,

AlphaFold2 provides a predicted aligned error (PAE; Varadi

et al., 2022) matrix. The PAE shows the expected error in the

distances between residues. Low PAE values signify high

confidence and, when sustained over a range of residues, often

correspond to well defined structural domains, while high PAE

values indicate greater uncertainty and are typically found in

regions between domains or in more flexible parts of the

protein. The PAE can therefore be used to assess the relia-

bility of a predicted inter-domain orientation.

Another important step for MX is the conversion of the

pLDDT/r.m.s.d. values into pseudo-B factors. When using

PDB-derived search models, B factors are used for weighting

search models in Phaser (McCoy et al., 2007), and therefore

the use of pseudo-B factors can improve the performance of

the models in MR (Croll et al., 2019; Oeffner et al., 2022).

Here, we present Slice’N’Dice, an automated pipeline to

efficiently process and deploy deep-learning-based structure

predictions in both the MX and cryoEM fields. It first

processes predicted models by removing low-confidence

regions and converting confidence scores into pseudo-B

factors. It then slices predicted models into distinct structural

units which can be placed in an automated fashion. With MR,

a strategy is employed which either provides Phaser (McCoy

et al., 2007) with all of the slices or attempts to place the slices

individually before combining any placements that are

deemed to be successful (hybrid mode), while in cryoEM map

fitting a novel machine-learning model is used to guide the

sequential acceptance of placed structural units. Taken toge-

ther, these pipelines allow Slice’N’Dice to maximize the

effectiveness of predicted models in both MR and EM map

fitting.

2. Methods

Slice’N’Dice is a combination of two steps: ‘Slice’, which

breaks models up into distinct structural units, and ‘Dice’,

a step that was originally developed to perform automated

MR on the split models (named as a nod to the maximum-

likelihood methods in Phaser) but that now also encompasses

map fitting for cryoEM.

2.1. Slice

2.1.1. Clustering

Clustering algorithms are used to detect distinct structural

units within a predicted model. Slice’N’Dice provides eight

clustering methods for users to choose from (Fig. 1). Six

clustering methods, coloured teal in the figure, are used

from the scikit-learn machine-learning library (version 1.0.2;

Garreta & Moncecchi, 2013). These exploit the proximity of

atoms in domains to clusters based on the coordinates of the

C� atoms. Two other PAE-based methods are also provided

from the Computational Crystallography Toolbox library

(cctbx; Grosse-Kunstleve et al., 2002). Both cluster on the PAE

output from AlphaFold2 (Oeffner et al., 2022). Based on

preliminary data, the BIRCH algorithm (Balanced Iterative

Reducing and Clustering using Hierarchies; Zhang et al., 1996)

has been found to be the most effective and is the current

default in Slice’N’Dice.

The clustering methods can be subdivided further into those

methods which automatically determine the number of clus-

ters to produce and those methods which require users to

manually specify the number of clusters to produce. The

two PAE-based methods produce automatically determined

structural units, but Slice’N’Dice allows these to be combined

where a user has specified a smaller number of slices by

calculating the centroid for each cluster and clustering these

centroids using the agglomerative clustering algorithm. For

those methods where the number of clusters needs to be or

can be specified, users can set the minimum and maximum

number of splits to be made. This allows Slice’N’Dice to test a

range of different splits (Fig. 2).

In some cases, particularly when fitting to a cryoEM map,

target structures can be very large and may require separate

predictions of component parts. To handle this scenario, the
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Figure 1
Venn diagram showing the various clustering methods used to split
models into distinct structural units and included in Slice’N’Dice. Shown
in teal are clustering methods included in scikit-learn that cluster based on
C�-atom coordinates. Shown in orange are clustering methods included
in cctbx that cluster based on the predicted aligned error (PAE) from
AlphaFold2. On the left are all of the clustering methods that require the
number of clusters to be specified and on the right are clustering methods
that automatically determine the number of clusters. The cctbx PAE
methods automatically identify clusters: however, if a user defines a
maximum number of splits, Slice’N’Dice performs an additional step to
merge the closest clusters until the number of splits is less than or equal to
the maximum number of splits.



program can be given a list of predicted models as input. The

number of times that each individual input model is split can

also be specified when using manual clustering options.

2.1.2. Model truncation and B factor treatment

The type of score contained in the B factor column of a

model coordinate file (for example pLDDT for AlphaFold2,

r.m.s.d. for RosettaFold and fractional pLDDT for ESMFold)

can be specified by the user. Predicted models often require

some form of truncation to succeed in MR. Low-confidence

residues in the predicted model are unlikely to have the same

conformation in a crystal or cryoEM structure. Slice’N’Dice

manipulates the B factor column data from a predicted model

in two ways.

(i) Per-residue quality scores contained in the B factor

column of the predicted models (for example pLDDT) are

used to direct the truncation of the predicted model. Residues

that score below a specified threshold are removed from the

model.

(ii) The per-residue quality scores are converted to pseudo-

B factors using the methods described in Simpkin et al. (2022)

and Croll et al. (2019). Phaser makes use of atomic B factors

in its maximum-likelihood method, helping to weight their

contribution in the MR search.

For AlphaFold2 models, the default pLDDT threshold is 70

and for RosettaFold models the default RMS threshold is 1.75.

Both values can be set by the user. If using models that

have already undergone a pseudo-B factor conversion, the

conversion step can be skipped. To enable the truncation of

poorly predicted regions in this scenario, the given pLDDT

threshold value is converted into a pseudo-B factor and any

residues scoring above this value are removed.

2.2. Dice

The second part of the Slice’N’Dice pipeline, ‘Dice’,

performs molecular replacement or map fitting using the

individual slices produced by ‘Slice’.

