Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

David J. Watkin,^a* Stephen W. Johnson,^b John H. Jones^b and George W. J. Fleet^b

^aDepartment of Chemical Crystallography, Chemical Research Laboratory, Mansfield Road, Oxford OX1 3TA, England, and ^bDepartment of Organic Chemistry, Chemical Research Laboratory, Mansfield Road, Oxford OX1 3TA, England

Correspondence e-mail: david.watkin@chem.ox.ac.uk

Key indicators

Single-crystal X-ray study T = 185 K Mean σ (C–C) = 0.003 Å R factor = 0.051 wR factor = 0.095 Data-to-parameter ratio = 10.8

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Methyl 2,4-anhydro-5-azido-5,6-dideoxy-L-altronate

The title compound, $C_7H_{11}N_3O_4$, was prepared from Lrhamnose as a conformationally restricted dipeptide isostere containing an oxetane ring. Its crystal structure was determined to confirm the synthetic product. Received 5 August 2004 Accepted 11 August 2004 Online 28 August 2004

Comment

Sugar amino acids (SAA) are an important class of peptidomimetics (Schweizer, 2002; Gruner *et al.*, 2002). In particular, D-amino acid scaffolds derived from pyranoses (Kriek *et al.*, 2003; El Oualid *et al.*, 2002) and furanoses (van Well *et al.*, 2003; Chakraborty *et al.*, 2002) provide a well established series of conformationally fixed dipeptide isosteres. The azido ester described here, (I), prepared from L-rhamnose, is among the first examples of building blocks for dipeptide isosteres which contain an oxetane ring; it may be viewed as a conformationally restricted dipeptide isostere of L-ala-D-ser, (II).

Fig. 1 shows the asymmetric unit (I). Its absolute structure (C4 R conformation, and C6 and C9 S conformation) was assumed based on the known absolute structure of the starting material.

The crystal packing for (I) consists of slightly pleated ribbons of molecules linked by weak hydrogen bonds, with the sheets stacked in van der Waals contact (Fig. 2).

Experimental

Compound (I) (Johnson *et al.*, 2004) was recrystallized from chloroform by solvent diffusion with hexane to give colourless plate-shaped crystals.

© 2004 International Union of Crystallography Printed in Great Britain – all rights reserved

Crystal data

C7H11N3O4 $M_r = 201.18$ Monoclinic, P2 a = 4.6318(2) Å b = 9.8575(5) Å c = 10.6310 (6) Å $\beta = 92.084 \ (2)^{\circ}$ $V = 485.07 (4) \text{ Å}^{2}$ Z = 2

Data collection

Nonius KappaCCD diffractometer ω scans Absorption correction: multi-scan DENZO/SCALEPACK (Otwinowski & Minor, 1997) $T_{\rm min}=0.96,\ T_{\rm max}=0.98$ 4689 measured reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.051$ $wR(F^2) = 0.095$ S = 1.011733 reflections 160 parameters Only coordinates of H atoms refined

Table 1

Selected geometric parameters (Å, °).

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3 (2) 1 (3) 5 (2) 6 (3) 5 (3) 4 (3) 2 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(1 (3) (5 (2) (6 (3) (5 (3) (4 (3) (2 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5 (2) 6 (3) 5 (3) 4 (3) 2 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6 (3) 5 (3) 4 (3) 2 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5 (3) 4 (3) 2 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4 (3) 2 (4)
O5-C6 1.451 (2) $N11-N12$ 1.13 $C2-O1-C14$ 116.48 (17) $C7-C6-C9$ 117.75 $O1-C2-O3$ 124.83 (18) $C4-C7-C6$ 84.75 $O1-C2-C4$ 110.25 (15) $C4-C7-O8$ 114.55 $O3-C2-C4$ 124.92 (17) $C6-C7-O8$ 117.18 $O3-C2-C4$ 124.92 (17) $C6-C7-O8$ 117.18	2 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(15)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(13)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(15)
$C_{2} = C_{4} = O_{5} = 111.04 (14) = C_{5} = C_{0} = N10 = 105.27$	(15)
111.04(14) 105.5	(17)
C2-C4-C7 114.58 (14) C6-C9-C13 111.88	(19)
O5-C4-C7 91.58 (13) N10-C9-C13 110.54	(19)
C4-O5-C6 91.52 (12) C9-N10-N11 113.4	(2)
O5-C6-C7 91.38 (13) N10-N11-N12 174.7	(3)
05-C6-C9 110.23 (15)	

