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Multi-crystal processing of X-ray diffraction data has become highly automated

to keep pace with the current high-throughput capabilities afforded by beam-

lines. A significant challenge, however, is the automated clustering of such data

based on subtle differences such as ligand binding or conformational shifts.

Intensity-based hierarchical clustering has been shown to be a viable method

of identifying such subtle structural differences, but the interpretation of the

resulting dendrograms is difficult to automate. Using isomorphous crystals of

bovine, porcine and human insulin, the existing clustering methods in the multi-

crystal processing software xia2.multiplex were validated and their limits were

tested. It was determined that weighting the pairwise correlation coefficient

calculations with the intensity uncertainties was required for accurate calcula-

tion of the pairwise correlation coefficient matrix (correlation clustering) and

dimension optimization was required when expressing this matrix as a set of

coordinates representing data sets (cosine-angle clustering). Finally, the intro-

duction of the OPTICS spatial density-based clustering algorithm into DIALS

allowed the automatic output of species-pure clusters of bovine, porcine and

human insulin data sets.

1. Introduction

Multi-crystal X-ray crystallography experiments have seen

a resurgence in structural biology to accommodate small,

weakly diffracting and/or radiation-sensitive samples (Hirata,

2025). Simultaneous advances in multi-crystal data processing

(Gildea et al., 2022; Soares et al., 2022; Assmann et al., 2020;

Yamashita et al., 2018) have helped to facilitate the related

renaissance of room-temperature macromolecular crystallo-

graphy, with multi-crystal approaches helping to minimize the

effect of radiation damage occurring at lower absorbed doses

(Thorne, 2023; Nave & Garman, 2005). Room-temperature

methods have been demonstrated to be beneficial, allowing

structural features to be identified that may be ‘frozen out’ of

conventionally collected cryogenic crystals (Helliwell, 2020;

Fraser et al., 2009; Fischer et al., 2015). Avoiding the require-

ments of additional cryoprotectants and manual handling

for in situ methods also minimizes potential crystal damage

(Fischer, 2021; Mikolajek et al., 2023) and may be the only

tractable approach for certain challenging samples. There is

also a growing interest in room-temperature fragment

screening to provide experimental data closer to physiological
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temperature than cryogenic structures for drug development

(Skaist Mehlman et al., 2023; Jacobs et al., 2024).

While there are a number of advantages to multi-crystal

data collection, the recent resurgence in the field can be

attributed to faster data-collection times at brighter light

sources and developments in processing software which

address the associated challenges (Aller et al., 2015). Estab-

lishing a consensus symmetry and consistent indexing mode

is nontrivial due to the potential presence of indexing ambi-

guities and the typically low number of reflections in common

between data sets, as well as fewer symmetry-related reflec-

tions within each data set. These challenges have been

addressed through dimensionality-reduction techniques

implemented in numerous software packages (Brehm &

Diederichs, 2014; Diederichs, 2017; Gildea & Winter, 2018;

Gildea et al., 2022; Kabsch, 2014). The removal of outlier data

sets and bad images is another challenge that has been well

addressed in recent years (Assmann et al., 2016; Beilsten-

Edmands et al., 2020; Gildea et al., 2022). One difficulty that

remains, however, is the separation of non-isomorphous data

sets and the efficient detection of subtle differences between

crystallographically isomorphous data sets.

One key technique that has been employed to identify

isomorphous subsets within a multi-crystal data collection is

hierarchical cluster analysis (HCA). This technique progres-

sively groups together data that are the most alike into clus-

ters, typically visualized using a dendrogram, with the largest

cluster containing all data sets. As a result, the vertical axis of a

dendrogram is related to how similar the data sets within each

cluster are, with the exact nature of this relationship depen-

dent on the statistical descriptors used to characterize the data

and the linkage method used to group the data into clusters.

Currently available software uses either unit-cell based clus-

tering (such as BLEND; Foadi et al., 2013), intensity-based

clustering [such as ccCluster (Santoni et al., 2017), Cluster4x

(Ginn, 2020) and XSCALE_ISOCLUSTER (Assmann et al.,

2020)] or a combination of the two [KAMO (Yamashita et al.,

2018; Soares et al., 2022) and xia2.multiplex (Gildea et al.,

2022)]. Where a structural model is also available, Cluster4x

has shown that combining information from intensity-based

clustering and shifts in C� positions can also result in efficient

separation of data (Ginn, 2020). As for the linkage method,

both Ward linkages (Foadi et al., 2013; Soares et al., 2022;

Matsuura et al., 2023) and average linkages (Santoni et al.,

2017; Gildea et al., 2022) have been utilized, although a

downside of HCA is that the outcome of the clustering can

be very sensitive to the choice of linkage method. Various

experiments using these methods have shown them to be

effective in obtaining an isomorphous data set within a multi-

crystal experiment (Giordano et al., 2012), although the

success of different methods is highly dependent on the type

of experiment and the extent of inter-data-set differences.

HCA based on changes in unit-cell dimensions can quickly

filter cases of structural non-isomorphism but can miss subtle

structural differences such as the presence of a ligand or slight

conformational changes (Matsuura et al., 2023). Therefore,

multiple software packages have shifted to using unit-cell

clustering as a pre-filtering step prior to performing intensity-

based clustering, which is more sensitive to subtle changes

(Soares et al., 2022; Gildea et al., 2022). Intensity-based clus-

tering is based on pairwise correlation coefficients between

all possible data sets. Methods derived from those of Brehm

and Diederichs (Brehm & Diederichs, 2014) have also been

implemented in a number of software packages which extend

this clustering method to separate random from systematic

differences which can cause a change in correlation between

data sets (Gildea et al., 2022; Assmann et al., 2020). Within the

context of xia2.multiplex (Gildea et al., 2022), this extension of

correlation coefficient intensity-based clustering was given the

name ‘cosine-angle clustering’. Where all samples are of high

quality, these extended algorithms may not be necessary but

should greatly improve the clustering of data sets of varying

quality. The power of intensity-based clustering has been

demonstrated to separate crystals of apo and ligand-bound

protein, crystals of the same protein with different ligands, and

crystals with differences in secondary structure (Ginn, 2020;

Soares et al., 2022; Matsuura et al., 2023). A significant draw-

back of this technique, however, lies in the interpretation of

the dendrogram, which is often manual and subjective.

