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Serial crystallography is an important technique with unique abilities to resolve

enzymatic transition states, minimize radiation damage to sensitive metallo-

enzymes and perform de novo structure determination from micrometre-sized

crystals. This technique requires the merging of data from thousands of crystals,

making manual identification of errant crystals unfeasible. cctbx.xfel.merge uses

filtering to remove problematic data. However, this process is imperfect, and

data reduction must be robust to outliers. We add robustness to cctbx.xfel.merge

at the step of uncertainty determination for reflection intensities. This step is a

critical point for robustness because it is the first step where the data sets are

considered as a whole, as opposed to individual lattices. Robustness is conferred

by reformulating the error-calibration procedure to have fewer and less strin-

gent statistical assumptions and incorporating the ability to down-weight low-

quality lattices. We then apply this method to five macromolecular XFEL data

sets and observe the improvements to each. The appropriateness of the intensity

uncertainties is demonstrated through internal consistency. This is performed

through theoretical CC1/2 and I/� relationships and by weighted second

moments, which use Wilson’s prior to connect intensity uncertainties with their

expected distribution. This work presents new mathematical tools to analyze

intensity statistics and demonstrates their effectiveness through the often

underappreciated process of uncertainty analysis.

1. Introduction

In macromolecular crystallography (MX), data reduction is

the conversion of raw frames of X-ray diffraction into aver-

aged structure-factor intensities and uncertainties for subse-

quent structural modeling. Diffraction patterns are first

indexed to determine the location of each reflection. The

number of photons scattered into each reflection is then

summed to form a list of integrated intensities, with uncer-

tainties derived from counting-statistics errors. These values

are scaled to place them onto a common magnitude and to

correct for known effects that modulate intensities. Counting-

statistics error thus forms the lower bound for uncertainty,

because it does not account for errors in the scaling process or

other experimental variances. Many of these sources of error

have been enumerated in the literature (Holton et al., 2014;

Diederichs, 2010). Assuming that each error source can be

modeled explicitly, a textbook approach would be to form the

final uncertainty estimate by propagating each contribution

explicitly. In the cases of small errors and/or linear models,

first-derivative approaches are used. Otherwise, sampling

techniques such as Markov chain Monte Carlo algorithms

or variational inference are used (Possolo & Iyer, 2017;

Bevington & Robinson, 2003).
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In practice, however, error sources are incompletely known,

so crystallographic data reduction has historically taken an

empirical approach towards error modeling (Busing & Levy,

1957; McCandlish et al., 1975). Sources of a reflection’s error,

beyond counting-statistics error, are accounted for by an

empirical transformation of the scaled counting-statistics error

(Leslie, 1999; Borek et al., 2003; Evans, 2006, 2011; Kabsch,

2010a; Diederichs, 2010; McCandlish et al., 1975; Evans &

Murshudov, 2013; Brewster, Bhowmick et al., 2019; Beilsten-

Edmands et al., 2020; Khouchen et al., 2023). This approach to

uncertainty quantification is known as error calibration and

shares many similarities with statistical post-processing in

weather forecasting (Vannitsem et al., 2021), astronomy (Chen

et al., 2019) and machine learning (Palmer et al., 2022; Kule-

shov et al., 2018; Levi et al., 2022). This approach is justified by

the needs of MX data-reduction programs and existing char-

acterization of experimental X-ray sources. These programs

operate in an automated manner on data from a wide variety

of samples collected from sources with limited, and often

inaccurate, characterization (Winter, 2010). The lack of

knowledge of the root sources of uncertainty, such as unit-cell

distribution, point-spread functions, parallax and detector

response, prevents our ability to explain the error we see in the

observed intensities, necessitating this empirical approach.

Most data-reduction programs use the transformed errors

as weights to average redundant measurements (Kabsch,

2010b; Otwinowski et al., 2012; Beilsten-Edmands et al., 2020;

Evans, 2006). This approach is taken in cctbx.xfel.merge and

xia2.ssx. An alternative approach to merging is to average the

scaled measurements together without weighting and use the

residuals as the final uncertainty. This approach is similar to

that of Chapman et al. (2011) and CrystFEL (White et al.,

2012). Averaging with inverse variance weighting is the

maximum-likelihood estimate of the mean. This should

improve mean estimates by giving reflections deemed to be

more accurately measured by the uncertainty estimate a larger

contribution to the average. Brewster, Bhowmick et al. (2019)

demonstrated that weighted averaging improved merging

results in serial crystallography (SX) only when the trans-

formed errors are used as weights. Weighted averaging using

counting-statistics error was worse than unweighted aver-

aging.

This paper details the adaptation of the cctbx.xfel.merge

Ev11 error model to better reflect SX data and experi-

mentation. cctbx.xfel.merge is a program for scaling and

merging SX data and is part of the cctbx.xfel suite (Brewster,

Young et al., 2019).1 The Ev11 error model is the direct

implementation of the error model of Evans (2011) for single-

crystal rotational diffraction to SX (Brewster, Bhowmick et al.,

2019; Brewster et al., 2018). However, SX data, experimenta-

tion and interpretation differ in ways that justify an SX-

specific error model (Gorel et al., 2021). In rotational crys-

tallography, a single crystal is rotated while being illuminated

by a stable, ‘continuous’ beam. This rotation allows the inte-

gration of the full three-dimensional profile of the diffracted

intensity and ensures smooth continuity between frames. An

assumption can be made that crystal properties and quality

remain relatively constant for the entire data set while scaling

factors slowly vary. In SX, data sets are built up by separately

collecting data from thousands of randomly oriented crystals,

without rotation, and with an incident beam varying in both

intensity and wavelength. A SX error model must be robust to

outlier data and capable of applying different degrees of error

to each lattice according to its accuracy in measurement and

scaling.

