Acta Crystallographica Section E

Structure Reports
 Online

ISSN 1600-5368

Mark E. Light,* Andrea Ragusa and Jeremy D. Kilburn

School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, England

Correspondence e-mail: light@soton.ac.uk

Key indicators

Single-crystal X-ray study
$T=120 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.035$
$w R$ factor $=0.078$
Data-to-parameter ratio $=9.9$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

($\mathbf{R}^{*}, \mathbf{2} R^{*}$)-Di-tert-butyl N, N^{\prime}-(cyclohexane-1,2-diyl)dicarbamate

The title compound, $\mathrm{C}_{16} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{4}$, was synthesized as part of ongoing studies into enantioselective recognition. The molecule sits on a twofold axis and forms ladders via $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen-bond pairs.

Comment

($1 R^{*}, 2 R^{*}$)-Di-tert-butyl $\quad N, N^{\prime}$-(cyclohexane-1,2-diyl)dicarbamate, (I), was synthesized as part of our ongoing studies into enantioselective recognition (Botana et al., 2001; Rossi et al., 2002; Kyne et al., 2001). The synthesis of new chiral receptors is a major challenge for chemists since it is very difficult to predict all the factors contributing to the binding process between a host and a guest in solution (Beer et al., 1999). Furthermore, the use of cheap and readily available building blocks for the construction of enantioselective receptors is of fundamental importance from an industrial point of view. To that aim, compound (I), with its two chiral centres and its amidic H atoms, is an appealing intermediate for the synthesis of more complicated structures, which may be able to discriminate between two enantiomers of a racemic mixture.

(I)

In the crystal structure, the molecule is disposed about a twofold crystallographic axis. The cyclohexane ring adopts a chair conformation, with methylcarbamic acid tert-butyl ester groups hanging down below to form a V-shaped molecule in which the NH groups point in opposite directions. This arrangement aids the formation of hydrogen-bonded ladders (Fig.2) that extend along the c direction via $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen-bond pairs. When viewed down the c axis, the hydrogen-bonded ladders arrange themselves in a closepacked manner such that the 'Vs' line up, all pointing in the same direction (Fig. 3).

Experimental

$(1 S, 2 S)$-1,2-Diphenyl-1,2-ethylenediamine-L-tartaric acid (1.6 g , $4.41 \mathrm{mmol})$ was dissolved in $1 M \mathrm{~K}_{2} \mathrm{CO}_{3}(20 \mathrm{ml})$. A solution of di-tert-

Received 16 May 2005 Accepted 25 May 2005 Online 31 May 2005

Figure 1
View of the structure of (I), showing the atomic numbering scheme. Displacement ellipsoids for non- H atoms are drawn at the 35% probability level, and H atoms are drawn with arbitrary radii. [Symmetry code: (_1) $-x+1, y,-z$.]

Figure 2
Part of one of the hydrogen-bonded ladders extending along c. Hydrogen bonds are shown as dotted lines. Only those H atoms involved in classical hydrogen bonds have been included.
butyl dicarbonate ($2.77 \mathrm{~g}, 12.7 \mathrm{mmol}$) in ethanol (40 ml) was added and the mixture was stirred at room temperature for 17 h . The solvents were removed in vacuo and the residue was dissolved in water to yield the product as a pale-yellow precipitate ($1.3 \mathrm{~g}, 94 \%$). The crystal for structure determination was obtained by slow evaporation of a $0.05 \mathrm{~m} M$ solution of the product in dimethyl sulfoxide (DMSO, 1 ml). M.p. $493-495 \mathrm{~K} .{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO$\left.d_{6}\right): \delta 7.71(2 \mathrm{H}, m, \mathrm{NH}), 3.62(2 \mathrm{H}, m, \mathrm{CH}), 1.81(2 \mathrm{H}, m, \mathrm{CHHCH})$, $1.66(2 \mathrm{H}, m, \mathrm{CHHCH}), 1.24\left(18 \mathrm{H}, s, \mathrm{CH}_{3}\right), 1.17\left(4 \mathrm{H}, m, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}\right)$; ${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}): $\delta 155.2$ (0), 78.2 (0), 52.3 (1), 31.6 (2), 28.3 (3), 24.2 (2); m/z (ES ${ }^{+}$) $337.2[M+\mathrm{Na}]^{+}$; HRMS (ES^{+}) Calculated for $\mathrm{C}_{16} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{4}^{+}: 315.2278$; found: 315.2282. Analysis calculated for $\mathrm{C}_{16} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{4}$: C 61.12, H 9.62, N 8.91%; found: C 61.12, H 9.64, N 8.98\%.

Crystal data

$\mathrm{C}_{16} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{4}$
$M_{r}=314.42$
Monoclinic, $C 2$
$a=18.856(4) \AA$
$b=9.3110(19) \AA$
$c=5.183(1) \AA$
$\beta=101.04(3)^{\circ}{ }^{\circ}$
$V=893.1(3) \AA^{3}$
$Z=2$

Figure 3
A packing diagram viewed down c, showing the arrangement of the V shaped molecules.

