Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Archan Dey,^a Gautam R. Desiraju,^a* Raju Mondal^b and Judith A. K. Howard^b

^aSchool of Chemistry, University of Hyderabad, Hyderabad 500 046, India, and ^bDepartment of Chemistry, University of Durham, Durham DH1 3LE, England

Correspondence e-mail: desiraju@uohyd.ernet.in

Key indicators

Single-crystal X-ray study T = 120 KMean σ (C–C) = 0.002 Å R factor = 0.037 wR factor = 0.102 Data-to-parameter ratio = 12.0

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

A 1:1 molecular complex of 4-aminocyclohexanol and (4-hydroxycyclohexyl)carbamic acid

The title molecular complex, 4-ammoniocyclohexanol (4-hydroxycyclohexyl)carbamate, $C_6H_{14}NO^+ \cdot C_7H_{12}NO_3^-$, forms an ionic column with N-H···O, O-H···O and C-H···O interactions. There are two different cyclic supramolecular synthons of note. The crystal structures of ionic amino acids also have similar structural patterns.

Received 9 March 2004 Accepted 16 April 2004 Online 24 April 2004

Comment

The title molecular complex, (I), was obtained during a study of 4-aminocyclohexanol. This type of compound has a tendency to form carbonated adducts by reaction with atmospheric CO₂. In this regard, the crystal structure of 2aminocyclohexylcarbamate has been reported (Hanessian *et al.*, 1995). In our case, 4-hydroxycyclohexylcarbamic acid initially formed, then crystallized with the original 4-aminocyclohexanol to give a 1:1 ionic molecular complex with proton transfer.

The molecular structure and atom numbering are given in Fig. 1. The main features are similar to those in the molecular complex of methyl 3-acetoxy-1-ammonio-4-iodocyclohexane-1-carboxylate and trifluoroacetate (Avenoza *et al.*, 1997) and similar to 2-aminocyclohexylcarbamate (Hanessian *et al.*, 1995). The ions form a columnar arrangement with several $N-H\cdots$ O interactions (Table 1); the packing is shown in Fig. 2. Weak $C-H\cdots$ O interactions (Table 1) reinforce the

Figure 1

A view of the molecular structure of the title complex, with the atomnumbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.

 \odot 2004 International Union of Crystallography Printed in Great Britain – all rights reserved

Figure 2

Stereoview of the columnar packing, viewed down the a axis. Hydrogen bonds are shown as dashed lines.

column formation. A closer view of the columnar packing shows that it is composed of two cyclic supramolecular synthons A and B (Fig. 3). Both types of synthon are observed in other ionic amino acids. In the Cambridge Structural Database (Version 5.24, July 2003; Allen, 2002), the crystal structures with refcodes ACXTPY (Bhattacharjee *et al.*, 1975), ACYHXA01 (Valle *et al.*, 1988), DMTYRS (Gaudestad *et al.*, 1976), FOBJUB (Pirrung, 1987), MEMTYR10 (Satyshur & Rao, 1983) RIGSEF (Avenoza *et al.*, 1997) and TOKNUC (Allan *et al.*, 1996) contain synthons A and B.

 $O-H\cdots O(carboxylate)$ and $O-H\cdots O(hydroxyl)$ hydrogen bonds act as connectors between the columns.

Experimental

Neutralization of the commercially available (Lancaster) hydrochloride salt of 4-aminocyclohexanol by NaHCO₃ in water affords the 4-aminocyclohexanol (extracted with EtOAc). The compound crystallized from a 1:1:1 mixture of EtOAc, CH₃CN and EtOH. During the time of crystallization, 4-aminocyclohexanol is carboxylated by atmospheric CO₂ to give the carbamic acid which cocrystallizes with the parent compound to give yellow crystals of the 1:1 molecular complex.