 $D_x = 1.377 \text{ Mg m}^{-3}$

Cell parameters from 1439

Mo $K\alpha$ radiation

reflections

 $\mu = 0.11 \text{ mm}^{-1}$

Plate, colourless

 $0.50 \times 0.40 \times 0.20$ mm

1733 independent reflections 1733 reflections with $I > -3\sigma(I)$

 $\theta = 5 - 32^{\circ}$

T = 185 K

 $R_{\rm int} = 0.021$

 $\theta_{\rm max} = 32.0^\circ$

 $h = -6 \rightarrow 6$ $k=-14\rightarrow 8$

 $l = -15 \rightarrow 15$

 $w = 1/[\sigma^2(F) + (0.034P)^2]$

where $P = (\max(F_o^2, 0) + 2F_c^2)/3$

+ 0.093P],

 $(\Delta/\sigma)_{\rm max} < 0.001$

 $\Delta \rho_{\rm max} = 0.22 \text{ e } \text{\AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.23 \text{ e} \text{ Å}^{-3}$

Table 2

Hydrogen-bonding geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
08-H503 ⁱ	0.82 (4)	2.25 (3)	2.990 (2)	150 (3)
$O8-H5\cdots O5^{i}$	0.82 (4)	2.32 (3)	2.962 (2)	135 (3)

Symmetry code: (i) $-x, \frac{1}{2} + y, 1 - z$.

Because the intensity data were collected with molybdenum radiation, there were no measurable anomalous differences, as a consequence of which it was admissible to merge Freidel pairs of reflections. The absolute structure of (I) was assumed to correlate with the known absolute structure of the L-rhamnose starting material. All H atoms were found in difference-density syntheses. They

Figure 2

Packing diagram of (I), viewed down the c axis. The weakly hydrogenbonded pleated ribons in the bc plane are simply stacked along the a axis. Hydrogen bonds are shown as dashed lines.

were initially refined with soft restraints on the bonds to regularize their geometry (bond lengths to accepted values, angles either set by symmetry or to accepted values, and U_{iso} dependent upon the adjacent bonded atom), after which they were refined with riding constraints only.

Data collection: COLLECT (Nonius, 1997-2001); cell refinement: DENZO/SCALEPACK; data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS.

References

- Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.
- Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K., Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.
- Chakraborty, T. K., Ghosh, S. & Jayaprakash, S. (2002). Curr. Med. Chem. 9, 421-435.
- El Oualid, F., Bruining, L., Leroy, I. M., Cohen, L. H., van Boom, J. H., van der Marel, G. A., Overkleeft, H. S. & Overhand, M. (2002). Helv. Chim. Acta, 85, 3455-3472.
- Gruner, S. A. W., Locardi, E., Lohof, E. & Kessler, H. (2002). Chem. Rev. 102, 491-514.
- Johnson, S. W., Jenkinson, S. F., Angus, D., Jones, J. H., Watkin, D. J. & Fleet, G. W. J. (2004). Tetrahedron: Asymmetry, 15. In the press.
- Kriek, N. M. A. J., van der Hout, E., Kelly, P., van Meijgaarden, K. E., Geluk, A., Ottenhoff, T. H. M., van der Marel, G. A., Overhand, M., van Boom, J. H., Valentijn, A. R. P. M. & Overkleeft, H. S. (2003). Eur. J. Org. Chem. pp. 2418-2427.
- Nonius (1997-2001). COLLECT. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307-326. New York: Academic Press.
- Schweizer, F. (2002) Angew. Chem. Int. Ed. 41, 230-253.
- Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.
- Well, R. M. van, Marinelli, L., Altona, C., Erkelens, K., Siegal, G., van Raaij, M., Llamas-Saiz, A. L., Kessler, H., Novellino, E., Lavecchia, A., van Boom, J. H. & Overhand, M. (2003). J. Am. Chem. Soc. 125, 10822-10829.

supporting information

Acta Cryst. (2004). E60, o1609-o1610 [https://doi.org/10.1107/S1600536804019968]