2.2.1. MX Dice

In the default mode, Dice provides all of the slices to Phaser

(McCoy et al., 2007) simultaneously to automatically place as

many slices as possible. This strategy works in the vast

majority of cases, but in some situations smaller parts of the

sliced model can be difficult to place through standard MR. To

aid with their placement we incorporated an additional search

step making use of a phased translation function (PTF; Read

& Schierbeek, 1988). This uses the phases generated from
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Figure 2
Flowchart showing the model-slicing process. Scikit-learn methods are shown in teal and cctbx methods are shown in orange.



those slices that have already been successfully placed by

Phaser (achieving a per-slice LLG of �60) to improve the

chances of placing smaller search models. The current imple-

mentation of Slice’N’Dice makes use of MOLREP (Vagin &

Teplyakov, 2010) to perform this step, but it could also be

performed using Phaser. Specifically, we make use of the

SAPTF (spherically averaged phased translation function)

implementation from MOLREP where the position of the

centre of mass of a search model is found prior to determi-

nation of its orientation. The orientation is subsequently

found by a phased rotation function (Vagin & Isupov, 2001).

After each MOLREP job, REFMAC5 (Murshudov et al.,

2011) is used to assess whether the placed slice has improved

the solution. Fig. 3(a) shows the decision-making process used

in the hybrid mode.

2.2.2. CryoEM Dice

When provided with a cryoEM density reconstruction

(map), the Slice’N’Dice EM pipeline makes use of two auto-

matic map-fitting programs: MOLREP and PowerFit (van

Zundert & Bonvin, 2015). MOLREP runs on a single core,

which means that multiple splits can be docked into a map file

simultaneously, providing an efficient form of map fitting for a

CPU-based workstation. Alternatively, Powerfit performs an

exhaustive rotational and translational search across the map.

This has a high computational cost on CPU-based work-

stations, but these computations can be offloaded to the GPU,

reducing the processing time drastically. MOLREP is run by

default and is distributed as part of the CCP4 and CCP-EM

software suites. PowerFit needs to be installed as an additional

dependency. This can be performed using package-ccpem2

(https://gitlab.com/ccpem/package-ccpem2). Fig. 3(b) illus-

trates the overall Dice pipeline for EM, although slight

differences exist between the methodology depending on how

the map-fitting programs utilize the hardware. MOLREP

can be run in parallel and the top, non-overlapping, models

that pass a machine-learning classifier (Section 2.2.2.1) are

returned. PowerFit will run sequentially using the previous

fitted model (assuming that it has passed the checking process)

as a fixed model.

2.2.2.1. Map–model binary classifier

Assessing the suitability of the map-fitted models can be

accomplished through a trained eye and validation metrics;

however, automating this process presents a significant chal-

lenge. To tackle this issue, a machine-learning approach was

employed. The map–model fitting scores ultimately included

in the training data for the machine-learning classifier were

Fourier shell correlation average (FSCavg), mutual informa-

tion (MI), cross correlation (CC) and segment-based

Manders’ overlap coefficient (SMOC). Also included are

overlap map and overlap model scores. These give the clas-

sifier additional information about the relative size of the map/

model. Additional information on the classifier training, the

calculation of the map–model scores and hyperparameter

optimization can be found in the supporting information.
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Figure 3
Flowchart showing (a) the Slice’N’Dice hybrid MR mode, where Phaser jobs are ordered by slice size and run in order if a single processor is specified or
run in parallel if multiple processors are specified. Any solutions found in this initial Phaser step are combined and used as a fixed model that is input into
the MOLREP subprocess [detailed in (c)]. (b) The Slice’N’Dice EM pipeline. (c) The MOLREP PTF step where we attempt to place additional slices
from a fixed input model. If the R scores improve the output is either set as a fixed model for subsequent slices or returned as our final MR solution.

https://gitlab.com/ccpem/package-ccpem2
http://doi.org/10.1107/S2059798325001251


A training data set of approximately 14 000 rows of scores

is generated as input for the classifier. Typically, a test–train

split is performed for training purposes. During preliminary

training of the data, overfitting was a significant concern, given

that multiple protein models can be trained on a single map.

To mitigate this effect, a separate, smaller training data set was

generated so that the classifier could be tested against maps

that it has not encountered. The data set was balanced using

undersampling, and any noise from the score-generation

process was eliminated.

Various machine-learning binary-classification models were

tested as part of the training process; all of these are available

through the scikit-learn Python package (Pedregosa et al.,

2011). The models tested were support vector classifier,

k-nearest neighbours classifier, random forest classifier, extra

trees classifier and stochastic gradient descent (SGD) classi-

fier. Each of these models was accessible through scikit-learn.

SGD is not inherently a classifier but implements different

classifiers and uses the SGD algorithm for optimization. The

efficacy of the model depends on the chosen loss. Out of these

classifiers, SGD was chosen for the task due to its preliminary

aptitude and reduced computational time for training, which

greatly sped up the hyperparameter-testing process.

To fine-tune the model, the scikit-learn class Randomized-

SearchCV was utilized (Pedregosa et al., 2011), employing a

range of different hyperparameters to optimize the accuracy

scoring function. Choosing an alternative scoring metric

resulted in the classifier heavily favouring one class to maxi-

mize the score, whereas optimizing for accuracy led to more

balanced predictions. See Table 1 for the hyperparameters,

their search spaces and the selected value used for the final

training of the classifier. Various loss functions were tested

during the hyperparameter stage despite choosing log loss for

the final classifier round. This ensured a probability score

which is used in the Slice’N’Dice clash checker (see below).

When selecting log loss, the SGD classifier employs logistic

regression.

2.2.2.2. Clash checker

During map fitting, multiple models can be placed in a way

in which they overlap with one another. Each slice is run with

MOLREP concurrently across the entire search space in the

map, and therefore the outputs can overlap. Issues can also

arise with PowerFit when it places models in close proximity.