Crystal data

19783 measured reflections

$C_{6}H_{14}NO^{+} \cdot C_{7}H_{12}NO_{3}^{-}$ $M_{r} = 274.36$ Monoclinic, $P2_{1}/c$ $a = 6.3452$ (2) Å $b = 18.6256$ (6) Å $c = 12.1664$ (4) Å $\beta = 92.284$ (2)° $V = 1436.72$ (8) Å ³ $Z = 4$	$D_x = 1.268 \text{ Mg m}^{-3}$ Mo K\alpha radiation Cell parameters from 4934 reflections $\theta = 2.8-27.5^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ T = 120 (2) K Plate, yellow $0.22 \times 0.12 \times 0.04 \text{ mm}$
Data collection	
SMART 6K CCD area-detector diffractometer ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2001) $T_{min} = 0.927, T_{max} = 1.000$	3308 independent reflections 2537 reflections with $I > 2\sigma(I)$ $R_{int} = 0.038$ $\theta_{max} = 27.5^{\circ}$ $h = -7 \rightarrow 8$ $k = -24 \rightarrow 24$

-15
ightarrow 15

Figure 3 Segment of the crystal structure, showing synthons A and B.

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0538P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.037$	+ 0.3252P]
$wR(F^2) = 0.102$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.01	$(\Delta/\sigma)_{\rm max} = 0.001$
3308 reflections	$\Delta \rho_{\rm max} = 0.27 \ {\rm e} \ {\rm \AA}^{-3}$
276 parameters	$\Delta \rho_{\rm min} = -0.18 \text{ e } \text{\AA}^{-3}$
All H-atom parameters refined	

Table 1

Hydrogen-bonding geometry (Å, °).

$D-H\cdots A$ $D-H$ $H\cdots A$ $D\cdots A$ $D-H$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-) -) -) -)

Symmetry codes: (i) $1 + x, \frac{3}{2} - y, \frac{1}{2} + z$; (ii) 1 + x, y, 1 + z; (iii) -x, 1 - y, 1 - z; (iv) 1 - x, 1 - y, 1 - z.

Data collection: *SMART* (Bruker, 1997); cell refinement: *SMART*; data reduction: *SAINT* (Bruker, 1997); program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1997); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 2001); software used to prepare material for publication: *SHELXTL*.

AD thanks the CSIR for fellowship support. RM thanks the ORS for support. JAKH thanks the EPSRC for a Senior Research Fellowship. GRD thanks DST for financial assistance.

References

Allan, R. D., Duke, R. K., Hambley, T. W., Johnston, G. A. R., Mewett, K. N., Quickert, N. & Tran, H. W. (1996). Aust. J. Chem. 49, 785–790. Allen, F. H. (2002). Acta Cryst. B58, 380-388.

- Avenoza, A., Cativiela, C., Fernandez-Recio, M. A. & Peregrina, J. M. (1997). Synthesis, pp. 165–167.
- Bhattacharjee, S. K., Chacko, K. K. & Zand, R. (1975). J. Cryst. Mol. Struct. 5, 403–411.
- Bruker (1997) SMART (Version 5.054) and SAINT (Version 5.00). Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2001) *SHELXTL* (Version 6.12) and SADABS (Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA.
- Gaudestad, O., Mostad, A. & Romming, C. (1976). Acta Chem. Scand. Ser. B, **30**, 501–504.
- Hanessian, S., Simard, M. & Roelens, S. (1995). J. Am. Chem. Soc. 117, 7630–7645.
- Pirrung, M. C. (1987). J. Org. Chem. 52, 4179-4184.
- Satyshur, K. A. & Rao, S. T. (1983). Acta Cryst. C39, 1672-1673.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Valle, G., Crisma, M., Toniolo, C., Sen, N., Sukumar, M. & Balaram, P., (1988). J. Chem. Soc. Perkin Trans. 2, pp. 393–398.