Eventually, all data sets must be included in a single cluster,

with clusters progressively becoming more internally consis-

tent further down the dendrogram until the data sets are

completely separated. Whilst a lower height on the dendro-

gram implies a higher internal correlation, deciding the exact

point at which clusters should be separated to produce

meaningful results is not trivial. Typically, two methods for

deciding this have been used: having prior knowledge of how

many groups there are or deciding a threshold at which to cut

the dendrogram (Matsuura et al., 2023). It is often not known

in advance how many different groups lie within the data, so

the second method tends to be more useful within a structural

biology context. This, however, requires either manual

inspection of the dendrogram or a method of determining the

cutoff. The former is not ideal given the ever-increasing speed

of high-throughput crystallography, and the latter is difficult to

generalize. It is also possible that a single threshold may not

be appropriate to best separate clusters within a dendrogram;

however, an ‘isomorphic threshold’ has recently been

proposed within the context of structural biology, where the

recommendation has been made to cut the dendrogram at 60–

70% of the maximum Ward distance in correlation coefficient

HCA (Matsuura et al., 2023). This threshold is presented as a

range, reflecting the fact that the scale of differences investi-

gated will likely vary. They may also be temperature- and

sample-dependent, meaning that manual intervention may

still be required. Therefore, it would be beneficial to develop

an intensity-based clustering method which could identify key

clusters without manual inspection, knowledge of the number

of groups present, decision on the linkage method or assig-

nation of a threshold.

The cosine-angle clustering method provides a representa-

tion of the pairwise correlation matrix in a reduced dimen-

sional space (Gildea & Winter, 2018; Gildea et al., 2022). As

each data set is represented by a set of coordinates, the entire

research papers

Acta Cryst. (2025). D81, 278–290 Amy J. Thompson et al. � Enhanced intensity-based clustering 279



suite of unsupervised machine-learning clustering methods for

spatial data sets becomes available when this intensity-based

method is used. Historically, three types of clustering methods

have been utilized for spatial data sets: partitioning, hier-

archical and density-based (Ester et al., 1996), although a

number of hybrid methods now exist (Ankerst et al., 1999).

Partitioning algorithms attempt to assign all data sets to a

cluster, ignoring any potential outliers, and generally require

the number of expected clusters as an input parameter. These

issues are similar to the disadvantages of hierarchical methods

discussed previously. Spatial density-based algorithms,

however, have a number of advantages over these other

methods. By assuming that clusters are regions of high-density

data points, the expected number of clusters does not need

to be specified, the clusters can be of any arbitrary shape and

outlier data sets can be identified (Ester et al., 1996). There-

fore, this approach was chosen for the determination of

significant clusters rather than the typically used HCA

methods.

Bovine, porcine and human insulin were selected as test

systems to develop these methods for several reasons: insulin

crystals grow reproducibly to a high quality, the cubic

symmetry provides high multiplicity and completeness for

efficient methods development, and different species of insulin

form crystals that are crystallographically isomorphous (space

group I213 with a, b, c � 78 Å). A sequence alignment of the

three species of insulin is given in Fig. 1. Note that porcine and

human insulin are the most similar, only differing by the

terminal amino acid in chain B, while the other insulin pair

combinations differ by at least two mid-chain amino acids.

Studies were conducted using data measured at both room

temperature (293 K) and under cryogenic conditions (100 K)

to ensure that the methods were widely applicable. In this

work, we describe the implementation of new methodologies

in the DIALS framework for intensity-based isomorphism

analysis, which now enable the automated separation of

previously inseparable data sets with subtle intensity differ-

ences.

2. Methods

Evaluations of clustering methodologies were undertaken

within the DIALS framework, which contains unit-cell clus-

tering algorithms and intensity-based clustering methods

from the dials.cosym module, which are used as part of the

xia2.multiplex auto-processing pipeline (Winter et al., 2022;

Gildea et al., 2022). The cosym algorithm evaluates systematic

and random differences between data sets, either for the

purpose of symmetry analysis and indexing ambiguity reso-

lution, or for intensity-based isomorphism analysis of data

sets with a consistent symmetry (Diederichs, 2017; Gildea &

Winter, 2018). Within xia2.multiplex, the cosym algorithm is

first used for symmetry assessment and indexing ambiguity

resolution. Following scaling of all data sets, the cosym clus-

tering is again used for intensity-based isomorphism analysis.

For intensity-based isomorphism analysis, the cosym

procedure minimizes the function

� ¼
Pn

i¼1

Pn

j¼1

wijðrij � xi � xjÞ ð1Þ

where rij is the correlation coefficient between data sets i and j

and the data sets are represented by a set of coordinates x in a

multidimensional space (where xi · xj is the multidimensional

inner product), which are optimized from a starting set of

random coordinates in the range [0–1] (Gildea & Winter,

2018). The input to this algorithm is the pairwise matrix of

correlation coefficients, and the reduced coordinates from

equation (1) are used in xia2.multiplex to construct a pairwise

matrix of cosine angles between data sets for HCA (Gildea et

al., 2022). HCA within xia2.multiplex has previously used the

average linkage method for both the correlation and cosine-

angle clustering, although previous reports indicate that the

Ward linkage is more suitable as it minimizes chain effects

(where clusters grow one data set at a time; Matsuura et al.,

2023; Murtagh & Legendre, 2014). For all of the examples in

this study, both average and Ward linkages were assessed (see

supporting information), and the Ward linkage performed

significantly better. As a result of these findings, the default

linkage in DIALS and xia2.multiplex has been changed to

Ward for both the HCA of the rij matrix and the pairwise

matrix of cosine angles. Note that for HCA a distance metric

between data sets must be defined, which we define as 1 � rij

for correlation clustering and 1 � cos(xi, xj) for cosine-angle

clustering. The construction of the pairwise matrix of cosine

angles is not required, however, for the proposed analysis in

this work using spatial density-based clustering methods. An

analogous analysis using equation (1) can also be performed in

the XDS package using XSCALE_ISOCLUSTER (Assmann

et al., 2020). As a development on the previous work, we also

introduce the wij weights matrix, which can be constant

weights or reliability weights, as discussed in the next section.
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Figure 1
Sequence alignment of bovine, porcine and human insulin for chain A and chain B. Dark shading shows identical amino acids. The less conserved areas
are unshaded, with the most different residue highlighted in yellow.
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2.1. Weighted calculation of correlation coefficient

When calculating the correlation between two data sets, the

correlation coefficient (CC) is defined as the Pearson corre-

lation coefficient between the average (merged) intensities of

common reflections between the two data sets (Karplus &

Diederichs, 2012),

CC ¼

P
iðxi � �xÞðyi � �yÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P

iðxi � �xÞ
2 P

iðyi � �yÞ
2

q ¼
sxy

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sxx � syy

p ; ð2Þ

where xi and yi are the merged intensities for data sets x and y

for a common symmetry-unique reflection i and the sum is

performed over common symmetry-unique groups.