To mitigate this, if two models share the same bounding box, a

clash checker is run to determine whether and to what extent

they overlap.

To prevent two models occupying the same space (over-

lapping), a ball-tree algorithm is used. The ball tree is a data

structure used for efficient nearest-neighbour searches in high-

dimensional spaces by recursively partitioning data points into

nested hyperspheres or balls (Omohundro, 1989). In our case,

the data points are the atom model coordinates. A ball tree is

able to make efficient comparisons of distances between itself

and another ball tree, making it more resilient to larger input

sizes (here larger atomic models). The ball tree is calculated

using the scikit-learn Python package (Pedregosa et al., 2011).

Currently, the overlap check examines atoms within a distance

threshold of 3.8 Å. This threshold is based on the average

r.m.s.d. of the distances between two continuous C� atoms in

an atomic model (Chakraborty et al., 2013); the rationale is

that the C atoms on the opposing protein structure should fall

outside this range. If more than 5% of atoms in the shorter

model extend beyond this threshold, the models are consid-

ered to be overlapping. The 5% threshold was chosen to allow

for small overlapping regions that might potentially be

resolved later without obstructing the discovery of a global

solution. If a clash is found, the protein model with the higher

classifier-calculated probability value is chosen and the other

is discarded.

2.3. Assessing the results

2.3.1. MX

An all-atom r.m.s.d. (with outlier rejection) was calculated

between the target and the model before and after

Slice’N’Dice using PyMOL (https://www.pymol.org/) to assess

the improvement in the overall alignment achieved by slicing

the model. MR in Phaser was considered to be successful

when the log-likelihood gain (LLG) improved by 60 or more

and the translation-function Z-score (TFZ) was �8 for each

placed slice (Oeffner et al., 2018). By default Slice’N’Dice also

performs ten cycles of jelly-body refinement (increased to 100

as of version 0.1.1) using REFMAC5 (Murshudov et al., 2011),

with R scores of �0.45 considered to be indicative of a

solution. To verify any solutions, phenix.get_cc_mtz_pdb

(Liebschner et al., 2019) was used to calculate the map

correlation coefficient (mapCC) score against the deposited

structure, with a global mapCC score �0.25 being considered

to be a success.
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Table 1
Hyperparameter search using RandomizedSearchCV.

The search space comprises the range of values for the search to combine, along with the selected values that, when combined, yielded the best score. The model
was changed as the perceptron model does not produce probability values. Instead, log (logistic regression) was selected.

Hyperparameter Search space Selected value

Alpha [0.0001, 0.001, 0.01, 0.1, 1, 10, 100] 0.001
Penalty [l2, l1, elasticnet, none] l2
Learning Rate [optimal, invscaling, adaptive] invscaling

Eta0 (the initial learning rate) [0.01, 0.1, 1, 10, 100] 100
Loss (or choice of model) [hinge, log, modified_huber, squared_hinge, perceptron] perceptron (log)
Power_td [0.1, 0.2, 0.5, 0.55, 0.9] 0.9
Validation Fraction [0.1, 0.2, 0.3] 0.2
Epsilon [0.1, 0.2, 0.3] 0.1

https://www.pymol.org/


2.3.2. CryoEM

A correlation coefficient (CC) was calculated using the

ChimeraX fitmap function with model shift and rotation

deactivated to restrain the current position of the model in the

map for scoring (Pettersen et al., 2021). Unlike CC for MX, CC

for cryoEM does not have a defined threshold for a solution,

being more helpful for comparisons of alternative possible

solutions. Nevertheless, Supplementary Table S3 provides an

insight into the distribution of CC scores of EMDB-deposited

cryoEM maps and their corresponding protein models. From

this distribution, a CC greater than 0.507 and 0.559

(Supplementary Table S3) in the resolution ranges 4.5–6 Å

and >6 Å, respectively, is likely to indicate a good fit; anything

less than 0.408 and 0.4345, respectively, is likely to suggest a

misfit.

3. Results

3.1. Results overview

Slice’N’Dice can enable a more effective use of structure

predictions in MR. In this way, some cases that would other-

wise be difficult or intractable can readily be solved. Here, we

show a number of examples, deposited after the release of

AlphaFold2, that highlight the ways in which Slice’N’Dice can

maximize the effectiveness of predicted models in MR and in

cryoEM. The structure predictions used in the MX testing
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Table 2
Summary of the example results for MX.

Each case has a single copy in the asymmetric unit. For PDB entry 7oa7 the results using PAE networkx are shown in parentheses. The fraction of atoms accepted in
the r.m.s.d. calculation are shown in square brackets. In the case of PDB entry 7b9c only three of the four slices were placed by Phaser. The predicted model also
represented about 40% of the scattering content in the crystal structure. Nonetheless, the MR scores and the mapCC values clearly indicate the correct placement
of the three slices found.

PDB entry 7oa7 PDB entry 7rb4 PDB entry 7b9c

Resolution (Å) 1.45 2.19 2.4
No. of reflections 81269 28929 133845

Clustering method BIRCH (PAE networkx) BIRCH BIRCH
No. of slices 2 3 4
R.m.s.d. of entire model to target before Slice’N’Dice (Å) 1.528 [0.84] (1.083 [0.74]) 3.987 [0.86] 3.952 [0.53]
R.m.s.d.s of slices to target after Slice’N’Dice (Å) 0.505 [0.91], 0.550 [0.85]

(1.213 [0.87], 0.488 [0.84])
0.528 [0.84], 0.757 [0.79],

0.9 [0.74]
0.466 [0.71], 0.616 [0.91],

0.797 [0.99], 1.038 [0.76]
Model completeness/scattering content (%) 91.5 (89.1) 100 37.5
Phaser LLG 1339 (641) 114 310