Acta Cryst. (2004). E60, o857–o859 [https://doi.org/10.1107/S1600536804009134]

A 1:1 molecular complex of 4-aminocyclohexanol and (4-hydroxycyclohexyl)carbamic acid

Archan Dey, Gautam R. Desiraju, Raju Mondal and Judith A. K. Howard

4-ammoniocyclohexanol-(4-hydroxycyclohexyl)carbamate (1/1)

Crystal data

C₆H₁₄NO^{+·}C₇H₁₂NO₃⁻⁻ $M_r = 274.36$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 6.3452 (2) Å b = 18.6256 (6) Å c = 12.1664 (4) Å $\beta = 92.284$ (2)° V = 1436.72 (8) Å³ Z = 4

Data collection

SMART 6k CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 8 pixels mm⁻¹ ω scans Absorption correction: multi-scan (SADABS; Bruker, 2001) $T_{\min} = 0.927, T_{\max} = 1.000$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.037$ $wR(F^2) = 0.102$ S = 1.013308 reflections 276 parameters 0 restraints Primary atom site location: structure-invariant direct methods F(000) = 600 $D_x = 1.268 \text{ Mg m}^{-3}$ Melting point: 377 K Mo K\alpha radiation, \lambda = 0.71073 \mathbf{A} Cell parameters from 4934 reflections $\theta = 2.8-27.5^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ T = 120 KPlate, yellow $0.22 \times 0.12 \times 0.04 \text{ mm}$

19783 measured reflections 3308 independent reflections 2537 reflections with $I > 2\sigma(I)$ $R_{int} = 0.038$ $\theta_{max} = 27.5^{\circ}, \ \theta_{min} = 2.0^{\circ}$ $h = -7 \rightarrow 8$ $k = -24 \rightarrow 24$ $l = -15 \rightarrow 15$

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites All H-atom parameters refined $w = 1/[\sigma^2(F_o^2) + (0.0538P)^2 + 0.3252P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.27$ e Å⁻³ $\Delta\rho_{min} = -0.18$ e Å⁻³

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

 $U_{\rm iso} * / U_{\rm eq}$ х Ζ v O3 0.01886 (7) 0.0216 (2) -0.46270(13)0.63687(5)O2 0.0223(2)-0.15113(14)0.58448(5)0.05544(7)01 0.35337 (16) 0.73442(5)0.48724 (8) 0.0300(2)N1′ 0.46768 (6) 0.91750 (8) 0.0182 (2) 0.74068 (18) 01' 0.56745 (17) 0.60426(6) 0.50683 (8) 0.0303(2)N1 -0.21577(18)0.69590(6) 0.12248(9)0.0227(2)-0.27812 (19) C7 0.06402 (9) 0.0172(2)0.63633 (6) C1 -0.0410(2)0.69605(7)0.20400(10)0.0197(3)C1′ 0.68231 (19) 0.48446(7)0.79946 (10) 0.0182(3)C4 0.1752(2)0.74117(7)0.41197 (10) 0.0220(3)C5 0.2403(2)0.76883 (8) 0.30124 (11) 0.0290(3)C5′ 0.4282(2)0.54960(7) 0.67150 (10) 0.0217(3)C4′ 0.61997 (10) 0.0229(3)0.6106(2)0.58854(7)C6′ 0.4831 (2) 0.52980(7) 0.79140 (10) 0.0206 (3) C3' 0.8078(2)0.54205 (8) 0.62791 (12) 0.0291(3)C6 0.0536(3)0.77048(8)0.21763 (12) 0.0298(3)C2′ 0.52213 (8) 0.8658(2)0.74691 (12) 0.0266 (3) C3 0.0736(3)0.66789 (8) 0.39996 (12) 0.0321(3)C2 -0.1096(2)0.66843(9)0.31494 (12) 0.0310(3)H1A 0.066(2)0.6656 (8) 0.1757 (12) 0.020 (3)* H1B 0.658(2)0.4379(7)0.7637(11) 0.015 (3)* H2D 0.893(2)0.5668(9)0.7913 (13) 0.028 (4)* H6D 0.506(2)0.5722 (8) 0.8348 (12) 0.021 (4)* H4'0.021 (4)* 0.636(2) 0.6353 (8) 0.6590 (12) H5D 0.400(2)0.5061 (8) 0.6273 (12) 0.020 (4)* H4 0.073(3)0.7753(9)0.4436 (13) 0.030 (4)* 0.5937 (14) 0.033 (4)* H3D 0.925 (3) 0.5664 (9) H5C 0.307(3)0.5814(9)0.6675 (13) 0.030 (4)* H115 -0.315(3)0.7273(10)0.1311 (14) 0.038(5)* H114 0.4447(9)0.9227 (13) 0.031 (4)* 0.870(3)-0.221(3)0.7018 (11) 0.047 (5)* H2A 0.3403(15)H112 0.641(3)0.4352(9)0.9465 (14) 0.038 (5)* H111 0.756(2)0.5090 (9) 0.9608 (13) 0.027 (4)* H6C 0.370(2)0.5034 (8) 0.8226 (12) 0.021 (4)* H5A 0.352(3) 0.7351 (10) 0.2737 (15) 0.042 (5)*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