Methyl 2,4-anhydro-5-azido-5,6-dideoxy-L-altronate

David J. Watkin, Stephen W. Johnson, John H. Jones and George W. J. Fleet

Methyl 2,4-anhydro-5-azido-5,6-dideoxy-L-altronate

Crystal data

F(000) = 212C7H11N3O4 $M_r = 201.18$ $D_{\rm x} = 1.377 {\rm Mg} {\rm m}^{-3}$ Mo *K* α radiation, $\lambda = 0.71073$ Å Monoclinic, $P2_1$ Cell parameters from 1439 reflections Hall symbol: P 2yb a = 4.6318 (2) Å $\theta = 5 - 32^{\circ}$ b = 9.8575(5) Å $\mu = 0.11 \text{ mm}^{-1}$ c = 10.6310 (6) Å T = 185 K $\beta = 92.084 \ (2)^{\circ}$ Plate, colourless $V = 485.07 (4) Å^3$ $0.50 \times 0.40 \times 0.20 \text{ mm}$ Z = 2Data collection Nonius KappaCCD 4689 measured reflections diffractometer 1733 independent reflections Graphite monochromator 1733 reflections with $I > -3\sigma(I)$ ω scans $R_{\rm int} = 0.021$ Absorption correction: multi-scan $\theta_{\rm max} = 32.0^\circ, \ \theta_{\rm min} = 5.3^\circ$ DENZO/SCALEPACK (Otwinowski & Minor, $h = -6 \rightarrow 6$ $k = -14 \rightarrow 8$ 1997) $T_{\rm min} = 0.96, \ T_{\rm max} = 0.98$ $l = -15 \rightarrow 15$ Refinement Refinement on F^2 Primary atom site location: structure-invariant Least-squares matrix: full direct methods $R[F^2 > 2\sigma(F^2)] = 0.051$ Hydrogen site location: difference Fourier map $wR(F^2) = 0.095$ Only H-atom coordinates refined *S* = 1.01 $w = 1/[\sigma^2(F) + (0.034P)^2 + 0.093P],$ 1733 reflections where $P = (\max(F_0^2, 0) + 2F_c^2)/3$ 160 parameters $(\Delta/\sigma)_{\rm max} = 0.000205$ 35 restraints $\Delta \rho_{\rm max} = 0.22 \ {\rm e} \ {\rm \AA}^{-3}$ $\Delta \rho_{\rm min} = -0.23 \text{ e} \text{ Å}^{-3}$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
01	0.1410 (3)	0.40054 (18)	0.21529 (13)	0.0400
C2	0.1392 (4)	0.3140 (2)	0.31133 (17)	0.0307
03	-0.0147 (3)	0.21590 (17)	0.31663 (13)	0.0401
C4	0.3567 (4)	0.3571 (2)	0.41317 (18)	0.0299
05	0.4021 (3)	0.25130 (15)	0.50505 (13)	0.0355

Acta Cryst. (2004). E60, o1609-o1610

supporting information

C6	0.2570 (4)	0.32935 (18)	0.59975 (18)	0.0320
C7	0.2362 (3)	0.45325 (19)	0.51267 (17)	0.0282
08	-0.0413 (3)	0.50394 (17)	0.48281 (16)	0.0405
C9	0.4480 (5)	0.3407 (2)	0.71873 (19)	0.0401
N10	0.2816 (5)	0.4247 (2)	0.80673 (19)	0.0545
N11	0.4227 (5)	0.5193 (3)	0.85376 (19)	0.0564
N12	0.5334 (7)	0.6089 (3)	0.9016 (3)	0.0819
C13	0.5152 (8)	0.2029 (3)	0.7759 (3)	0.0665
C14	-0.0618 (5)	0.3739 (3)	0.1117 (2)	0.0501
H41	0.534 (3)	0.390 (2)	0.3796 (16)	0.0374*
H61	0.067 (4)	0.2891 (19)	0.6166 (16)	0.0383*
H71	0.370 (3)	0.5239 (17)	0.5357 (17)	0.0350*
H91	0.626 (4)	0.391 (2)	0.7011 (18)	0.0519*
H131	0.645 (5)	0.216 (3)	0.851 (2)	0.0843*
H132	0.324 (5)	0.168 (3)	0.796 (2)	0.0843*
H133	0.608 (5)	0.147 (3)	0.711 (2)	0.0843*
H141	-0.034 (5)	0.450 (2)	0.056 (2)	0.0677*
H142	-0.261 (4)	0.370 (3)	0.141 (2)	0.0677*
H143	-0.005 (6)	0.289 (2)	0.076 (3)	0.0677*
Н5	-0.069 (6)	0.576 (4)	0.519 (3)	0.0610*