Data collection

Nonius KappaCCD diffractometer φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
$T_{\text {min }}=0.984, T_{\text {max }}=0.998$
3861 measured reflections
1069 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.035$
$w R\left(F^{2}\right)=0.078$
$S=1.06$
1069 reflections
108 parameters
H atoms treated by a mixture of independent and constrained refinement

$$
\begin{aligned}
& w= 1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0274 P)^{2}\right. \\
&+0.2768 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3
\end{aligned}
$$

$$
\begin{aligned}
& 966 \text { reflections with } I>2 \sigma(I) \\
& R_{\text {int }}=0.045 \\
& \theta_{\max }=27.5^{\circ} \\
& h=-23 \rightarrow 24 \\
& k=-12 \rightarrow 12 \\
& l=-6 \rightarrow 6
\end{aligned}
$$

$(\Delta / \sigma)_{\max }=0.006$
$\Delta \rho_{\max }=0.16 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.15 \mathrm{e}^{-3}$
Extinction correction: SHELXL97
Extinction coefficient: 0.018 (5)

Table 1
Hydrogen-bond geometry ($\AA,^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 99 \cdots \mathrm{O}^{\mathrm{i}}$	$0.84(2)$	$2.20(3)$	$2.996(2)$	$160(2)$

Symmetry code: (i) $x, y, z-1$.

In the absence of significant anomalous dispersion effects, Friedel pairs were merged. All C-bound H atoms were located in a difference Fourier map, and were placed in calculated positions and treated as riding on their parent atoms, with $\mathrm{C}-\mathrm{H}=0.98 \AA$ and $U_{\text {iso }}(\mathrm{H})=$ $1.5 U_{\text {eq }}(\mathrm{C})$ for $\mathrm{CH}_{3}, \mathrm{C}-\mathrm{H}=0.99 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ for CH_{2}, and $\mathrm{C}-\mathrm{H}=1.00 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ for CH . The single H atom on the N atom was freely refined.

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski \& Minor, 1997) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: CAMERON (Watkin et al., 1993); software used to prepare material for publication: WinGX (Farrugia, 1999).

organic papers

The authors thank the EPSRC for funding the crystallographic facilities.

References

Beer, P. D., Gale, P. A. \& Smith, D. K. (1999). Supramolecular Chemistry. Oxford University Press.
Botana, E., Ongeri, S., Arienzo, R., Demarcus, M., Frey, J. G., Piarulli, U., Potenza, D., Gennari, C. \& Kilburn, J. D. (2001). Chem. Commun. 15, 13581359.

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Hooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.

Kyne, G. M., Light, M. E., Hursthouse, M. B., de Mendoza, J. \& Kilburn, J. D. (2001). J. Chem. Soc. Perkin Trans. 1, pp. 1258-1263.

Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Rossi, S., Kyne, G. M., Turner, D. L., Wells, N. J. \& Kilburn, J. D. (2002). Angew. Chem. Int. Ed. 41, 4233-4236.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Sheldrick, G. M. (2003). SADABS. Version 2.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Watkin, D. M., Pearce, L. \& Prout, C. K. (1993). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.

supporting information

Acta Cryst. (2005). E61, o1956-o1958 [https://doi.org/10.1107/S1600536805016715]
($1 R^{*}, 2 R^{*}$)-Di-tert-butyl N, N^{\prime}-(cyclohexane-1,2-diyl)dicarbamate

Mark E. Light, Andrea Ragusa and Jeremy D. Kilburn

($1 R^{*}, 2 R^{*}$)-Di-tert-butyl N, N^{\prime}-(cyclohexane-1,2-diyl)dicarbamate

Crystal data

$\mathrm{C}_{16} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{4}$
$M_{r}=314.42$
Monoclinic, C2
Hall symbol: C 2y
$a=18.856$ (4) Å
$b=9.3110(19) \AA$
$c=5.183(1) \AA$
$\beta=101.04(3)^{\circ}$
$V=893.1$ (3) \AA^{3}
$Z=2$

Data collection

Nonius KappaCCD
diffractometer
Radiation source: Bruker Nonius FR591
Rotating Anode
10 cm confocal mirrors monochromator
Detector resolution: 9.091 pixels mm^{-1}
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
$F(000)=344$
$D_{\mathrm{x}}=1.169 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 982 reflections
$\theta=2.9-27.5^{\circ}$
$\mu=0.08 \mathrm{~mm}^{-1}$
$T=120 \mathrm{~K}$
Slab, pale yellow
$0.20 \times 0.12 \times 0.03 \mathrm{~mm}$
$T_{\text {min }}=0.984, T_{\text {max }}=0.998$
3861 measured reflections
1069 independent reflections
966 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.045$
$\theta_{\text {max }}=27.5^{\circ}, \theta_{\text {min }}=4.0^{\circ}$
$h=-23 \rightarrow 24$
$k=-12 \rightarrow 12$
$l=-6 \rightarrow 6$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.035$
$w R\left(F^{2}\right)=0.078$
$S=1.06$
1069 reflections
108 parameters
1 restraint
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0274 P)^{2}+0.2768 P\right]$
where $P=\left(F_{0}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.006$
$\Delta \rho_{\max }=0.16$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.15$ e \AA^{-3}
Extinction correction: SHELXL97, $\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$
Extinction coefficient: 0.018 (5)