In the implementation within cctbx (Grosse-Kunstleve et al.,

2002), also used by DIALS (Winter et al., 2022), the merged

intensities are calculated as inverse-variance weighted means

of the symmetry-equivalent intensities,

xi ¼

PniðxÞ

j¼1

Ij

�2
j

PniðxÞ

j¼1

1

�2
j

; yi ¼

PniðyÞ

k¼1

Ik

�2
k

PniðyÞ

k¼1

1

�2
k

; ð3Þ

where Ij and �j are the scaled intensity and scaled intensity-

uncertainty of an individual observation. While this gives the

best estimate of the merged intensity, the uncertainty of this

merged intensity is not typically used when calculating

merging statistics (such as Rp.i.m.) in macromolecular crystal-

lography, which leads to several problems. For a given unique

group i, the reliability of xi and yi will only be approximately

the same if the individual uncertainties are similar and n1’ n2.

For rotation data, where each observation can be modelled

and integrated as it passes through the diffraction condition,

the uncertainties may indeed be similar; however, for sparser

narrow-wedge or still-shot data, the number of common

reflections between a pair of data sets in a particular symmetry

group become low and there may be a large relative difference

between n1 and n2. Furthermore, for still-shot (i.e. serial) data,

the uncertainty in the partiality estimates (which can be a

large fraction of the partiality value) results in a further

increase in intensity uncertainty, which needs to be accounted

for in CC calculations. Even if each xi and yi for a symmetry

group has the same uncertainty, the effect of ignoring relative

uncertainties between different symmetry groups in the

CC calculation is profound. Without suitable uncertainty

weighting, CC is most sensitive to the merged intensities with

high relative uncertainty due to their high variability, when

such reflections should in fact be down-weighted by their

uncertainty. Therefore, unweighted pairwise correlations

become unreliable in the presence of higher uncertainty

merged reflections, such as for correlation calculations

between small wedges of multi-crystal data or serial data, or

for noise-sensitive data-quality indicators such as anomalous

correlation coefficients.

When merging a set of symmetry-equivalent observations,

the standard error of the weighted mean is given by

�xi
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Pj¼n1

j¼1 �
� 2
j

s

: ð4Þ

Each term in the Pearson CC can then be weighted as

sxx ¼

P
i wiðxi � �xÞ

2

P
i wi

; syy ¼

P
i wiðyi � �yÞ

2

P
i wi

;

sxy ¼

P
i wiðxi � �xÞðyi � �yÞ

P
i wi

; ð5Þ

�x ¼

P
i wixiP

i wi

; �y ¼

P
i wiyiP

i wi

; ð6Þ

where the weights vector w defines the relative weight of each

pair of observations,

wi ¼
1

�2
i

; �2
i ¼ �

2
xi
þ �2

yi
; ð7Þ

i.e. the weight for each symmetry-unique group is the reci-

procal of the combined variance of the pair of merged

intensities. We note that introducing uncertainty weights into

a CC calculation lowers the relative contribution from the

higher intensity low-resolution data compared with an

unweighted calculation; an approximation for the absolute

uncertainty of a merged intensity is � ’
ffiffiffiffiffiffiffiffiffiffi
ðI=nÞ

p
, whereas an

unweighted CC calculation is equivalent to weighting each

merged intensity with equal variance. As such, an unweighted

CC calculation is overly sensitive to the strongest intensities

as it does not account for the higher absolute uncertainty of

stronger reflections. This naturally down-weights the response

to subtle differences between data sets. In the rest of this work,

we will refer to the inverse-variance weighted CC calculation

(equations 4, 5, 6 and 7) with the shorthand ‘�-weighted’ CC.

Another important consideration for a set of narrow-

rotation data sets is that the number of common reflections

between a pair of data sets can vary significantly, and therefore

it becomes desirable to use reliability weights in the cosym

objective function (wij; equation 1). We use the simple

weighting scheme of using the effective sample size ne of each

pairwise correlation calculation as its relative weight (i.e. wxy

/ ne(x,y), with zero weights for incalculable pairwise correla-

tions). The effective sample size is given by (Kish, 1965)

ne ¼ 1
�P

i

wiP
i wi

� �2

: ð8Þ

Note that 1 < ne� n, i.e. the effective sample size is lower than

the number of common reflections n when the symmetry-

group weights are unequal and approaches one in the limit

of one merged intensity having much lower uncertainty than

all other intensities. Pairwise correlation calculations are

performed after applying a consistent resolution filter across

all data sets, determined as the higher resolution of conser-

vative filters mean(I)/mean(�) > 4.0 and CC > 0.6 calculated

on the whole data set.
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2.2. Automated evaluation of clustering dimensionality

In the initial implementation of intensity-based isomorphism

analysis in dials.cosym, the target use case was the distinction

of the most isomorphous cluster of data sets for a single

protein crystal system, and the objective function (equation 1)

was minimized in two dimensions. However, methods from

Diederichs show that as the number and type of systematic

differences present increase, the required number of dimen-

sions also needs to increase (Diederichs, 2017), and therefore

a general solution is required to determine the number of

dimensions for intensity-based isomorphism analysis.

The methods presented by Diederichs use the number of

significant eigenvalue/eigenvector pairs of the matrix of

correlation coefficients as the number of required dimensions

(Diederichs, 2017). The related approach taken in dials.cosym

for symmetry analysis (Gildea & Winter, 2018) is to analyse

the residual after minimizing equation (1) as a function of the

number of dimensions, as it relates to how well the data are

described by that number of dimensions: a large value at a

given dimension indicates that more dimensions are needed to

adequately describe the systematic differences within the data.