H1′	0.498 (3)	0.6467 (10)	0.5041 (15)	0.042 (5)*	
H3C	0.776 (3)	0.4966 (11)	0.5837 (15)	0.045 (5)*	
H2C	0.988 (3)	0.4894 (9)	0.7499 (13)	0.036 (4)*	
H3A	0.188 (3)	0.6337 (10)	0.3776 (14)	0.042 (5)*	
H6B	-0.058 (3)	0.8024 (10)	0.2441 (14)	0.035 (4)*	
H2B	-0.171 (3)	0.6200 (10)	0.3086 (14)	0.039 (5)*	
H6A	0.095 (3)	0.7889 (10)	0.1460 (16)	0.047 (5)*	
H3B	0.026 (3)	0.6536 (11)	0.4732 (17)	0.053 (5)*	
H1	0.419 (3)	0.7770 (11)	0.4939 (16)	0.049 (5)*	
H5B	0.305 (3)	0.8174 (10)	0.3088 (14)	0.042 (5)*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
O3	0.0175 (5)	0.0204 (4)	0.0262 (5)	-0.0009 (3)	-0.0078 (3)	0.0008 (3)
O2	0.0191 (5)	0.0202 (4)	0.0270 (5)	0.0026 (3)	-0.0060 (4)	-0.0046 (3)
01	0.0349 (6)	0.0212 (5)	0.0322 (5)	-0.0039 (4)	-0.0202 (4)	0.0027 (4)
N1′	0.0167 (5)	0.0184 (5)	0.0191 (5)	0.0002 (4)	-0.0026 (4)	-0.0002 (4)
01′	0.0362 (6)	0.0308 (5)	0.0235 (5)	0.0065 (4)	-0.0022 (4)	0.0075 (4)
N1	0.0207 (6)	0.0201 (5)	0.0264 (6)	0.0044 (4)	-0.0096 (4)	-0.0048 (4)
C7	0.0183 (6)	0.0169 (6)	0.0161 (5)	-0.0012 (4)	-0.0022 (4)	0.0021 (4)
C1	0.0179 (6)	0.0203 (6)	0.0202 (6)	0.0010 (5)	-0.0064 (5)	-0.0024 (5)
C1′	0.0176 (6)	0.0193 (6)	0.0176 (6)	0.0000 (5)	-0.0024 (4)	0.0007 (4)
C4	0.0230 (7)	0.0213 (6)	0.0211 (6)	0.0002 (5)	-0.0085 (5)	-0.0019 (5)
C5	0.0296 (8)	0.0294 (7)	0.0272 (7)	-0.0137 (6)	-0.0101 (6)	0.0048 (5)
C5′	0.0187 (6)	0.0248 (6)	0.0211 (6)	0.0023 (5)	-0.0047 (5)	0.0005 (5)
C4′	0.0239 (7)	0.0218 (6)	0.0227 (6)	0.0006 (5)	-0.0041 (5)	0.0039 (5)
C6′	0.0163 (6)	0.0257 (6)	0.0196 (6)	0.0022 (5)	-0.0026 (5)	-0.0002 (5)
C3′	0.0218 (7)	0.0360 (8)	0.0297 (7)	0.0044 (6)	0.0044 (6)	0.0145 (6)
C6	0.0380 (8)	0.0245 (7)	0.0258 (7)	-0.0089 (6)	-0.0134 (6)	0.0050 (5)
C2′	0.0159 (6)	0.0324 (7)	0.0311 (7)	0.0008 (5)	-0.0021 (5)	0.0113 (6)
C3	0.0432 (9)	0.0297 (7)	0.0223 (7)	-0.0158 (7)	-0.0113 (6)	0.0072 (6)
C2	0.0318 (8)	0.0352 (8)	0.0253 (7)	-0.0162 (6)	-0.0065 (6)	0.0024 (6)