Phaser TFZ 22.5, 35.6 (20.3, 18.5) 6, 11.6, 13.2 13.0, 20.7, 27.4
REFMAC R factor 0.41 (0.41) 0.44 0.48
REFMAC Rfree 0.41 (0.41) 0.47 0.51
Local mapCC 0.79 (0.79) 0.72 0.80
Global mapCC 0.7 (0.7) 0.59 0.47

Figure 4
(a) The closest match in the PDB to the target structure, PDB entry 3asi (orange, r.m.s.d. 10.88 Å), superimposed on the crystal structure of PDB entry
7oa7 (grey). (b) An AlphaFold2 model of the target (blue, r.m.s.d. 1.56 Å) superimposed on the crystal structure of PDB entry 7oa7 (grey). (c) The
AlphaFold2 model after slicing and MR with Slice’N’Dice (green, r.m.s.d. 0.26 Å, global mapCC 0.7) shown against the crystal structure of PDB entry
7oa7 (grey). This figure was made using Moorhen (https://moorhen.org/).

http://doi.org/10.1107/S2059798325001251
http://doi.org/10.1107/S2059798325001251
https://moorhen.org/


were generated using AlphaFold2 (Jumper et al., 2021), while

the structure predictions used in the cryoEM testing were

generated using ColabFold (Mirdita et al., 2022).

3.2. MX examples

3.2.1. Example 1: PDB entry 7oa7

PDB entry 7oa7 is a crystal structure of a PilC minor pilin

solved by single-wavelength anomalous dispersion (SAD). At

the time of its release, the closest hit in the PDB (PDB entry

3asi) had only 12% sequence identity to the target and was

insufficiently similar to succeed as an MR search model

(Fig. 4a). A model made by AlphaFold2 had very good

predicted quality overall (average pLDDT 85.61) but was

unable to solve the structure since AlphaFold2 modelled a

different conformation between the two domains (Fig. 4b). By

using the BIRCH algorithm in Slice’N’Dice to split the struc-

ture into two, the structure can readily be solved by MR with a

final LLG of 1339 and a global mapCC of 0.7 (Table 2, Fig. 4c).

This structure could also be solved using the PAE networkx
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Figure 5
(a) The closest match in the PDB to the target structure, PDB entry 1f0l (orange, r.m.s.d. 5.74 Å), superimposed on the crystal structure of PDB entry
7rb4 (grey). (b) An AlphaFold2 model of the target coloured on a scale of orange to blue, where orange indicates a low pLDDT score (�50) and blue
indicates a high pLDDT score (�90), superimposed (r.m.s.d. 3.19 Å) on the crystal structure of PDB entry 7rb4 (grey). (c) The AlphaFold2 model after
preprocessing, slicing and MR with Slice’N’Dice (green, r.m.s.d. 0.32 Å), shown against the crystal structure of PDB entry 7rb4 (grey). (d) The placed
AlphaFold2 model after 20 cycles of model building with Buccaneer (red, r.m.s.d. 0.14 Å, global mapCC 0.84) shown against the crystal structure of PDB
entry 7rb4 (grey). This figure was made using Moorhen.



algorithm (Hagberg et al., 2008; Oeffner et al., 2022) with the

maximum number of splits set to two (Table 2). BIRCH and

PAE networkx identified slightly different domain boundaries

(Supplementary Fig. S1), and whilst BIRCH seemed to work

slightly better in this case, both methods could be refined to

the same point.

3.2.2. Example 2: PDB entry 7rb4

PDB entry 7rb4 is a crystal structure of peptono toxin

solved by SAD. The closest hit in the PDB (PDB entry 1f0l)

had only 26% sequence identity to the target and was insuf-

ficiently similar to work in MR, even when split with

Slice’N’Dice (Fig. 5a). A model made by AlphaFold2 was poor

quality overall (average pLDDT 61.02; Fig. 5b). Indeed,

simply splitting the model with default Slice’N’Dice failed to

lead to a structure solution. Nonetheless, the combination of

the removal of residues below a relaxed pLDDT threshold of

50 with splitting the model into three units, steps implemented

together in Slice’N’Dice, led to structure solution (LLG 114,

R factor 0.44, Rfree 0.47, mapCC 0.59; Fig. 5c). This solution

could be significantly improved by running 20 cycles of

Buccaneer (Cowtan, 2006), which increased the percentage of

modelled residues from 34 to 74 (completeness by residues

0.74, R factor 0.23, Rfree 0.30, global mapCC 0.84; Fig. 5d).

3.2.3. Example 3: PDB entry 7b9c

PDB entry 7b9c is a crystal structure of a minimal splicing

factor 3B (SF3B) core in complex with spliceostatin A solved

by MR using PDB entries 5ife and 6en4 as search models.

Despite highly similar homologues in the PDB, a model of

SF3B subunit 1 deposited in the EBI AlphaFold Protein

Structure Database (Varadi et al., 2022; UniProt ID O75533)

was insufficiently similar to the target protein to succeed in

MR (Fig. 6a). The HEAT repeat region of SF3B is confidently

predicted by AlphaFold2, but has been predicted to adopt a

much tighter conformation than the crystal structure. Without

reference to the solved structure, it would be unclear to the

experimentalist where the model should be split manually in

order for it to succeed in MR. However, the Slice’N’Dice

automated slicing procedure was able to successfully slice the

model into four structural units, of which three could be

placed by MR (LLG 310) and used to solve the structure

(Fig. 6b). The refinement scores were a little high (R factor

0.48, Rfree 0.51, local mapCC 0.8) due to the fact that the SF3B

subunit 1 domain made up only 43.8% of the total scattering

content. Nonetheless, this could be confirmed as a true solu-

tion using mapCC (global mapCC 0.47) and further under-

lined as such using ModelCraft (Bond & Cowtan, 2022) to

automatically rebuild the structure. ModelCraft was able to

improve the model completeness from 35.7% to 77.1% and to

improve the refinement scores (R factor 0.328, Rfree 0.394).