For the new empirical error model, we are attempting to

find a transformation of the initial counting-statistics uncer-

tainties that explains the scale of the distribution of redundant

measurements. We apply concepts of robust statistics (Lange

et al., 1989) to the determination of this model. Robustness

describes the ability of an algorithm to resist failure when

subjected to data that violate the statistical assumptions made

on the data. Robustness can be increased by using fewer and

less stringent assumptions. Our robust approach requires the

writing of a likelihood distribution. Unfortunately, SX data do

not follow simple, easily derived distributions (Sharma et al.,

2017). Therefore, a likelihood function is written based on

pairwise differences of symmetry-related reflections. Gener-

ally speaking, pairwise differences of samples drawn from the

same distribution can be used as a measure of the scale of the

distribution irrespective of its mean or skew (Rousseeuw &

Croux, 1993). This represents a reduction in assumptions. To

model our data, we write the likelihood function utilizing a

t-distribution. This distribution has longer tails than a normal

distribution and is more accommodative to outlier data,

forming a less stringent assumption.

In serial crystallography, diffraction frames are recorded.

These frames can comprise diffraction from multiple crystals.

A lattice refers to the diffraction from a single crystal.

Differing degrees of error are applied to each lattice based

on the Pearson correlation coefficient between the reflection

intensities of a lattice and a scaling reference. This scaling

reference can be either a PDB file or, in the case of de novo

structure determination, a data set merged without a scaling

reference. These correlations form a continuous variable that,

in principle, should have a monotonic relationship with

measurement, scaling and correction accuracy. The Ev11

parameterized error transformation is rewritten so different

levels of error are applied to each lattice based on this

correlation coefficient.

The application of robust statistics to MX includes peak

finding (Hadian-Jazi et al., 2017), the generation of bad pixel

masks (Sadri et al., 2022), background modeling (Parkhurst et

al., 2016) and finding pseuodotranslations (Sauter & Zwart,

2009). Recent efforts have applied robust statistics to scaling

and merging (Aldama et al., 2023; Greisman et al., 2021;

Dalton et al., 2022). Greisman et al. (2021) describe a

maximum-likelihood approach to merging data with an error

modeling that utilizes a t-distribution for robustness. Distri-

butions for the merged intensities are inferred from the
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1 cctbx.xfel.merge re-implements the older cxi.merge program described by
Hattne et al. (2014), adding multiprocessing, and will be described more fully
in an upcoming publication. See https://github.com/cctbx/cctbx_project/tree/
master/xfel/merging.
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distribution of the redundant measurements. Their further

work on this subject (Dalton et al., 2022) uses deep-learning-

based variational inference to infer distributions of merged

structure factors. Their methods utilize a t-distribution to

model reflection intensities robustly. Our error model differs

by determining uncertainties for unmerged reflections so that

reflections assigned high uncertainty can be down-weighted

during merging.

The uncertainty estimates of intensities are first used in the

merging process, the weighted average of symmetry-related

and multiply measured observations. Improved merging

produces more accurate intensities, which should generate

higher quality electron-density maps. Uncertainties are also

relevant throughout structure determination and refinement.

Phenix utilizes reflection uncertainties for outlier rejection

(Read, 1999), pruning low-information reflections (Read et al.,

2020), French–Wilson conversion (French & Wilson, 1978),

phasing and molecular replacement (Read & McCoy, 2016;

Brewster, Bhowmick et al., 2019), and structure refinement

(Lunin et al., 2002).

We demonstrate improved uncertainty estimates through

their consistency with other statistical quantities. The direct

impact of this on merging is shown by improvements to

merging statistics. The more distant impact on electron-

density maps is shown through increased anomalous map

heights at heavy-atom positions.

2. Methods

2.1. Overview of the previous Ev11 error model

We now rederive the Ev11 method presented by Brewster,

Bhowmick et al. (2019) to examine its assumptions and iden-

tify avenues of improvement that will be presented in the next

section. The following notation will be used. If R is normally

distributed with mean � and variance �2, this will be denoted

as R � Nð�; �2Þ. The expected value and expected standard

deviation of R are E(R) and std(R), respectively.

Before error calibration, a post-refinement process is

performed that scales intensities and counting-statistics

uncertainty to place them on the scale of a common reference.

This corrects for lattice-to-lattice intensity variations due to

incident beam intensity, illuminated crystal volume and

Wilson B factor, and includes per-observation corrections for

partiality. These factors are discussed in Brewster, Bhowmick

et al. (2019) and Sauter (2015).

The Ev11 error model, detailed in Brewster, Bhowmick et

al. (2019) and Evans (2011), approaches the problem of error

calibration by utilizing the large redundancy in an XFEL

crystallographic data set. Ignorance of the underlying sources

of error is assumed. A parametric form of uncertainty is

written for each reflection and is optimized to explain the

observed variance within the data.

The intensity of the kth observation of Miller index h is

written as Ihk and is assumed to be normally distributed with

mean Ih, the true unobserved intensity, and variance �2
error;h,

Ihk � NðIh; �
2
error;hÞ: ð1Þ

It is assumed that each observation of Miller index h is inde-

pendently and identically distributed and that all symmetry-

related reflections have been grouped into a common Miller

index. The distribution of observations of the intensity of a

Bragg peak has been suggested to not be normally distributed

(Sharma et al., 2017) and it is not generally true that each

observation of Miller index h is identically distributed. Our

investigation of intensities after post-refinement also suggests

a complex, non-normal distribution, an observation that we

will return to later.