For intensity-based isomorphism analysis in an unknown

number of dimensions, we adopt the same approach: equation

(1) is minimized for all possible dimensions for the data set

(1 through to the number of data sets) and the trend of the

residuals is analysed. In practice, the maximum number to

be tested is limited to 50 for computational efficiency. The

optimal number of dimensions to perform the analysis is then

defined as the elbow point of this curve, representing the point

where all significant residuals have been accounted for. The

algorithm for determining the elbow point of a curve is the

same approach as that used to determine the per-image

resolution cutoff in DISTL Spotfinder (Zhang et al., 2006) and

also implemented in DIALS. Once the optimal number of

dimensions has been determined, the cosym coordinate solu-

tion from this number of dimensions can be used for hier-

archical clustering analysis based on cosine-angle or spatial

density-based clustering analysis, as described in the next

section.

2.3. Identification of significant clusters using the OPTICS

algorithm

Within the family of spatial density-based clustering algo-

rithms, several different methods exist. Perhaps the most well

known is the DBSCAN algorithm (Ester et al., 1996), which

has all of the aforementioned advantages of spatial density-

based clustering algorithms. It does have a significant draw-

back, however, in that it applies a global density parameter,

and thus assumes that all clusters have the same underlying

spatial density, which is unlikely to hold true for all cases.

There are two commonly used algorithms that improve the

base principles of DBSCAN to account for clusters of different

spatial density and thus reduce the requirement for input

parameters: HDBSCAN (Campello et al., 2013) and OPTICS

(Ankerst et al., 1999). The algorithms have similarities,

although HDBSCAN may be more computationally expen-

sive, and the OPTICS algorithm has other distinct advantages

which suit this case better (Schubert & Gertz, 2018). OPTICS

is an unsupervised machine-learning algorithm and does not

produce a list of clusters per se. Instead, it produces an

augmented ordering of points representing the structure of the

data according to its spatial density (Ankerst et al., 1999). This

removes the need for a global density parameter to be defined,

meaning that clusters of different spatial density can be

automatically identified (a graphical representation is shown

in Fig. 2). A ‘reachability plot’ is also produced which is used

for cluster identification. In these plots, data sets that belong

to a cluster have low reachability distances and thus appear

as valleys, and boundaries between clusters have high reach-

ability distances and thus appear as spikes. Interpretation of

these plots can be automated by quantifying the slope

between consecutive ordered data sets (�) alongside criteria

such that when a set of conditions are met the cluster

boundary is automatically defined (Ankerst et al., 1999;

Schubert & Gertz, 2018).

In DIALS, clustering with OPTICS is achieved by using the

implementation (https://scikit-learn.org/dev/modules/generated/

sklearn.cluster.OPTICS.html) from the scikit-learn Python

package (Pedregosa et al., 2011), which classifies each data set as

either belonging to a cluster or as being an outlier point; the

identified clusters are then separated within DIALS to allow

further scaling and merging of individual clusters. The input

data for OPTICS clustering are the optimized N-dimensional

cosym coordinates, while we adjust the smin parameter, which

affects which data points are considered to be core points in the

OPTICS algorithm, based on the heuristic
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Figure 2
Graphical representation of the spatial density-based clustering results
produced by OPTICS (Ankerst et al., 1999). Data points are represented
as black dots, with circles of different colours (A, B, C and D) repre-
senting clusters. By not including a global density requirement, clusters of
different spatial densities can be automatically separated (A, B, C and D),
whereas a global density requirement would either join C and D together
or omit A and B entirely. The same concept applies in higher dimensions.

https://scikit-learn.org/dev/modules/generated/sklearn.cluster.OPTICS.html
https://scikit-learn.org/dev/modules/generated/sklearn.cluster.OPTICS.html


smin ¼
n

d
� b: ð9Þ

Given that the number of systematic differences present

between the data sets (n) is roughly estimated by the number

of dimensions optimized through the cosym minimization

procedure (d), the value for the minimum number of data sets

for a cluster (smin) can be estimated using a tailorable para-

meter (b) with a default value of 0.5. Changing this buffer

parameter is only likely to be needed when the groups present

in the data have very different populations (a value of 0.5 was

used for all examples in this work), and a floor value of 5 is

used for the minimum number of data sets. If b is set to be too

large, then this assumes that the number of dimensions is a

perfect proxy for the number of groups, and that all groups are

of equal size. Conversely, if b is too small then there is the risk

that too many clusters may be identified. The smin parameter

ultimately controls how rugged the ‘reachability plot’ is. This

is, however, also intertwined with the � parameter (default � =

0.05), which controls the gradient of the points a cluster starts

and ends at on the ‘reachability plot’. In practice, larger �

values will generally be less sensitive to features and be

restricted to top-level clusters, whereas lower � values will

increase the sensitivity to spikes in the reachability plot and

find more clusters (the default of 0.05 was used for all exam-

ples in this work). Both of these parameters (b and �) are

accessible for users of the software to alter through the

command-line interface, and visual examples of the effects of

altering these parameters on the OPTICS reachability plots

are provided in the supporting information.

3. Results and discussion

3.1. Separation of bovine and human insulin

To evaluate the performance of the new clustering algo-

rithms implemented through xia2.multiplex, eight high-quality

data sets each of bovine and human insulin (the most diverse

pair in this study) were measured at room temperature

(293 K) on the VMXi beamline at Diamond Light Source

(Sanchez-Weatherby et al., 2019; Mikolajek et al., 2023; Sandy

et al., 2024). Diffraction data from 20� wedges were measured

and the data were processed using the automatic pipelines.