This example also demonstrates where the PAE approach can

struggle due to a lack of distinguishable structural domains in

the PAE/EPE plot (Fig. 6c).

3.3. Map–model binary-classifier results

When adapting Slice’N’Dice EM, we encountered an issue

with classifying a properly fitted model. In MR, output scores

from programs can confidently indicate whether a model

has been correctly positioned, as discussed in Section 2.3.1.

However, in EM cases, while there are validation scores

available, they could not be used to reliably determine

placement success. This prompted the development of a

logistic regression binary classifier for Slice’N’Dice, which

evaluates the fitting positions of models based on several

map–model scores (see Section 2). The classifier produces a

probability score between 0 and 1, with values closer to 1

indicating greater agreement between the model and the map.

A cutoff value of 0.5 is set, with all values that are greater

being given a success classification.

To assess the effect of the multiple feature inputs, classifiers

trained on single features were compared against the classifier
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Figure 6
(a) O75533, a model from the AlphaFold Protein Structure Database, coloured on a scale of orange to blue, where orange indicates a low pLDDT score
(�50) and blue indicates a high pLDDT score (�90), aligned (r.m.s.d. 3.95 Å) with the SF3B core (chain C) from PDB entry 7b9c (grey). (b) O75533
after preprocessing, slicing and MR with Slice’N’Dice (green, r.m.s.d. 0.3 Å, global mapCC 0.47), shown against the SF3B core (chain C) from 7b9c
(grey). This figure was made using Moorhen. (c) An EPE plot from AlphaFold3 for O75533.

http://doi.org/10.1107/S2059798325001251


trained with all features. The classifier trained on all features

outperformed the other classifiers, indicating a synergistic

effect. Across all metrics, the ‘All features’ classifier showed

the best discriminatory power to classify the success and

failure classes. From Fig. 7, it is apparent that the metrics of

the FSC average classifier were greater than its counterparts

and almost close to the ‘All features’ classifier, yet it was

surpassed on every metric except recall. A high recall and low

precision indicate that the FSC classifier is producing more

false positives than the ‘All features’ classifier (Fig. 7b). Such

false positives could disproportionately negatively impact the

overall success of Slice’N’Dice: incorrectly placed slices could

block regions of the map and prevent the fitting of a poten-

tially correct placement of another slice. To further assess the

effect of multiple features, single features were systematically

dropped, i.e. an ablation study was conducted. Interestingly,

the choice to include ‘Resolution’ as an input feature caused

a marginal decrease in performance: an ROC AUC of 0.830

with resolution and 0.844 without resolution. After removing

resolution as an input feature, each further feature that was

dropped decreased the overall performance of the model.

Taken together, these observations clearly illustrate the

synergistic effect of the input features.

The performance was then compared at high resolution

(�4 Å) or low resolution (>4 Å). Figs. 8(a) and 8(b) show the

confusion matrices from ‘high’ and ‘low’ resolution subsets of

the testing data set, respectively. The proportion of the data

that are false negatives remains fairly consistent between the

two, although the proportion of false positives is higher in

the low-resolution subset (26.4%) than the higher resolution

subset (11.9%), presumably indicating the increased difficulty

in assessing placements at low resolutions. Nonetheless,

Slice’N’Dice still produces good results in the lower resolution

range, as the examples below show.
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Figure 7
Classifier validation plots comparing an all-features classifier against classifiers trained on single features. (a) Confusion matrix for the entire data set
(4438 rows of input features). (b) Classifier validation metrics for each classifier trained on single metrics against the classifier trained on all metrics
comparing overall ROC AUC, F1 score, recall, precision and accuracy. (c) Receiver operating characteristic (ROC) curve for each classifier. ROC AUC,
receiver operating characteristic area under the curve.



3.4. EM examples

3.4.1. Example 1: PDB entry 7ymt (EMDB entry EMD-33942)

EMDB entry EMD-33942 is a map of the MERS-CoV spike

protein, with a reported global resolution of 6.55 Å (Gecht et

al., 2022). The solved structure has PDB entry 7ymt. The map

represents a protein trimer of the spike glycoprotein with a

pseudo-symmetry of c3. Fig. 9 demonstrates the use of

Slice’N’Dice by dividing the task into Slice and Dice. Slice, the

model-splitting step, was run using two different clustering

methods (BIRCH and k-means; Fig. 1). The range of slices was

set to between three and five. The four slices of the ColabFold

monomer model made from k-means were selected to go

forward into the Dice job, our automated map-fitting pipeline,

but one was disconsidered because it was fragmented after

pLDDT trimming and did not resemble a clear domain

(Fig. 7). Slice’N’Dice successfully managed to place six

domains (from a total of 12) confidently into the map with a

global cross-correlation (CC) score of 0.84 (Table 3).
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Table 3
Summary of the EM example results.

PDB entry
7ymt

PDB entry
8gtd

PDB entry
8bx5

EMDB code EMD-33942 EMD-34250 EMD-16308
Resolution (Å) 6.55 4.7 4.2
Clustering method k-means BIRCH BIRCH
Slices placed 6/9 45/48 9/15
No. of slices 3 2, 2 (multi-chain input) 4
Solved structure CC 0.9317 0.7273 0.8633
Slice’N’Dice output CC 0.8436 0.4808 0.7126

Figure 8
Classifier validation plots. (a) Confusion matrix for a subset of the complete testing data set classified as ‘high’ resolution (�4 Å). (b) Confusion matrix
for a subset of the complete training data set classified as ‘low’ resolution (>4 Å). (c) Receiver operating characteristic (ROC) curve for the resolution
groups. (d) Classifier validation metrics for each resolution group, comparing overall ROC AUC, F1 score, recall, precision and accuracy. ROC AUC,
receiver operating characteristic area under the curve.