The Ev11 algorithm starts by writing a parameterized form

of the measurement error, �2
Ev11;hk, that can be optimized to

approximate the true, unknown error, �2
error;hk,

�2
Ev11;hk ¼ s2

fac½�
2
hk þ s2

BhIhi þ s2
addhIhi

2�: ð2Þ

In this equation, �2
hk is the counting-statistics uncertainty

derived from spot integration and hIhi is the average intensity

of all measurements of reflection h. The terms sfac, sB and sadd

are optimizable parameters introduced by Evans (2011). The

sfac parameter scales the intensities and counting-statistics

uncertainty to account for error in the detector gain. The sadd

parameter accounts for undescribed sources of measurement

error that should have variances that scale with hIhi
2. The

sB parameter is given no physical meaning. Evans (2011)

included this term because it seemed to improve the fitting to

experimental data. These parameters are global; they have the

same value for each lattice.

The Ev11 algorithm optimizes sfac, sB and sadd such that

�2
Ev11;hk explains the observed residual or difference between

Ihk and hIhi. Normalized deviations are introduced as part of

this optimization as a ratio of the observed residual to �2
Ev11;hk.

When the Ev11 error terms are correctly optimized, the

distribution of these normalized deviations should have a

standard deviation of one, which we will take advantage of to

build a target function. The derivation of the normalized

deviations starts with hI0hki, the mean of the n observations of

Miller index h, except for the kth reflection. We can then write

hI 0hki � N ½Ih; ð�
2
error;h=n � 1Þ�. The n � 1 term comes from

averaging n � 1 reflections under the assumption that

each observation of Miller index h is independently and

identically distributed. The residuals are distributed as

Ihk � hI
0
hki � N ½0; �

2
error;h þ ð�

2
error;h=n � 1Þ�, where the

variances add linearly. The normalized deviations for each

measurement are constructed by dividing Ihk � hI
0
hki by our

approximation of the measurement error, �2
Ev11;hk,

�hk ¼
n � 1

n

� �1=2
Ihk � hI

0
hki

�Ev11;hk

: ð3Þ

When �2
Ev11;hk is an accurate estimate of �2

error;h, the standard

deviation of all �hk for a common Miller index h should be

one and can be estimated as the root-mean-squared �hk,

stdð�hÞ ¼ ½Eð�
2
hÞ�

1=2 ¼ ½ð1=nÞ
Pn

k¼1 �
2
hk�

1=2, given that the

expected value of the normalized deviations, E(�h), is zero.

Ev11 therefore refines sfac, sB and sadd to minimize the

difference in the standard deviation of �hk from one.
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The creation of the target function starts by binning the

reflections based on the mean observed intensity of all of

their symmetry-related reflections hIhi. 100 intensity bins are

created, evenly spaced in intensity ranging from the minimum

to maximum hIhi. All reflections of a Miller index are assigned

to a single bin, indexed by b, based on their associated hIhi. A

subscript b is introduced to indicate the binning and the Miller

indices within a bin are denoted by hb.

The target function used to optimize sfac, sB and sadd mini-

mizes the difference between our estimate of stdð�hb
Þ within an

intensity bin and one,

LEv11 ¼
P100

b¼1

wb 1 �
1

mb

P

hb

Pn

j¼1

�2
hb j

 !1=2
2

4

3

5

2

: ð4Þ

The weighting for each bin is the square root of the number of

observations in the bin b, wb = (mb)1/2. If the weighting was

chosen to be one for all bins, it would weight each intensity bin

equally. On the other hand, if we choose wb = mb, it would

weight each observation equally. The choice of wb = (mb)1/2 is

a middle ground between these two options. Minimization is

performed using the scitbx L-BFGS-B optimizer (Zhu et al.,

1997) with analytical first derivatives.

2.2. MM24: updated error model

A new error model is developed using the Ev11 approach

with several key differences. (i) The sB parameter is removed

and sadd is further parameterized to reflect different uncer-

tainty levels between frames. (ii) Pairwise differences of

symmetry-related reflection intensities are used as a robust

measure of their standard deviation, as opposed to the

normalized deviations in the Ev11 protocol. (iii) The optimi-

zation target function is replaced with a maximum log-like-

lihood target function. (iv) Intensity binning is removed from

the loss function. (v) A new initialization algorithm is used.

The Ev11 protocol uses a constant sadd for each lattice. To

account for the lattice-to-lattice differences in the measure-

ment accuracy, sadd is written as an exponential decay of the

Pearson correlation coefficient, ccl, of the measured reflec-

tions of lattice l to a supplied scaling reference,

s2
add ¼ s2

add;0 þ s2
add;1 expð� s2

add;2cclÞ: ð5Þ

In this equation, there are three optimized coefficients sadd,�.