Analysis was performed using these clustering algorithms (see

the supporting information for statistics and data-collection

parameters). Significant overlap of unit-cell lengths was

observed between the two species of insulin (Fig. 3a), and

subsequent unit-cell clustering was unable to separate these
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Figure 3
(a) Unit-cell dimensions plotted as a histogram to demonstrate overlap between species. (b) Correlation-based HCA using the �-weighted CC algorithm.
(c) Objective function residual (equation 1) for each tested dimensionality. The automatically selected dimension is highlighted, which is the first
dimension where the residual drops into the noise level as determined by the algorithm described in Section 2.2. (d) Cosine-angle HCA analysed in two
dimensions using the �-weighted CC algorithm. (e) OPTICS reachability plot for data sets ordered by the cluster that they belong to. A large spike in the
reachability distance corresponds to a cluster boundary. ( f ) Two-dimensional plot of the optimized cosym coordinates with the identified clusters colour-
coded. The coordinates have been rotated to align the axes with the eigenvectors derived from principal component analysis. Data sets corresponding to
bovine insulin are orange and data sets corresponding to human insulin are blue. Dendrogram links have colours that are randomly allocated and are not
representative of groups.
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species (see the supporting information). The merging statis-

tics including all data sets also did not indicate any obvious

issues related to non-isomorphism based on data-quality

indicators (see the supporting information). The correlation-

and cosine-angle-based HCA, however, clearly identified the

two groups present (Figs. 3b and 3d), supporting the assertion

that the subtle difference between isomorphous bovine and

human insulin can be detected using this method. Here, the

heatmap is a direct representation of the pairwise correlation

matrix (for correlation clustering) or the pairwise cosine-angle

matrix (for cosine-angle clustering), with the resulting HCA

dendrograms shown on the top and left-hand side for refer-

ence. As it was found to enhance the difference between

groups, �-weighting (as in Section 2.1) was applied, although it

did not change the conclusions (a comparison is provided in

the supporting information). The cosine-angle clustering was

performed on two-dimensional coordinates as automatically

identified by the algorithms described in Section 2.2. The

residual from the minimization of the objective function

(equation 1) is plotted for each tested dimension (Fig. 3c),

clearly showing that some significant residual remains when

only one dimension is used, but for two or more dimensions all

fluctuations are within the level of noise. Analysis with the

embedded OPTICS algorithm identified two clusters with

correctly separated insulin species with no outliers (Fig. 3f).

Here, the coordinates from the cosym analysis have been

rotated to align the axes with the eigenvectors identified using

principal component analysis. The percentage of variation

explained by each principal component is listed, and this is

now the default output in DIALS for intensity-based clus-

tering analysis. The reachability plots also identified a clear

boundary between two tightly packed clusters, as indicated by

a spike in the plot (Fig. 3e). The cluster boundary is included in

cluster 2 due to the OPTICS ordering and definition of the

reachability. A high reachability distance means that the data

set is far away from the preceding data set. The fact that the

second blue data set has a very low reachability distance

means that it must be close to the first blue data set by nature

of how the algorithm orders data sets.

3.2. Separation of bovine, porcine and human insulin

3.2.1. Cryogenic data

To further assess the ability of these methods, 12 crystals

each of bovine, porcine and human insulin were measured.

The addition of porcine insulin presents a greater challenge as

it only differs by one terminal amino acid when compared with

human insulin. This experiment was performed at cryogenic
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Figure 4
(a) Unit-cell dimensions plotted as a histogram to demonstrate overlap between species. (b) Correlation-based HCA using the �-weighted CC algorithm.
(c) Cosine-angle HCA analysed in two dimensions using the �-weighted CC algorithm. (d) Objective function residual (equation 1) for each tested
dimensionality. The automatically selected dimension is highlighted, which is the first dimension where the residual drops into the noise level as
determined by the algorithm described in Section 2.2. (e) Cosine-angle HCA analysed in three dimensions using the �-weighted CC algorithm. ( f ) The
optimized multi-dimensional cosym coordinates, projected in two dimensions, with the analysis performed in three dimensions. The coordinates have
been rotated to align the axes with the two most significant eigenvectors derived from principal component analysis. Data sets are coloured according to
clusters identified using the OPTICS algorithm [bovine (orange), porcine (pink) and human (blue) insulin]. Dendrogram links have colours that are
randomly allocated and are not representative of groups. For the other 2D projections of the coordinate plot, see the supporting information.
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temperature (100 K), in part to minimize flexibility at the end

of chain B, a key point of difference between the samples.

Diffraction data (10� wedges) were measured on the I24

beamline at Diamond Light Source and processed together

(see the supporting information for data-collection and

processing details). Once again, plotting the unit-cell lengths

for all three insulin species as a histogram demonstrates clear

overlap (Fig. 4a), consistent with the fact that unit-cell clus-

tering could not cleanly separate these species (see the

supporting information). The correlation-based HCA,

however, was able to clearly distinguish all three species of

insulin (Fig. 4b), while the cosine-angle clustering provided an

interesting result when performed with the former standard

xia2.multiplex setting of two-dimensional cluster analysis.

While the human insulin data sets formed a well separated

cluster (Fig. 4c), the bovine and porcine data sets were mixed,

likely due to the existence of multiple systematic differences

that could not be adequately described in two dimensions.

When the clustering is performed with the auto-selected three

dimensions (Fig. 4d), the bovine and porcine data sets sepa-

rate correctly (Fig. 4e). This clearly demonstrates the need

for flexible dimensionality when performing intensity-based

clustering. While in this case both the correlation and cosine-

angle clustering gave the same result, the three groups are

more tightly defined in the cosine-angle clustering. The

OPTICS algorithm identified three clusters with no outliers

(Fig. 4f), with all species of insulin correctly separated. As

in the previous example, �-weighting was used, although not

strictly required, as it enhanced differences between groups

(comparisons are provided in the supporting information).

3.2.2. Room-temperature data

To evaluate the new methodologies on a typical high-

throughput experiment, i.e. room-temperature (293 K) in situ

data collection on the VMXi beamline, data sets of 60� rota-

tion wedges were collected from a large number of bovine,

porcine and human insulin crystals and processed together

using the same methodology. Uneven numbers of each type

of crystal were measured to increase the complexity of the

clustering for testing purposes. When the clustering was

initially performed in xia2.multiplex, well-separated clusters

for the three different species could not be distinguished

without applying �-weighting to the CC calculations (Fig. 5).