Geometric parameters (Å, °)

O3—C7	1.2737 (14)	C5—H5A	1.016 (19)
O2—C7	1.2647 (15)	C5—H5B	0.996 (19)
O1—C4	1.4316 (15)	C5′—C4′	1.5224 (19)
01—H1	0.90 (2)	C5′—C6′	1.5314 (17)
N1′—C1′	1.5016 (15)	C5'—H5D	0.984 (15)
N1′—H114	0.924 (18)	C5′—H5C	0.971 (17)
N1′—H112	0.953 (18)	C4'—C3'	1.5215 (19)
N1′—H111	0.937 (17)	C4′—H4′	1.002 (15)
O1′—C4′	1.4231 (15)	C6'—H6D	0.959 (15)
O1'—H1'	0.905 (19)	C6′—H6C	0.961 (16)
N1—C7	1.3679 (15)	C3'—C2'	1.5253 (19)
N1—C1	1.4578 (15)	C3′—H3D	0.980 (18)

N1H115	0 869 (19)	C3'H3C	1 019 (19)
C1 - C6	15170(18)	C6—H6B	0.990(18)
C1 - C2	1.5240(19)	C6—H6A	0.990(10)
C1 H1A	0.958(15)	C_2 H2D	1.003(16)
C1' - C6'	15108(17)	$C_2 - H_2 D$	0.084(18)
C1 - C0	1.5156(17) 1.5216(18)	$C_2 = C_2$	1.5240(10)
C1 - C2	1.3210(18)	$C_3 = U_2 \Lambda$	1.3249(19)
$C_1 - H_1 B$	0.979(14)	C2 U2D	1.011(19)
C4 - C5	1.3141(10)	Сэ нэл	0.99(2)
C4—C3	1.5151(19)	C2—H2A	1.00(2)
C4—H4	0.996 (16)	C2—H2B	0.983 (18)
05-06	1.5310 (19)		
	100 2 (12)		110 4 (12)
C4—OI—HI	109.3 (12)	HSD—CS'—HSC	110.4 (13)
C1'—N1'—H114	110.2 (10)	01' - C4' - C3'	107.74 (11)
C1′—N1′—H112	110.1 (10)	01'	112.09 (11)
H114—N1′—H112	106.3 (14)	C3'—C4'—C5'	109.85 (11)
C1'—N1'—H111	112.6 (9)	O1'—C4'—H4'	107.5 (8)
H114—N1′—H111	105.6 (14)	C3'—C4'—H4'	110.5 (8)
H112—N1′—H111	111.7 (14)	C5'—C4'—H4'	109.1 (8)
C4'—O1'—H1'	106.9 (12)	C1'—C6'—C5'	110.64 (10)
C7—N1—C1	123.48 (11)	C1'—C6'—H6D	108.3 (9)
C7—N1—H115	114.4 (12)	C5'—C6'—H6D	110.5 (9)
C1—N1—H115	116.9 (12)	С1'—С6'—Н6С	108.8 (9)
O2—C7—O3	123.25 (11)	С5'—С6'—Н6С	110.8 (9)
O2-C7-N1	119.36 (11)	H6D—C6′—H6C	107.7 (12)
O3—C7—N1	117.38 (11)	C4'—C3'—C2'	111.42 (12)
N1-C1-C6	111.28 (10)	C4'—C3'—H3D	110.3 (10)
N1-C1-C2	111.45 (11)	C2'-C3'-H3D	110.9 (10)
C6-C1-C2	109.71 (11)	C4' - C3' - H3C	107.1 (11)