When sadd,1 = 0, sadd is a constant for all frames. For nonzero

sadd,2, s2
add increases as ccl decreases. Each sadd,� coefficient is

the same for all lattices. sadd is lattice-specific because ccl

differs between lattices. The exponential form was chosen

because it produces a curve that matches expectation: s2
add

should always be positive and decrease monotonically with

increasing ccl. It also restrains the curve to prevent numerical

issues. For example, if a polynomial was used instead, it could

result in a form that crosses zero, resulting in a division-by-

zero error. The s2
BhIhi term is removed from equation (2), as

also performed by Beilsten-Edmands et al. (2020). This term

has some redundancy because �2
hk and hIhi are correlated. In

practice, sB tends to optimize to relatively small values and the

s2
BhIhi term has a trivial contribution. We do not observe the

s2
BhIhi term improving fits to experimental data in the same

way that Evans (2011) did to justify its initial inclusion. These

changes give a new uncertainty equation

�2
MM24;hk ¼ s2

facf�
2
hk þ ½s

2
add;0 þ s2

add;1 expð� s2
add;2cclÞ�hIhi

2g: ð6Þ

The derivation of the normalized deviations in Ev11 assumed

that they were identically distributed: symmetry-related peaks

had the same variance, required an estimate of mean hI 0hki

and assumed that the normalized deviations are distributed

symmetrically about zero. A target function can be derived

based on pairwise differences of symmetry-related reflections

without making these assumptions. Pairwise differences can be

used to robustly quantify the variance of a distribution without

an estimate of a mean (Rousseeuw & Croux, 1993) and are

guaranteed to be an even function, symmetric about zero. A

set of normalized pairwise differences is constructed as

!hjk ¼
jIhj � Ihkj

�MM24;hjk

; where j> k: ð7Þ

Here, �MM24;hjk ¼ ð�
2
MM24;hj þ �

2
MM24;hkÞ

1=2 represents the

uncertainty of the pairwise difference. This is assembled given

that uncertainties add in quadrature for normally distributed

random variables.

If we assume that Ihk � NðIh; �
2
error;hkÞ, which does not

assume that all measurements of Miller index h have the

same variance, unlike equation (1) for the normalized devia-

tions, then ðIhj � IhkÞ=ð�
2
error;hj þ �

2
error;hkÞ

1=2 � Nð0; 1Þ. The

normalized pairwise differences are then distributed as a half-

normal variable and the likelihood function is

�Nð!hjkÞ ¼ 2
1

ð2�Þ
1=2
�MM24;hjk

exp �
1

2

jIhj � Ihkj

�MM24;hjk

� �2
" #

: ð8Þ

This likelihood could be replaced with a t-distribution to

account for data distributed with longer tails than a normal

distribution or to make the optimization more robust to

outliers. We will use likelihood to optimize equation (6), but

maximum-likelihood optimization with a normal distribution

is sensitive to outliers. To increase the optimization robustness,

we choose to approximate this distribution as a half t-distri-

bution,

�tð!hjkÞ ¼ 2
� �þ1

2

� �

ð��Þ
1=2

� �
2

� �
�MM24;hjk

1þ
1

�

jIhj � Ihkj

�MM24;hjk

� �2
" #� ð�þ1Þ=2

:

ð9Þ

The gamma function, � (x), is equivalent to (x � 1)!; however,

it is defined for non-integer numbers. The parameter � is

known as the degrees of freedom. The t-distribution models

the difference between the true mean of a random variable

and the mean estimated from n samples. In this interpretation,

� = n � 1. In our implementation, where the t-distribution is

used as a generic probability distribution, � can be viewed as a

tuning parameter that adjusts the shape of the distribution.

When � = 1, the t-distribution is equivalent to the long-tailed
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Cauchy distribution. As � approaches infinity, the t-distribution

converges to the normal distribution.

A loss function is written that minimizes the negative of the

log-likelihood of the pairwise differences,

LMM24 ¼ � ln
Qnb

k¼1

�ð!hjkÞ

� �

¼ �
P

h

P

j>k

P

k

ln½�ð!hjkÞ�: ð10Þ

The binning scheme from the Ev11 protocol is removed from

the loss function; however, it is used later for a new initi-

alization procedure.

For the thermolysin data set utilized in this study, there are

of the order of 107 unmerged reflections. The number of

pairwise differences makes the optimization based on all

possible pairwise differences intractable due to limited

computational memory. To reduce memory demands, a

maximum of 100 pairwise differences are randomly sub-

sampled for each Miller index and used for optimization.

To ensure reproducibility for distributed computing, a new

random-number generator is created for each set of reflections

with a seed calculated from the common Miller indices.

Cantor’s pairing function maps two natural numbers to one

unique natural number, �(�1, �2) = [(�1 + �2)(�1 + �2 + 1)]/2 +

�2), and is used to convert Miller indices to a unique seed.

Each Miller index is increased by 1000, to ensure they are all

positive, and Cantor’s pairing function is then iteratively

applied. An optional integer can be supplied that is added to

the unique seed to obtain different results. The parameters

sfac, sadd,0, sadd,1, sadd,2 and, when using a t-distribution, �, are

optimized by minimizing equation (10) using the scitbx

L-BFGS-B optimizer (Zhu et al., 1997) with analytical first

derivatives.

In Ev11, sfac and sadd are initialized using the normalized

deviations. Because they are not calculated in MM24, a new

algorithm is used to initialize sfac and sadd,1. The terms sadd,0

and sadd,2 are initialized to 0.001. A set of unnormalized

pairwise differences are constructed, ~!hjk ¼ jIhj � Ihkj. Their

means, h ~!hjkib, are calculated in 100 intensity bins spanning

zero and one tenth of the maximum biased mean,

0.1max(hIhi). Zero is chosen as the lower limit for numerical

stability because a square root of this value is included. The

upper limit of one tenth of the maximum reflects that the bulk

of the reflection intensities tends to be at least one order of

magnitude less than the maximum. If Ihj and Ihk are sampled

from a normal distribution with mean Ih and variance �2
error;h,

then Ihj � Ihk follows a normal distribution with zero mean

and variance 2�2
error;h and ~!hjk ¼ jIhj � Ihkj follows a half-

normal distribution with variance 2�2
error;h½1 � ð2=�Þ�. The

mean of ~!hjk is then 2/�1/2�error,h. Therefore, h ~!hjkib should

scale with 2=�1=2½s2
facðhIib þ s2

add;1hIi
2
bÞ�

1=2. hIib is the central

intensity of the bins. The sfac and sadd,1 terms are initialized by

the minimization of

Linit ¼
1

2

P

b

h ~!hjkib � fh ~!hjki0 þ 2=�1=2½s2
facðhIib þ s2

add;1hIi
2
bÞ�

1=2
g

� �2
:

ð11Þ

The term h ~!hjki0 is the mean pairwise difference of the first

positive-intensity bin and represents the expected nonzero

error of low-intensity reflections.