Atomic displacement parameters $(Å^2)$

$\begin{array}{c} 0 \\ \hline 0 \\ \hline$
$\begin{array}{llllllllllllllllllllllllllllllllllll$
5)-0.0004 (7)5)0.0011 (6)
5)0.0011 (6)
<i>v</i>) 0.0018 (6)
5)0.0009 (5)
<i>!</i>) 0.0000 (7)
b) -0.0010 (7)
(6) -0.0116 (7)
3) 0.0008 (8)
) -0.0051 (9)
(9) -0.0065 (9)
(15) -0.0326(15)
(14) 0.0082 (11)
(9) 0.0058 (10)

Geometric parameters (Å, °)

01—C2	1.331 (2)	O8—H5	0.82 (4)
O1—C14	1.445 (3)	C9—N10	1.486 (3)
C2—O3	1.204 (2)	C9—C13	1.515 (3)
C2—C4	1.513 (3)	C9—H91	0.985 (16)
C4—O5	1.439 (2)	N10—N11	1.234 (3)
C4—C7	1.540 (2)	N11—N12	1.132 (4)
C4—H41	0.964 (15)	C13—H131	0.993 (17)

supporting information

O5—C6	1.451 (2)	С13—Н132	0.981 (18)
C6—C7	1.533 (2)	С13—Н133	0.996 (18)
С6—С9	1.521 (3)	C14—H141	0.969 (17)
С6—Н61	0.986 (15)	C14—H142	0.983 (17)
C7—O8	1.405 (2)	C14—H143	0.962 (17)
C7—H71	0.958 (16)		
C2	116.48 (17)	O8—C7—H71	112.1 (10)
O1—C2—O3	124.83 (18)	С7—О8—Н5	111 (2)
O1—C2—C4	110.25 (15)	C6—C9—N10	105.37 (17)
O3—C2—C4	124.92 (17)	C6—C9—C13	111.88 (19)
C2—C4—O5	111.04 (14)	N10-C9-C13	110.54 (19)
C2—C4—C7	114.58 (14)	С6—С9—Н91	110.1 (11)
O5—C4—C7	91.58 (13)	N10—C9—H91	107.2 (12)
C2—C4—H41	112.6 (10)	С13—С9—Н91	111.5 (12)
O5—C4—H41	113.1 (11)	C9—N10—N11	113.4 (2)
C7—C4—H41	112.3 (11)	N10-N11-N12	174.7 (3)
C4—O5—C6	91.52 (12)	C9—C13—H131	108.5 (19)
O5—C6—C7	91.38 (13)	С9—С13—Н132	103 (2)
O5—C6—C9	110.23 (15)	H131—C13—H132	113.6 (16)
С7—С6—С9	117.75 (15)	С9—С13—Н133	107.9 (18)
O5—C6—H61	110.5 (11)	H131—C13—H133	111.6 (16)
С7—С6—Н61	113.2 (11)	H132—C13—H133	111.7 (16)
С9—С6—Н61	111.9 (10)	O1—C14—H141	103.0 (17)
C4—C7—C6	84.73 (13)	O1—C14—H142	110.9 (16)
C4—C7—O8	114.53 (15)	H141—C14—H142	111.6 (16)
C6—C7—O8	117.18 (15)	O1—C14—H143	106.2 (17)
C4—C7—H71	112.1 (11)	H141—C14—H143	113.4 (15)
С6—С7—Н71	113.5 (11)	H142—C14—H143	111.4 (16)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	D—H··· A
08—H5…O3 ⁱ	0.82 (4)	2.25 (3)	2.990 (2)	150 (3)
08—H5…O5 ⁱ	0.82 (4)	2.32 (3)	2.962 (2)	135 (3)

Symmetry code: (i) -x, y+1/2, -z+1.