This demonstrates the need for appropriate weighting proce-

dures when multi-crystal data sets increase in size with a

greater variation in quality, and when differences may be very

subtle, as is the case where porcine and human insulin only

differ by a terminal amino acid. This example also demon-

strates some of the ambiguity associated with HCA. In both

the correlation and cosine-angle clustering, there are clear

substructures within the porcine and human insulin groups, so
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Figure 5
Comparison of HCA analysis of bovine, porcine and human insulin using xia2.multiplex with and without CC �-weighting as described in Section 2.1.
Data sets corresponding to bovine insulin are highlighted in orange, data sets corresponding to porcine insulin are highlighted in pink and data sets
corresponding to human insulin are highlighted in blue. Dendrogram links have colours that are randomly allocated and not representative of groups.
The top dendrograms for the unweighted heatmaps show only the lower part of the dendrogram to improve visualization, whereas the full dendrograms
are shown to the left.
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the best place to cut the dendrogram is not clear without prior

knowledge or additional analysis.

As with the previous examples, comparison of the unit-cell

lengths for the known species results in significant overlap

(Fig. 6a), corresponding to the inability of unit-cell clustering

to clearly separate the species (see the supporting informa-

tion). When the dimensions were automatically optimized for

this data set, it was found that four dimensions were needed to

account for the main features of the rij matrix (Fig. 6b). In the

corresponding heatmap (Fig. 5), it is clear that species-pure

groups are observed, as well as some outlier groups. The

OPTICS analysis identified three species-pure groups (popu-

lations of 83, 85 and 28) as well as 19 outlier data sets (Figs. 6c

and 6d). This result demonstrates the power of this spatial

density-based clustering method: one group was significantly

smaller and less dense, but OPTICS can account for variations

in cluster size and density. The reachability plot produced

from the OPTICS analysis also highlights some other advan-

tages over alternative spatial density and HCA methods.

Under visual inspection, the cluster boundaries are straight-

forward to identify and the presence of multiple data sets with

large reachability values at these boundaries is indicative of

noise (as in Fig. 6c). Thus, there is a clear region of data sets

which could be outliers, whereas this can be more open to

interpretation in a dendrogram representation. By modifying

the � and b parameters, the user has some control over how

clusters are defined, with the reachability plots providing

guidance (although the default � value of 0.05 and b value of

0.5 should be appropriate in most cases; Ankerst et al., 1999;

Schubert & Gertz, 2018). It is worth noting that such clear

visualization of the clusters with clear tailoring of parameters

is not available through HDBSCAN, which is why, despite the

two being known for producing similar results, OPTICS was

chosen.

3.3. Quantification of the methodology

3.3.1. Scale of the observed differences

In this study, isomorphous crystals from three species of

insulin could be automatically separated where only 1–3

amino acids are different. In terms of molecular weight, this

represents a difference of 74 Da when comparing bovine and
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Figure 6
(a) Unit-cell dimensions plotted as a histogram to demonstrate overlap between species (some outliers beyond the plotted x-axis range were removed for
visual clarity). (b) Objective function residual (equation 1) for each tested dimensionality. The automatically selected dimension is highlighted, which is
the first dimension where the residual drops into the noise level as determined by the algorithm described in Section 2.2. (c) OPTICS reachability plot for
data sets ordered by the cluster that they belong to. A large spike in the reachability distance corresponds to a cluster boundary. (d) The optimized multi-
dimensional cosym coordinates, projected in two dimensions, with the analysis performed in four dimensions. The coordinates have been rotated to align
the axes with the two most significant eigenvectors derived from principal component analysis. Data sets are coloured according to clusters identified
using the OPTICS algorithm [bovine (orange), porcine (pink) and human (blue) insulin]. For the other 2D projections of the coordinate plot, see the
supporting information.
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human insulin, 44 Da when comparing bovine and porcine

insulin and only 30 Da when comparing porcine and human

insulin. These masses represent 1.3%, 0.8% and 0.5% of the

insulin proteins, respectively (although these do not represent

lower limits of detection as clustering was successful in all

cases). A clear application of this work is the automatic

separation of apo versus ligand-bound crystals. Typical

fragment-based drug-design campaigns soak in compounds

with weights of <300 Da (Bon et al., 2022); therefore, it is

highly feasible that such compounds could be detected using

this method, depending on the size of the protein.

3.3.2. Comparison of clustering methods

Quantitative comparison of the different clustering methods

presented was undertaken using standard measures: both the

Davies–Bouldin score (https://scikit-learn.org/stable/modules/

generated/sklearn.metrics.davies_bouldin_score.html; Davies

& Bouldin, 1979) and V-Measure (https://scikit-learn.org/

stable/modules/generated/sklearn.metrics.homogeneity_

completeness_v_measure.html; Rosenberg & Hirschberg,

2007) methods were used via the scikit-learn Python package

(Pedregosa et al., 2011). The Davies–Bouldin score provides

a measure of similarity of clusters, where lower scores corre-

spond to denser groups with better separation. The score is

calculated based on the data (rij for correlation clustering and

the optimized cosym coordinates for both the cosine angle

clustering and OPTICS methods) as well as the labels assigned

by each method (HCA or OPTICS). While useful for char-

acterizing clusters, this method does not have any knowledge

of what the ‘correct’ labels for each cluster are; therefore,

V-Measure analysis was also undertaken, which compares the

clustering outcome to known labels. Possible values range

from 0 to 1, where 1 implies perfect agreement with a known

classification.

A requirement for both of these statistical methods is

generating labels for each data set based on the clustering

method. While this occurs automatically for the OPTICS

clustering, the current DIALS implementation does not assign

a threshold for HCA in order for data sets to be assigned to

clusters. As previously discussed, an ‘isomorphic threshold’

has been proposed, suggesting that correlation dendrograms

should be cut at 60–70% of the maximum Ward distance

(Matsuura et al., 2023). Therefore, this analysis was under-

taken for each data set at both 60% and 70% of the maximum

height in both the correlation and cosine dendrograms. While

the original proposal for the ‘isomorphic threshold’ was only

optimized for correlation-coefficient HCA, the same cutoff

values have been applied to the cosine-angle HCA for

comparison. For the room-temperature comparison of bovine

and human insulin (Section 3.1) and the cryogenic comparison

of bovine, porcine and human insulin (Section 3.2.1), correct

clustering occurred within this threshold. This was not the case

for the comparison of room-temperature bovine, porcine and

human insulin data sets (Section 3.2.2); therefore, appropriate

thresholds were manually identified for the purpose of

comparison between methods. Davies–Bouldin scores and

V-Measures were calculated for all identified thresholds for all

data sets and clustering methods (Table 1).