2.3. Weighted second moments

The second moment of intensity, hI2i/hIi2, is a metric

commonly used to identify twinning (Stanley, 1972). The mean

intensity, hIi, and mean squared intensity, hI2i, can be calcu-

lated over all merged reflections or in resolution bins. For

crystals that are not twinned, the theoretical second moment

for acentric reflections is two, as inferred from the Wilson

distribution (Wilson, 1949), in the absence of measurement

error. In high-resolution bins, measurement error becomes

comparable to the mean intensity. This adds to the dispersion

of the intensities and the observed second moment increases

from two. The formula for this departure is derived by

combining the expected distribution for the intensities within

a resolution bin and the measurement error (Read et al.,

2020).

The Wilson distribution tells us how acentric reflection

intensities, I, should be distributed given the mean intensity, �:

�(I) = �� 1exp(� I/�). Using the normalized intensity, Z = I/�,

this simplifies to �(Z) = exp(� Z). If we assume Gaussian

measurement error, the distribution of the observed normal-

ized intensity, Ẑ, given its true value, Z, and estimated

measurement error, �̂Z ¼ �̂I=�, is

�ðẐjZ; �̂ZÞ ¼
1

ð2�Þ
1=2
�̂Z

exp �
1

2

Ẑ � Z

�̂Z

 !2" #

:

Integrating out the true intensity gives the distribution of the

observed normalized intensity given measurement error,

�ðẐj�̂ZÞ ¼
R1

0

�ðẐjZ; �̂ZÞ�ðZÞ dZ

¼
1

2
exp

1

2
ð�̂

2
Z � 2ẐÞ

� �

erfc
�̂

2
Z � Ẑ

21=2�̂Z

 !

;

where erfc is the complementary error function. A similar

derivation can be found in Read et al. (2020) for centric

reflections. This distribution is in the form of an exponentially

modified Gaussian distribution with mean hẐi ¼ 1 and

variance hẐ2i � hẐi2 ¼ 1þ �̂
2
Z. The second moment follows

as hẐ
2
i=hẐi2 ¼ 2þ �̂

2
Z. Weighted second moments are calcu-

lated in phenix.phaser after outlier rejection and anisotropic

B-factor correction (McCoy et al., 2007).

3. Results

Comparisons of the different error models were made with

five data sets: a thermolysin data set (PDB entry 4ow3; Kern et

al., 2014), an unpublished cytochrome data set similar to PDB

entry 8tdq, an isopenicillin N synthase (IPNS) data set asso-

ciated with PDB entry 6zae (Rabe et al., 2021), a methane

monooxygenase hydroxylase (MMOH) data set associated

with PDB entry 6yd0 (Srinivas et al., 2020) and a second
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methane monooxygenase hydroxylase data set (sMMOox)

that is unpublished.

The thermolysin data set is available as cxi.db entry 81

(https://www.cxidb.org/id-81.html). It was collected at a

wavelength of 1.27 Å with anomalous scattering from Zn

and Ca atoms, which have absorption edges at 1.2837 and

3.0705 Å, respectively. Comparisons with thermolysin were

made using phasing results in the same manner as the previous

error-model and merging comparisons (Brewster, Bhowmick

et al., 2019; Dalton et al., 2022). Integration results were taken

directly from the earlier work (Brewster, Bhowmick et al.,

2019). Merging used PDB entry 4ow3 as the scaling reference

and a correlation outlier filter of 0.1. This outlier filter works

by removing lattices whose correlation between the observed

intensities and a scaling reference is less than a set threshold.

This correlation is determined before post-refinement is

applied. Phasing and autobuilding are performed using

phenix.autosol with an exact amino-acid sequence and two Zn

atoms specified. 30 trials with different random seeds were

performed. The anomalous map height of one Zn atom is

calculated using xfel.map_height_at_atom with the merged

reflections and each phenix.autosol solution. The number of

residues built, Rwork and Rfree metrics were determined using

the structures produced from phenix.autosol. Table 1 reports

the mean and standard deviation of the trials. The left column

of Table 1 shows the results using the Ev11 protocol, as

performed in Brewster et al. (2018) and the right column

shows the MM24 protocol with a t-distribution likelihood.

For the cytochrome, IPNS, MMOH and sMMOox data sets,

the images were first indexed and integrated with dials.stills_

process (Brewster et al., 2018). The integration results were

merged using cctbx.xfel.merge with PDB entries 7s0o, 6zae,

6yd0 and 6ydi as scaling references. A correlation outlier filter

of 0.1 was applied to IPNS and MMOH and 0.3 for cyto-

chrome to be consistent with the published work. It was not

applied to sMMOox. Our standard practice is to not use an

outlier filter as it removes lattices. When there is reason to

suspect that low-quality data are being measured, we switch

to a correlation filter of 0.1. During live data collection of

sMMOox, the correlation filter was not used. At the time of

publication, PDB entry 8tdq superseded PDB entry 7s0o for

cytochrome. Cytochrome contains a heme-bound Fe atom,

IPNS contains a Fe atom and MMOH and sMMOox contain

two Fe atoms. The anomalous map heights at these atoms are

calculated using xfel.map_height_at_atom using the merged

intensity and refined structures. The left column of Table 1

shows the results using the current Ev11 protocol, including

the correlation outlier filter in cctbx.xfel.merge. Each set of

merged intensities was used as a starting point for 30 different

refinements in phenix.refine starting from the scaling reference

structure. The map heights, Rwork and Rfree values reflect the

mean and standard deviation over these trials. The Wilson B

factor was calculated using phenix.xtriage. Data and detailed

processing details are available for cytochrome in cxi.db entry

229 (https://www.cxidb.org/id-229.html) and those for IPNS

and MMOH in cxi.db entry 230 (https://www.cxidb.org/id-230.

html).