3.4.2. Example 2: PDB entry 8gtd (EMDB entry EMD-34250)

EMDB entry EMD-34250 is a map of a marine siphophage

protein, with a global resolution reported to be 4.7 Å (Huang

et al., 2023). The density file comprises four regions: the

portal–adaptor complex, which consists of two of the four

regions, the terminator and the tail tube. The solved structure

(PDB entry 8gtd) for the portal–adaptor complex consists of

a C12 formation of two distinct protein chains: the portal

protein and the head-to-tail joining protein. As PDB entry

8gtd only corresponded to the portal–adapter complex, the

terminator and tail tube were manually removed from the map

using ChimeraX Segger (Pintilie et al., 2010). In the original

paper, the solved structure was generated using the trRosetta

server (Du et al., 2021) and the placements were manually

fitted into a map file using UCSF ChimeraX (Pettersen et al.,
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Figure 9
Pipeline following Slice’N’Dice, made possible by the CCP-EM software suite (Burnley et al., 2017) GUI Doppio (Burnley et al., 2023). In the suite,
Slice’N’Dice is split into three jobs: Slice, Dice and Slice’N’Dice. The model is a ColabFold model of the SARS-CoV-2 spike protein PDB entry 7ymt
generated using ColabFold (Mirdita et al., 2022) with pLDDT scores stored in the B factor column of the PDB file. Residues under a certain threshold
(70; the default and the value used in generation of the figure) are trimmed and the remaining residues undergo the slicing process. In this figure, two
separate slice jobs were performed using BIRCH and k-means clustering (Pedregosa et al., 2011). (n.b. the colours for each slice are inconsistent between
jobs and split numbers. A colour key is supplied with each run to indicate which filename links to each colour.) For the purpose of this exercise, k-means
split 4 was used without slice 1 as this slice contains extraneous features. The Dice job is run next using the input models from the Slice job. An input map
is used as the template for the map fitting. In this example, this is a 6.55 Å resolution reconstruction of the spike protein from the EMDB (EMD-33942).
After the map fitting, two output windows are displayed in Doppio, one containing the models that passed the classifier check and a second output of the
combined ‘passed’ models and any remaining models. These are coloured according to the confidence score of the classifier, an extra output for the Dice
job.



2021). A target such as this with many chains is an ideal

candidate for automated model preparation and map fitting.

Each chain was sliced twice using the BIRCH clustering

algorithm in Slice’N’Dice. Splitting each chain into two

domains allowed Slice’N’Dice to more accurately place these

models by accounting for inter-domain orientation issues that

had arisen during modelling. The final CC was 0.48 and out of

a possible 48 slices, Slice’N’Dice was successful in placing 45

with one false positive (Fig. 10).

3.4.3. Example 3: PDB entry 8bx5 (EMDB entry EMD-16308)

EMDB entry EMD-16308 is a map of a nicotinic acetyl-

choline receptor from Alvinella pompejana (De Gieter et al.,
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Figure 10
Results output from a Slice’N’Dice job. (a) PDB entry 8gtd chains A (a) and B (b) were generated using ColabFold (Mirdita et al., 2022). Cyan models
represent the unsplit ColabFold models. Both were split into two slices using BIRCH clustering, which is the default in Slice’N’Dice. The colouring to
represent each cluster is shown in (e). The slice on chain A segmented the model suitably; however, chain B was not segmented into domains as clearly,
although this did not significantly impact the overall results. Slice’N’Dice run alongside the input map file EMDB entry EMD-34250 (c) managed to place
45 out of 48 placements into the correct locations (d). However, one false positive passed the classifier check (e) and was placed in the head-to-tail joining
protein instead in the portal protein. Utilizing the probability scores generated by the pipeline, it is evident that the placement has a lower score (�0.52)
than its nearest counterpart (�0.78) and should be treated as a less confident result by the end user. The probability score is between 0 and 1.



2023) with a global resolution reported as 4.2 Å. The density

file represents a homopentamer.

The ColabFold (Mirdita et al., 2022) model generated was

a close match to the deposited model (PDB entry 8bx5)

although residues 308–412 were not visible in the map (De

Gieter et al., 2023). Slice’N’Dice was run with the default

BIRCH clustering method and sliced the model into four.

Among the four slices, the two largest (Fig. 11) were fitted into

the map successfully, filling most of the available map. The

success can be witnessed by the dark green result model

(Fig. 11c), denoting a high confidence score (�0.99 per

placement; Fig. 11c). Additionally, the two slices corre-

sponding to residues 308–412 were successfully rejected

(�0.37 per placement). This showcases the ability of

Slice’N’Dice to differentiate between models that are present

and absent in the density. Overall, Slice’N’Dice fitted
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Figure 11
PDB entry 8bx5 was generated using ColabFold (Mirdita et al., 2022). (a) Cyan models represent the unsplit ColabFold models. Chain A was split into
four slices using BIRCH clustering, which is the default in Slice’N’Dice. Slice’N’Dice segmented the chain A model suitably. (b) The map input into
Slice’N’Dice. (c) Slice’N’Dice successfully managed to place the majority of the map with high confidence (�0.97–0.99 per placement).



six out of nine possible placements and the final CC was

0.71.

4. Graphical user interfaces for Slice’N’Dice

Access to all of the controlling parameters of the program can

be made from the command line. Slice’N’Dice has also been

integrated into several graphical user interfaces (GUIs)

provided by the CCP4 and CCP-EM suites.