One noticeable trend is that the Davies–Bouldin scores for

the cosine-angle HCA are far lower than the corresponding

correlation HCA when the V-Measures are equivalent

(i.e. when the ‘correctness’ is equivalent between the two

methods). This follows the visual trends in the dendrograms

that the cosine-angle clusters are denser and better separated

compared with the correlation dendrograms. Clearly, the

separation of random and systematic error via the cosym

method aids in cluster partition. The next conclusion to draw

using the V-Measures is that the proposed 60–70% threshold

does not hold for all data sets in this study. While the proposed

threshold could be applied to subclusters, as performed

previously (Matsuura et al., 2023), continuing to apply the

cutoff further down the dendrogram is not efficient for auto-

mation and thus not explicitly tested. The two smaller data

sets (Sections 3.1 and 3.2.1) are expected to give perfect

V-Measures, and any deviation from 1 in this case is a failure

of the clustering method, while some deviation is expected for

the large room-temperature data set (Section 3.2.2) due to the

additional uncertainty in the data and the expected presence

of outliers. The large room-temperature data set (Section

3.2.2) only provides reasonable V-Measures in the correlation

HCA at 47% of the maximum Ward distance. Furthermore,

this study verifies that the isomorphic threshold does not apply

to cosine-angle clustering, as reasonable V-Measures are

achieved where a threshold of 18% of the maximum Ward

distance.

As for the OPTICS method, the scores match the cosine

method when perfect clustering is achieved (V-Measure = 1).

For the large room-temperature data set (Section 3.2.2), the

OPTICS scores are comparable to using a manually defined

cutoff in either correlation or cosine-angle HCA, as there is

likely to be some range of ‘true’ values of the V-Measure

depending on how one chooses to classify outliers. However,

these scores were achieved automatically using OPTICS,

whereas manual intervention was required to achieve similar
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Table 1
Comparison of clustering methods using both the Davies–Bouldin score
and V-Measure methods.

Lower Davies–Bouldin scores correspond to denser and well separated clus-
ters. Higher V-Measure scores correspond to more correctly labelled data
points.

Bovine versus
human
(Section 3.1)

Bovine versus
porcine versus
human
(Section 3.2.1)

Bovine versus
porcine versus
human
(Section 3.2.2)

Correlation HCA
Threshold 60% 70% 60% 70% 60% 70% 47%
Davies–Bouldin score 0.204 0.204 0.460 0.834 0.799 0.682 1.492
V-Measure 1.0 1.0 1.0 0.734 0.516 0.452 0.894

Cosine-angle HCA
Threshold 60% 70% 60% 70% 60% 70% 18%

Davies–Bouldin score 0.040 0.040 0.257 0.723 0.505 0.413 0.529
V-Measure 1.0 1.0 1.0 0.734 0.539 0.562 0.938

OPTICS
Davies–Bouldin score 0.040 0.257 0.783
V-Measure 1.0 1.0 0.856

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.davies_bouldin_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.davies_bouldin_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.homogeneity_completeness_v_measure.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.homogeneity_completeness_v_measure.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.homogeneity_completeness_v_measure.html


quality using HCA, with previously defined automation

guidelines failing for this data set. Therefore, while both HCA

and OPTICS have the capability to perform similarly for these

data sets, the fact that only OPTICS was able to achieve this

without human intervention highlights the advantages of this

method over traditional HCA. It is also worth noting that the

exact value of the Davies–Bouldin score cannot be used to

automate HCA, as for all cases with high V-Measures the

values range from 0.04 to 1.492. This scoring system is best

limited to method comparison, further highlighting the chal-

lenges in automating HCA and the advantage of using a

method such as OPTICS.

3.3.3. Common reflection requirement

All insulin species in this study are from crystals of high

symmetry, with many common reflections present in small

wedges of data. To investigate the applicability of this tech-

nique to lower symmetry systems, where less common reflec-

tions are present in small wedges, the number of common

reflections required for successful clustering of this data was

quantified. For the separation of bovine and human insulin

(Section 3.1), the number of common unique reflections

between pairs of data sets varied from 4723 to 6209, with a

mean of 5479, using an automatic resolution filter of 1.72 Å.

When taking uncertainties into account, the effective number

of unique observations ne varied from 690 to 1644, with a

mean of 1112. The impact of the number of common reflec-

tions required was investigated by successively cutting back

the integrated data to the first n� of data. It was found that

successful clustering via OPTICS could still be achieved down

to 1.2� of rotation, where the number of common unique

reflections between pairs of data sets varied in the range 48–

282 (mean 104), with an automatic resolution filter of 1.89 Å

and effective sample sizes ne in the range 87–133 (mean 40).

Below this, the dimensionality assessment selects a higher

number of dimensions and OPTICS clustering does not

identify the correct clusters.

For the separation of bovine, porcine and human insulin

data sets at 100 K (Section 3.2.1), the number of common

unique reflections between pairs of data sets varied from 6497

to 12 102, with a mean of 9306, using an automatic resolution

filter of 1.26 Å. ne varied from 1174 to 5481, with a mean of

3188. Again, the effect of reducing the number of common

reflections was investigated by successively cutting back the

integrated data to the first n� of data. In this case, successful

OPTICS clustering was still achieved down to 0.8� of rotation,

where the number of common unique reflections between

pairs of data sets varied in the range 53–244 (mean 86), with an

automatic resolution filter of 1.48 Å and effective sample sizes

ne in the range 4–90 (mean 40). Below this, some data sets start

to become classed as outliers.

For the separation of bovine, porcine and human insulin

data sets at 293 K (Section 3.2.2), the number of common

unique reflections between pairs of data sets varied from 4173

to 8634, with a mean of 7651, using an automatic resolution

filter of 1.63 Å. ne varied from 356 to 4308, with a mean of

2432. This data set exhibits much higher internal variation, as

shown by the presence of clustering outliers; therefore, when

the rotation range of the integrated data is cut back, it was

found that comparably successful clustering could only be

achieved after additional scaling and filtering, with some

previously classified data sets now being classed as outliers.