For the results in Table 1, for cytochrome, IPNS, MMOH

and sMMOox high-resolution cutoffs were made at the point

where the multiplicity in the highest resolution shell was at ten

and the resolution-binned CC1/2 was declining monotonically.

This is the standard rule of thumb that we apply to SX data

processing and we have found that it gives consistent and

reliable results. Thermolysin data were cut at 1.8 Å resolution

to be consistent with Brewster, Bhowmick et al. (2019).

Including data beyond this point reduced anomalous peak

heights. The total number of lattices, observed reflections and

unique reflections are listed in Table 1 and are the same for the

research papers

270 David W. Mittan-Moreau et al. � Robust error calibration for serial crystallography Acta Cryst. (2025). D81, 265–275

Table 1
Integrated intensities were merged with both error models and merging results were compared through phasing with thermolysin and refinement for
cytochrome, IPNS, MMOH and sMMOox.

Generally, the MM24 error model results in larger anomalous map height, I/� and CC1/2.

Thermolysin Cytochrome IPNS MMOH sMMOox

Facility, beamline LCLS, CXI SWISSFEL, Bernina LCLS, MFX LCLS, MFX LCLS, MFX
Detector CSPAD JUNGFRAU 16M Rayonix MX340-XFEL Rayonix MX340-XFEL Rayonix MX340-XFEL
Wavelength (Å) 1.27 1.31 1.30 1.30 1.74
cxi.db accession No. 81 229 230 230 —

PDB code 4ow3 — 6zae 6yd0 —
No. of lattices 164639 8631 10365 28846 38325
No. of reflections

Total 40619913 2243336 1984570 16079131 17459589
Unique 101051 92647 69019 281110 225557

Resolution (Å) 34.35–1.80 (1.83–1.80) 54.00–1.75 (1.78–1.75) 21.80–1.70 (1.73–1.70) 34.54–1.80 (1.88–1.85) 37.90–2.00 (2.04–2.00)
Correlation filter threshold 0.1 0.3 0.1 0.1 � 1

Error model Ev11 MM24 Ev11 MM24 Ev11 MM24 Ev11 MM24 Ev11 MM24
� (degrees of freedom) N/A 4.4 N/A 7.6 N/A 7.9 N/A 5.3 N/A 9.4
I/� 21.94 (5.21) 32.01 (9.44) 3.019 (0.73) 5.66 (1.82) 3.26 (0.69) 4.92 (1.03) 3.14 (0.41) 6.40 (0.80) 3.62 (0.24) 5.54 (0.32)
CC1/2 (%) 99.9 (86.3) 99.9 (86.5) 97.5 (32.0) 98.7 (14.7) 97.8 (31.2) 98.4 (32.0) 98.1 (22.5) 98.9 (13.3) 86.4 (0.04) 99.3 (0.03)
Wilson B (Å2) 24.8 23.9 21.9 22.1 18.9 19.1 28.8 29.6 39.3 39.7
Map height (�) Zn Zn Fe Fe Fe Fe Fe Fe Fe Fe

80.1 � 0.9 74.2 � 3.0 15.8 � 0.1 22.1 � 0.1 19.1 � 0.1 20.0 � 0.1 17.4 � 0.2 18.6 � 0.3 12.3 � 0.1 12.3 � 0.1
12.0 � 0.2 13.7 � 0.1 11.1 � 0.1 11.7 � 0.1

Residues built (of 316) 302 � 6 298 � 10 N/A N/A N/A N/A N/A N/A N/A N/A
Rwork (%) 19.7 � 1.2 21.0 � 1.7 18.0 � 0.1 17.1 � 0.1 15.3 � 0.1 15.1 � 0.1 17.8 � 0.1 17.7 � 0.3 18.1 � 0.1 18.1 � 0.1
Rfree (%) 22.3 � 1.2 23.7 � 1.7 20.3 � 0.4 19.2 � 0.4 18.1 � 0.3 17.7 � 0.3 20.2 � 0.4 19.8 � 0.5 20.7 � 0.6 20.6 � 0.4

https://www.cxidb.org/id-81.html
https://www.cxidb.org/id-229.html
https://www.cxidb.org/id-230.html
https://www.cxidb.org/id-230.html


MM24 and Ev11 protocols. For the MM24 protocol, the

degrees of freedom of the t-distribution are optimizable

parameters and their optimized values are listed in Table 1.

Generally, several trends are observed for the MM24 protocol,

I/� is larger and CC1/2 increases. The map heights show a small

but significant increase at the heavy-atom sites. Cytochrome

shows a large increase in map height and improvements in the

refined Rwork and Rfree metrics.

During an SX experiment, processing data in real time is

critical for decision making regarding experimental logistics;

for example, determining when data collection for a sample

can be stopped. The authors use CC1/2 as a critical metric for

these decisions. For sMMOox, an errant frame was processed

during the 52nd run. Fig. 1 shows that this caused a significant

decrease in CC1/2 when processed with Ev11. This was not

observed with the MM24 algorithm due to the increased

robustness of its statistical approach.