N1—C1—H1A	106 5 (8)	C2' - C3' - H3C	109.5(10)
C6-C1-H1A	107 3 (9)	$H_{3}D_{-}C_{3'}H_{3}C$	107.2(10)
$C_2 - C_1 - H_1 A$	110 5 (9)	C1 - C6 - C5	107.1(11) 110.28(11)
N1' - C1' - C6'	110.5(0)	C1-C6-H6B	107.4(10)
N1' - C1' - C0'	100.50(10)	C5 C6 H6B	107.4(10)
C6' - C1' - C2'	109.32(10) 111.30(10)	C_{1} C_{6} H_{6A}	110.0(10)
$C_0 - C_1 - C_2$	111.39(10) 105.6(9)	C_{1}	110.0(11)
NI - CI - IIB	103.0(8)		111.0(11) 107.4(15)
	110.2(8)	HOB - CO - HOA	107.4 (13)
$C_2 - C_1 - HIB$	109.4 (8)	$C1^{\prime} - C2^{\prime} - C3^{\prime}$	110.58 (11)
01 - 04 - 03	107.75 (10)	C1 - C2 - H2D	106.0 (9)
01	111.25 (11)	C3'—C2'—H2D	109.9 (9)
C3—C4—C5	110.54 (11)	C1'—C2'—H2C	108.2 (10)
O1—C4—H4	108.5 (9)	C3'—C2'—H2C	110.2 (10)
C3—C4—H4	109.3 (9)	H2D—C2′—H2C	111.9 (13)
C5—C4—H4	109.4 (9)	C4—C3—C2	111.69 (12)
C4—C5—C6	111.49 (12)	C4—C3—H3A	106.7 (10)
C4—C5—H5A	107.6 (10)	С2—С3—НЗА	111.0 (10)
С6—С5—Н5А	109.1 (10)	C4—C3—H3B	107.4 (12)
С4—С5—Н5В	110.7 (10)	С2—С3—Н3В	111.2 (12)

C6—C5—H5B	110.5 (10)	НЗА—СЗ—НЗВ	108.7 (15)
H5A—C5—H5B	107.4 (14)	C1—C2—C3	111.49 (12)
C4'—C5'—C6'	111.03 (10)	C1—C2—H2A	107.1 (11)
C4'—C5'—H5D	107.0 (8)	C3—C2—H2A	109.0 (11)
C6'—C5'—H5D	110.6 (8)	C1—C2—H2B	111.4 (10)
C4'—C5'—H5C	107.6 (9)	C3—C2—H2B	109.5 (10)
C6'—C5'—H5C	110.2 (9)	H2A—C2—H2B	108.2 (15)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	$D \cdots A$	D—H···A
01′—H1′···O1	0.90 (2)	1.88 (2)	2.784 (2)	176 (1)
O1—H1···O3 ⁱ	0.90 (2)	1.79 (2)	2.687(1)	175 (2)
N1′—H111…O2 ⁱⁱ	0.94 (2)	1.90 (2)	2.816(1)	167 (1)
N1′—H112…O3 ⁱⁱⁱ	0.95 (2)	1.82 (2)	2.7590(1)	170 (1)
N1′—H114…O2 ^{iv}	0.92 (2)	1.87 (2)	2.7870(1)	169 (1)
С6'—Н6Д…ОЗ ^{іі}	0.96 (2)	2.54 (1)	3.417 (1)	152 (1)

Symmetry codes: (i) x+1, -y+3/2, z+1/2; (ii) x+1, y, z+1; (iii) -x, -y+1, -z+1; (iv) -x+1, -y+1, -z+1.