For example, processing only the first 20� of data resulted

in OPTICS classification into three clusters (populations 52,

19 and 28) and 116 outliers. With scaling and filtering

turned on (xia2.multiplex options filtering.method=

deltacchalf stdcutoff=3.0), 19 data sets were

removed and subsequent clustering analysis found three

species-pure clusters (populations 76, 80 and 27) and 13 outlier

data sets. We note that the higher variability in this room-

temperature data set, compared with the first example data

set, is due to variability in the centring accuracy of the data

collections. As the rotation range is �30�, there is a higher

chance that a crystal rotates out of the beam due to uncer-

tainty in the sample position determined by automated optical

centring in in situ plates. The effect of centring variability was

seen in the initial xia2 processing, where some sweeps were

automatically cut to a reduced scan range due to blank images,

and in scaling, where the overall scale factors for some crystals

varied by an order of magnitude or reduced to zero, indicating

that some crystals passed into or out of the beam during the

rotation range or had large changes in their diffracting

volume. Despite these effects, all integrated data sets were

used as input to xia2.multiplex as a realistic test of routine in

situ data collection and processing.

These examples therefore demonstrate that for high-quality

diffraction data the clustering methodologies presented are a

highly sensitive technique, where small structural differences

can be detected with a small amount of data. The third

example, which is more representative of routine room-

temperature in situ experiments, demonstrates that small

structural changes can still be detected, but outlier handling

via further scaling and filtering are important to discover

clusters as the inherent noise level increases.

3.3.4. Calculation costs

The computational cost of different aspects of the analyses

was also investigated. The most computationally expensive

part is the calculation of the rij matrix, which is required for all

clustering methods evaluated in this study (correlation HCA,

cosine HCA and OPTICS). This process scales as n2, where n

is the number of data sets. The dimension optimization is the

next most time-intensive calculation, although this could be

greatly minimized if needed by specifying the number of

dimensions, as a single minimization is orders of magnitude

faster than the calculation of the rij matrix. The OPTICS

analysis scales linearly and is slower than HCA by 2–3 orders

of magnitude depending on data-set size. HCA analysis is very

fast, and does not have a clear scaling behaviour with number

of data sets. While this is a computational advantage, this does

not currently include the capacity for robust automatic clus-

tering, and the computational trade-off for using OPTICS is
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insignificant when considering that it is still far faster than the

calculation of the rij matrix (see the supporting information for

time-profiling results). Clearly there is scope for improving the

computational efficiency of this approach, but with regard

to the different clustering methods (correlation HCA, cosine

HCA and OPTICS), the requirements are comparable.

4. Implementation and availability

The algorithms presented here are currently available within

the standalone DIALS program dials.correlation_matrix, as

well as within the xia2.multiplex multi-crystal data-reduction

and analysis pipeline in DIALS versions 3.24.0 and above

(https://dials.github.io/installation.html). �-weighted calcula-

tion of pairwise CC values and dimension optimization are

now used by default within both software packages. To output

identified clusters as DIALS experiment and reflection files

in dials.correlation_matrix, set the input significant_

clusters.output=true. To output scaled clusters in

xia2.multiplex, set the input clustering.output_

clusters=True and clustering.method=

coordinate. At the time of publication, these methods are

included in the auto-processing pipelines at Diamond Light

Source that run during data collections where xia2.multiplex is

running. Where practicable within the limits of Zenodo, raw

data have been uploaded and are publicly available. Raw data

from the bovine and human insulin in Section 3.1 (https://

doi.org/10.5281/zenodo.15077303) and the collection of

bovine, porcine and human insulin in Section 3.2.1 (https://

doi.org/10.5281/zenodo.13890874) have been uploaded in full.

Due to size constraints, only a subset of bovine (https://

doi.org/10.5281/zenodo.15062310), porcine (https://doi.org/

10.5281/zenodo.15062327) and human (https://doi.org/

10.5281/zenodo.15062343) insulin from the data in Section

3.2.2 have been uploaded, alongside the outliers identified by

OPTICS (https://doi.org/10.5281/zenodo.15062350). There is

also a tutorial to process these data in DIALS (https://

github.com/graeme-winter/dials_tutorials/blob/release-2024-12/

ccp4-dls-2024/COWS_PIGS_PEOPLE.md). The same data

have also been successfully separated using XSCALE_

ISOCLUSTER from the XDS package, with an analogous

tutorial available (https://wiki.uni-konstanz.de/xds/index.php/

Scale_many_datasets).

5. Conclusions

In this work, we have described and demonstrated enhance-

ments of the intensity-clustering algorithms available within

DIALS and utilized by xia2.multiplex. Firstly, the calculation

of pairwise correlation coefficients for intensity-based clus-

tering should be appropriately weighted using the uncertain-

ties determined from the integration and scaling of measured

reflections. This has been shown to dramatically improve the

quality of both the correlation and cosine-angle hierarchical

clustering methods used within these programs and was

necessary to enable correct dimensionality optimization and

spatial density-based clustering. Over 200 data sets of bovine,

porcine and human insulin at room temperature could be

clustered into pure species using a �-weighted calculation,

whereas the existing unweighted methodology failed to

resolve any species-pure clusters for all clustering methods.

Furthermore, the appropriate number of dimensions for the

cosym coordinate optimization is automatically optimized,

which directly affects the cosine-angle HCA, providing

separation of groups in cases where there are multiple types of

systematic differences present. Specifically, cosine-angle HCA

in at least three-dimensional space was able to separate data

sets from crystals of human, bovine and porcine insulin,

whereas the same analysis in two dimensions mixed the data

sets of two insulin species together. Finally, inclusion of the

OPTICS density-based clustering algorithm resulted in the

automatic identification of discrete groups, including filtering

out outliers in the data set as appropriate. While a similar

result could be achieved with HCA, this could not be

performed using proposed automatic thresholds, and thus

required manual analysis, while the OPTICS analysis was fully

automated. Our work demonstrates the sensitivity to small

structural changes that can be achieved with clustering

analysis. The differences in molecular weight vary in the range

of 30–74 Da, constituting 0.5–1.3% of the mass of the insulin

protein, and the resulting differences in the intensities could

be detected down to a limit of around 100 common unique

reflections on average between pairs of high-quality data sets.

This technique therefore demonstrates clear applicability for

automatically separating apo and ligand-bound crystals in

room-temperature data collections.

6. Related literature

The following references are cited in the supporting infor-

mation for this article: Andrews & Bernstein (2014). Winter

(2010) and Zeldin et al. (2013, 2015).
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