Fig. 2 shows statistical analysis of the normalized pairwise

differences !hjk and the normalized deviations �hk. Histo-

grams of !hjk and �hk are shown with the Ev11 (blue) and

MM24 (pink) error models. The MM24 data correspond to the

processing results in the right column of Table 1. For the Ev11

model, !hjk are calculated using the parameterization deter-

mined from the Ev11 optimization procedure. These plots

demonstrate three points. Firstly, uncertainty estimates from

the MM24 protocol are smaller, resulting in broader distri-

butions of !hjk and �hk. Secondly, calibrated uncertainties

from MM24 match their target t-distribution. To demonstrate

this, a standard half-normal distribution is drawn as a solid line

and a half t-distribution as a dotted line, which match the

distribution of !hjk. Thirdly, there are difficulties in using �hk

as an optimization metric. �hk are shown in the lower row. In
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Figure 2
Comparisons of optimization metrics with their target values. The top row shows statistical analysis of the normalized pairwise differences, !hjk, for (a)
thermolysin, (b) cytochrome, (c) IPNS, (d) MMOH and (e) sMMOox. The bottom row, ( f )–(j), shows corresponding plots made with the normalized
deviations, �hk. The MM24 protocol uses a t-distribution likelihood with degrees of freedom optimized. In each plot, a histogram of the statistical metrics
is plotted for the Ev11 (blue) and MM24 (pink) protocols along with a standard normal distribution (solid black line) and t-distribution (dotted black
line). The inset in the top row shows the normal probability plots. The solid and dotted lines show the expected curve if the data follow a normal or
t-distribution, respectively. Deviations from these lines indicate deviations from the assumed distribution.

Figure 1
Cumulative CC1/2 versus run for sMMOox. During the 52nd run of data
collection, a single errant lattice caused the decrease in CC1/2 when
processed with Ev11. This was not observed with the MM24 algorithm.



each of these plots, the histograms of �hk are skewed and offset

from zero. The derivation of the Ev11 target function assumes

the mean �hk is zero, which is not true given the observed skew

and offset.

Abrahams & Keve (1971) introduced the usage of normal

probability plots to assess the error placed on structure factors,

an approach that was also followed in Evans (2011) and

Brewster, Bhowmick et al. (2019). These plots are used to

visualize the distribution of the data against a theoretical

distribution and are especially useful in accessing the corre-

spondence in the tails. In these plots, the data are first sorted

and then the expected value of each point is calculated from

its position in the sorted data given the assumption that the

data follow a normal distribution. These expected values are

called rankits. In the insets of Fig. 2, the rankits are plotted

versus the sorted normalized pairwise differences. If the

normalized pairwise differences are distributed according to a

half-normal distribution, the plot will be a straight line that

passes through the origin with a slope of one, as shown by the

solid black line. The corresponding expected line for a half

t-distribution with the optimized degrees of freedom is shown

as a dotted black line, which generally fits the MM24 data.

While Fig. 2 shows that MM24 provides a smaller estimate

of uncertainty and the optimization procedure meets its

objective, Figs. 3 and 4 demonstrate these smaller uncertain-

ties are more consistent with other metrics. Fig. 3 demon-

strates consistency between I/� and CC1/2. The left column of

Fig. 3 shows the average merged I/� using Ev11 (blue) and

MM24 (pink). The MM24 protocol results in larger I/�

throughout the entire resolution range for both data sets due

to smaller � estimates. Because the difference in these algo-

rithms is the estimation of uncertainty, larger I/� values

are not indicative of better data. They are simply a result of

different uncertainty estimates. To demonstrate internal

consistency, the right columns plot CC1/2 against I/� with a

gray filled region that corresponds to a theoretical relationship

between CC1/2 and I/� (Karplus & Diederichs, 2015). Curves

lying to the left of the shaded region are due to an under-

estimation of I/� or, equivalently, an overestimation of �.

Thermolysin was cut at a resolution where CC1/2 and I/� are

still relatively high. This results in the CC1/2 versus I/� curve

(Fig. 3f) remaining at a relatively large value.

Fig. 4 shows the weighted second moment of intensities

versus resolution and demonstrates consistency between

intensities and uncertainties. The second-moment metric

quantifies the dispersion of merged, unrelated intensities

within a resolution bin. For acentric reflections, the Wilson

distribution implies that it should be two, as shown by a solid

black line. When the reflection uncertainty becomes compar-

able to the average value, measurement error begins to

increase the expected dispersion from two. This expected

deviation, calculated only from the estimated uncertainty after

merging, is plotted for Ev11 and MM24 as blue and pink

dotted lines, respectively. The observed second moments,

calculated only from the intensities after merging, are plotted

as solid lines. The expected and observed weighted second

moments are calculated in phenix.phaser. Before their calcu-

lation, phenix.phaser performs outlier rejection and a correc-

tion for anisotropic B factors.

The weighted second-moment plots were a sensitive diag-

nostic tool for the identification of subtle artifacts in our data

processing. Initially, the weighted second-moment plot for the

cytochrome data set decreases from two at high resolution.