4.1. Moorhen interface

Moorhen (https://moorhen.org/) is a React-based web-

enabled molecular-graphics interface to the Coot interactive

model-building application (Emsley et al., 2010). An interface

for Slice’N’Dice has been added into Moorhen (Fig. 12). To

facilitate the use of the clustering algorithms in a web envir-

onment, the clustering methods used in Slice’N’Dice were

implemented using the C++ programming language. The

resulting library was then compiled into WebAssembly using

Emscripten (Zakai, 2011) and a custom React-based interface

was created to let users execute the following clustering

algorithms: BIRCH (Zhang et al., 1997), agglomerative

(Murtagh & Contreras, 2012), k-means (Lloyd, 1982) and PAE

clustering (Oeffner et al., 2022). The resulting plugin is avail-

able in Moorhen and can be used to ‘slice’ molecules into

distinct domains. Additionally, prior to this clustering, users

can define a threshold by which residues in the input model

can be trimmed based on their B factor or pLDDT values. This

residue trimming is performed using the GEMMI library

(Wojdyr, 2022), which was also compiled using Emscripten.

Moorhen is integrated into CCP4 Cloud (Krissinel et al., 2022)

and Doppio (Burnley et al., 2023) and will soon be available

through CCP4i2 (Potterton et al., 2018).

An advantage of the more interactive, graphically driven

approach implemented in Moorhen is that it allows a user to

tweak the trimming threshold visually. This can subsequently

influence the clustering of the atoms to produce a different

splitting of the model depending on the trimming threshold

that has been selected. It also allows the user to see the effect

of choosing different numbers of slices, helping to isolate

the optimum number of slices required for success in MR. In

both CCP4 Cloud and Doppio, sliced models created using

Moorhen are automatically saved and made available to any

subsequent MR or map-fitting application.

4.2. CCP4 and CCP-EM interfaces

Slice’N’Dice is available through both the CCP4 (Agirre et

al., 2023) and CCP-EM software suites. It has been incorpo-

rated into three CCP4/CCP-EM graphical user interfaces

(GUIs): CCP4i2 (Potterton et al., 2018), CCP4 Cloud and

Doppio (Fig. 13). These provide interfaces for slicing models

(Slice), for automated map fitting (Dice) and for model slicing

followed by automated MR or automated map fitting

(Slice’N’Dice). For MX use, Slice’N’Dice on the command line

allows users to select more runtime options, but the CCP4

interfaces provide a quick and easy way to run Slice’N’Dice.

For EM use, all functionality is available through the Doppio

interface.

5. Discussion and conclusions

Slice’N’Dice offers an easy and automated means to address

cases where the conformation of a structure prediction,
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Figure 12
The Slice’N’Dice interface in Moorhen was used to ‘slice’ PDB entry 8ewh into four distinct slices using the BIRCH algorithm. No B factor trimming was
applied before clustering.

https://moorhen.org/


especially in terms of inter-domain orientations, differs

significantly from that of the target.

For crystallographers, Slice’N’Dice can significantly

improve the chance of MR success. Here, we showed that

clustering algorithms can be used to identify distinct structural

units within a model that may not be immediately obvious

when visually inspecting the structure. Currently, the default

clustering algorithm used by Slice’N’Dice is BIRCH (Zhang

et al., 1996). While BIRCH has performed well throughout

the development stage of Slice’N’Dice, alternatives will be

benchmarked in the future, potentially including clustering

methods such as SWORD2 (Cretin et al., 2022), DCI (Kumar

et al., 2022), Merizo (Lau et al., 2023) and Chainsaw (Wells et

al., 2024), as well as alternative clustering methods provided

by scikit-learn. We will also look at the combination of clus-

tering methods in a consensus strategy. DCI, using predicted

motions for definition of structural units, might be particularly

relevant given that the dynamic properties of multi-domain

proteins underlie some of the difficulties that Slice’N’Dice is

designed to address. We are also aware that clustering in

combination with the removal of low-confidence residues can

occasionally leave disconnected fragments (Fig. 6b): recog-

nizing that these might impact on the packing of solutions, we

will explore methods to identify and eliminate these.

For cryoEM practitioners, Slice’N’Dice EM offers an auto-

matic solution for map fitting and assessing model placements

within a single pipeline. The map–model binary classifier

generally differentiates well between correct and incorrect fits,

although the EM example PDB entry 8gtd illustrates a false-

positive placement that was included (Section 3.2.1). In the

Doppio interface, individual placed slices are coloured by

probability score, so that false positives are often visually

apparent as they typically have lower scores than the other

correct placements. However, the ultimate goal must be to

reduce false positives/negatives. To make further improve-

ments, a larger training data set is being created with the aim

of enhancing the performance of the classifier with challenging

cases such as small single �-helical slices. When developing the

classifier, an assumption was that the resolution would have

been useful information for the classifier. However, the results

proved otherwise, and the classifier performance improved

when resolution was not given as an input variable. There are

at least two possible reasons for this observation. Firstly, at

lower resolution there could be more errors in the deposited

structures used as reference structures to generate the target

variables. Alternatively, it could be that the global resolution

was misleading in some cases, i.e. that providing global

resolution as input does not provide accurate information

about the local resolution surrounding the placement. It was

observed that the classifier discriminates better when working

with maps of a higher resolution than lower resolution (Fig. 8).

A future development point could be to calculate the average
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Figure 13
Screenshots of the CCP4 and CCP-EM GUIs. (a) CCP4i2 interface page for Slice’N’Dice. (b) CCP4 Cloud interface page for Slice’N’Dice. Doppio
(Burnley et al., 2023) interface cropped pages for the jobs (c) Slice, (d) Dice and (e) Slice’N’Dice.



local resolution of the area around a docked slice and provide

this information to an improved classifier. Another point

could be to explore the usefulness of Slice’N’Dice EM for

cryo-electron tomography (cryoET). In this manuscript, we

focused on single-particle analysis for the cryoEM examples,

but due to the ability of Slice’N’Dice to perform well at lower

resolutions (>4 Å; Fig. 8b) it will be useful for automated

model building with subtomogram averages. Finally, we will

also explore the use of em_placement and emplace_local

(Millán et al., 2023) as alternative map-fitting methods for

cryoEM and cryoET.

As we were writing this manuscript, AlphaFold3 was

released. Whilst AlphaFold3 is an improvement on Alpha-

Fold2, it may still mis-predict relative domain conformations

(Abramson et al., 2024). Slice’N’Dice is compatible with

AlphaFold3 output models and the accompanying expected

position error information (comparable to the PAEs of

AlphaFold2), and should therefore remain useful for MR/map

fitting.
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A., Bridgland, A., Meyer, C., Kohl, S. A. A., Ballard, A. J., Cowie,
A., Romera-Paredes, B., Nikolov, S., Jain, R., Adler, J., Back, T.,

research papers

16 of 17 Adam J. Simpkin et al. � Slice’N’Dice Acta Cryst. (2025). D81

http://doi.org/10.1107/S2059798325001251
http://doi.org/10.1107/S2059798325001251
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qe5007&bbid=BB1
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qe5007&bbid=BB1
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qe5007&bbid=BB1
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qe5007&bbid=BB1
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qe5007&bbid=BB1
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qe5007&bbid=BB1
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qe5007&bbid=BB1
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qe5007&bbid=BB1
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qe5007&bbid=BB1
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qe5007&bbid=BB1
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qe5007&bbid=BB1
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qe5007&bbid=BB2
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qe5007&bbid=BB2
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qe5007&bbid=BB2
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qe5007&bbid=BB2
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qe5007&bbid=BB2
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qe5007&bbid=BB2
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qe5007&bbid=BB2
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qe5007&bbid=BB2
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qe5007&bbid=BB2
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qe5007&bbid=BB2
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qe5007&bbid=BB2
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qe5007&bbid=BB2
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qe5007&bbid=BB2
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qe5007&bbid=BB2
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qe5007&bbid=BB2
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qe5007&bbid=BB2
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qe5007&bbid=BB2
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qe5007&bbid=BB2
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qe5007&bbid=BB2
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qe5007&bbid=BB2
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qe5007&bbid=BB2
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qe5007&bbid=BB3
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qe5007&bbid=BB3
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qe5007&bbid=BB3
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qe5007&bbid=BB3
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qe5007&bbid=BB3
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qe5007&bbid=BB3
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qe5007&bbid=BB3
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qe5007&bbid=BB3
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qe5007&bbid=BB4
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qe5007&bbid=BB5
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qe5007&bbid=BB5
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qe5007&bbid=BB6
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qe5007&bbid=BB6
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qe5007&bbid=BB6
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qe5007&bbid=BB6
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qe5007&bbid=BB6
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qe5007&bbid=BB6
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qe5007&bbid=BB6
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qe5007&bbid=BB6
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qe5007&bbid=BB6
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qe5007&bbid=BB8
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qe5007&bbid=BB8
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qe5007&bbid=BB7
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qe5007&bbid=BB7
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qe5007&bbid=BB9
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qe5007&bbid=BB9
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qe5007&bbid=BB10
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qe5007&bbid=BB11
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qe5007&bbid=BB11
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qe5007&bbid=BB12
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qe5007&bbid=BB12
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qe5007&bbid=BB13
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qe5007&bbid=BB13
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qe5007&bbid=BB14
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qe5007&bbid=BB14
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qe5007&bbid=BB99
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qe5007&bbid=BB99
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qe5007&bbid=BB16
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qe5007&bbid=BB16
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qe5007&bbid=BB17
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qe5007&bbid=BB17
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qe5007&bbid=BB18
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qe5007&bbid=BB18
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qe5007&bbid=BB19
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qe5007&bbid=BB19
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qe5007&bbid=BB20
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qe5007&bbid=BB20
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qe5007&bbid=BB21
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qe5007&bbid=BB21
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qe5007&bbid=BB22
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qe5007&bbid=BB23
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qe5007&bbid=BB23
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qe5007&bbid=BB23
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qe5007&bbid=BB24
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qe5007&bbid=BB24
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qe5007&bbid=BB25
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qe5007&bbid=BB25
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qe5007&bbid=BB25
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qe5007&bbid=BB25


Petersen, S., Reiman, D., Clancy, E., Zielinski, M., Steinegger, M.,
Pacholska, M., Berghammer, T., Bodenstein, S., Silver, D., Vinyals,
O., Senior, A. W., Kavukcuoglu, K., Kohli, P. & Hassabis, D. (2021).
Nature, 596, 583–589.

Keegan, R. M., Simpkin, A. J. & Rigden, D. J. (2024). Acta Cryst. D80,
766–779.

Krissinel, E., Lebedev, A. A., Uski, V., Ballard, C. B., Keegan, R. M.,
Kovalevskiy, O., Nicholls, R. A., Pannu, N. S., Skubák, P., Berris-
ford, J., Fando, M., Lohkamp, B., Wojdyr, M., Simpkin, A. J.,
Thomas, J. M. H., Oliver, C., Vonrhein, C., Chojnowski, G., Basle,
A., Purkiss, A., Isupov, M. N., McNicholas, S., Lowe, E., Triviño, J.,
Cowtan, K., Agirre, J., Rigden, D. J., Uson, I., Lamzin, V., Tews, I.,
Bricogne, G., Leslie, A. G. W. & Brown, D. G. (2022). Acta Cryst.
D78, 1079–1089.

Kumar, A., Khade, P. M., Dorman, K. S. & Jernigan, R. L. (2022).
Bioinformatics, 38, 2727–2733.

Lau, A. M., Kandathil, S. M. & Jones, D. T. (2023). Nat. Commun. 14,
8445.

Liebschner, D., Afonine, P. V., Baker, M. L., Bunkóczi, G., Chen,
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