This was due to a systematic underestimation of the back-

ground during integration. Reprocessing with a more appro-

priate integration model brought the observed and expected

weighted second moments into agreement. This case demon-

strates the utility of weighted second-moment plots as

sensitive diagnostic tools. Its usage in macromolecular crys-

tallography should be further explored and included in stan-

dard data-reduction software.
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Figure 3
Consistency between CC1/2 and I/�. The left column shows the average
merged I/� binned by resolution for (a) thermolysin, (b) cytochrome, (c)
IPNS, (d) MMOH and (e) sMMOox. The blue and pink lines correspond
to the Ev11 and MM24 protocols, respectively. The right column shows
CC1/2 plotted against I/� with a gray filled region that corresponds to a
theoretical relationship between CC1/2 and I/�.



For cytochrome, IPNS, MMOH and sMMOox, the MM24

model provides an I/� that is more consistent with CC1/2 and

uncertainties that accurately predict the observed second

moment. For thermolysin, neither model is able to produce

uncertainties that are consistent with intensities (Fig. 4a) and

I/� remains large enough through the useful resolution range

that it cannot be compared with CC1/2 (Fig. 3f). This data set

was collected during an early era of XFEL experimentation

and was recorded with a CSPAD detector. The XFEL pulse

length is of the order of 10 fs, implying an enormous count

rate. Developing a detector that could record XFEL pulses

was an incredible technical advancement. However, the

CSPAD operated in a mix-gain mode that was notoriously

difficult to calibrate. We suspect, but cannot prove, that the

discrepancies with thermolysin originate in issues with the

detector. Fig. 3(j) and 4(e) both indicate some degree of

overestimation of � for sMMOox, but the MM24 model does

make for a significant improvement over the Ev11 model.

Fig. 5 shows histograms of the correlation coefficient

between the integrated intensities and a scaling reference,

determined for each lattice in the data set. For each data set

in this study, this correlation coefficient is determined after

reflection intensities are scaled to a common reference and

corrected for Wilson B factor and partiality. However, parti-

ality correction is not always performed. For those cases, a

correlation coefficient calculated after scaling can be used
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Figure 5
Histograms of the per-lattice correlation coefficient, CCc, for (a) ther-
molysin, (b) cytochrome, (c) IPNS, (d) MMOH and (e) sMMOox. The
error term, s2

fac � s2
add, is plotted as optimized with the Ev11 and MM24

protocols in blue and pink, respectively. Relative to the Ev11 protocol,
the MM24 error model has a higher adjusted error at low correlation.

Figure 4
Consistency between I and �. Weighted second moments of the acentric
reflections for (a) thermolysin, (b) cytochrome, (c) IPNS, (d) MMOH and
(e) sMMOox as a metric to evaluate the uncertainty estimates of the error
model. According to Wilson’s distribution, the second moment of the
intensities of an acentric reflection for a nontwinned crystal should be
two, as shown by the solid gray line. At high resolutions, where the
uncertainty in the intensity becomes comparable to the mean intensity,
the second moment should increase from two. This deviation is calculated
from the estimated uncertainties and is shown as dotted lines for the Ev11
(blue) and MM24 (pink) protocols. The solid colored lines show the
observed second moment calculated from the intensities of the reflection.



instead. The term s2
fac � s2

add for MM24 is plotted as a function

of the correlation coefficient, and compared with the constant

value for Ev11, to demonstrate the degree to which low-

correlation lattices are down-weighted by this parameteriza-

tion. These terms were determined with the t-distribution

likelihood with � allowed to optimize.

These results demonstrate that the improved statistical

approach of the MM24 protocol provides a more accurate

calibration of measurement error than existing error models.

The normalized pairwise differences as an optimization target

places the focus on the scale of the data without the need

for a mean estimate. The maximum-likelihood optimization

utilizing a t-distribution provides flexibility to manage data

distributed with heavier tails than a normal distribution. For

all proteins except thermolysin, anomalous map heights at

heavy-atom positions increased significantly. Rwork and Rfree

showed significant improvements for cytochrome.

4. Discussion

This paper demonstrates the MM24 approach to error cali-

bration for the merging of serial crystallographic data. It is

distinguished from the Ev11 error model in two key ways.

Firstly, it acknowledges that not all lattices are measured with

the same accuracy and should not be weighted equally when

merging. Appropriate error calibration can assign merging

weights that reflect this variation in accuracy. MM24 does this

by creating a ‘score’, a correlation coefficient in this case,

which is then used to assign varying amounts of confidence to

each lattice. Secondly, it utilizes robust statistics to optimize

the empirical transformation of counting-statistics error to

final uncertainty estimates. This is performed through a

reformulation of the optimization of the error model that

makes fewer and less stringent assumptions about incoming

data.

The MM24 algorithm was applied to five data sets. In four

cases, cytochrome, IPNS, MMOH, and sMMOox, the MM24

algorithm produced uncertainties such that the agreement

between CC1/2 and I/� and between I and � improved

compared with Ev11. Additionally, the comparisons between

!hjk and its target distribution in Fig. 2 show that MM24 acts in

a consistent manner. This implies accurate and consistently

determined I/�.

The MM24 algorithm generates I/� values that are roughly

1.5 times larger than those from the Ev11 algorithm for each

data set. If using I/� = 2 to determine the resolution cutoff of

the data set, the cytochrome data set would be cut at 2.05 and

1.75 Å for the Ev11 and MM24 algorithms, respectively. While

this paper does not address appropriate uses of � and I/�

values after merging, it clearly demonstrates that careful

consideration of the uncertainty estimates must be performed

before their downstream use.

5. Software availability

Instructions for downloading and using cctbx.xfel are available

from the cctbx.xfel wiki at https://cci.lbl.gov/xfel. See also

Brewster, Young et al. (2019) for instructions on using

the cctbx.xfel graphical user interface. Documentation for

cctbx.xfel.merge is available at https://github.com/cctbx/

cctbx_project/tree/master/xfel/merging.
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