Special details

Experimental. $S A D A B S$ was used to perform the Absorption correction Parameter refinement on 3374 reflections reduced $R(\mathrm{int})$ from 0.1021 to 0.0430 Ratio of minimum to maximum apparent transmission: 0.825366 The given Tmin and Tmax were generated using the SHELX SIZE command

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors $(\mathrm{gt}) \mathrm{etc}$. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }} *^{\prime} / U_{\text {eq }}$
C1	$0.37974(12)$	$-0.2307(2)$	$0.5011(4)$	$0.0317(5)$
H1A	0.4177	-0.2702	0.4166	0.048^{*}
H1B	0.3579	-0.3083	0.5870	0.048^{*}
H1C	0.4007	-0.1593	0.6326	0.048^{*}
C2	$0.26751(12)$	$-0.0748(3)$	$0.4139(4)$	$0.0297(5)$
H2A	0.2930	-0.0054	0.5409	0.045^{*}
H2B	0.2396	-0.1406	0.5032	0.045^{*}
H2C	0.2348	-0.0235	0.2744	0.045^{*}
C3	$0.28359(12)$	$-0.2712(3)$	$0.1034(4)$	$0.0319(5)$
H3A	0.2484	-0.2233	-0.0331	0.048^{*}
H3B	0.2586	-0.3398	0.1981	0.048^{*}
H3C	0.3190	-0.3222	0.0218	0.048^{*}
C4	$0.32203(11)$	$-0.1598(2)$	$0.2946(4)$	$0.0249(5)$
C5	$0.39673(10)$	$0.0463(2)$	$0.2217(4)$	$0.0237(4)$
C6	$0.47084(9)$	$0.2357(2)$	$0.0855(3)$	$0.0211(4)$
H6	0.4955	0.2347	0.2743	0.025^{*}
C7	$0.42526(11)$	$0.3717(2)$	$0.0363(4)$	$0.0281(5)$
H7A	0.3983	0.3715	-0.1474	0.034^{*}
H7B	0.3896	0.3722	0.1537	0.034^{*}
C8	$0.47087(12)$	$0.5068(2)$	$0.0837(4)$	$0.0297(5)$
H8A	0.4938	0.5128	0.036^{*}	
H8B	0.4395	0.5922	0.0400	0.036^{*}
N1	$0.42652(9)$	$0.1078(2)$	$0.0353(3)$	$0.0252(4)$
O1	$0.35630(8)$	$-0.06813(17)$	$0.1227(2)$	$0.0271(4)$
O2	$0.40471(8)$	$0.08750(17)$	$0.4484(3)$	$0.0318(4)$
H99	$0.4150(12)$	$0.083(3)$	$-0.122(5)$	$0.028(6)^{*}$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	$0.0364(12)$	$0.0310(12)$	$0.0280(11)$	$0.0049(10)$	$0.0067(9)$	$-0.0021(9)$
C2	$0.0277(11)$	$0.0334(11)$	$0.0292(11)$	$-0.0006(10)$	$0.0080(8)$	$0.0014(10)$
C3	$0.0383(12)$	$0.0309(11)$	$0.0274(11)$	$-0.0104(11)$	$0.0083(8)$	$-0.0001(9)$
C4	$0.0288(10)$	$0.0275(11)$	$0.0190(10)$	$-0.0042(9)$	$0.0057(7)$	$0.0022(8)$
C5	$0.0210(10)$	$0.0296(11)$	$0.0198(10)$	$-0.0030(9)$	$0.0021(7)$	$-0.0024(8)$
C6	$0.0179(9)$	$0.0266(10)$	$0.0186(10)$	$-0.0009(9)$	$0.0033(7)$	$-0.0012(8)$
C7	$0.0235(10)$	$0.0360(12)$	$0.0257(10)$	$0.0038(10)$	$0.0070(8)$	$-0.0008(9)$

C8	$0.0354(12)$	$0.0293(12)$	$0.0244(11)$	$0.0050(10)$	$0.0060(9)$	$-0.0013(9)$
N1	$0.0284(9)$	$0.0315(10)$	$0.0163(9)$	$-0.0098(8)$	$0.0056(7)$	$-0.0051(7)$
O1	$0.0333(8)$	$0.0314(8)$	$0.0179(7)$	$-0.0104(7)$	$0.0080(6)$	$-0.0025(6)$
O2	$0.0373(8)$	$0.0411(9)$	$0.0177(7)$	$-0.0125(8)$	$0.0072(6)$	$-0.0062(6)$

Geometric parameters (\AA, ${ }^{\circ}$)

C1-C4	1.523 (3)	C5-N1	1.336 (3)
C1-H1A	0.9800	C5-O1	1.353 (2)
C1-H1B	0.9800	C6-N1	1.450 (3)
$\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	0.9800	C6-C7	1.524 (3)
C2-C4	1.519 (3)	C6-C6 ${ }^{\text {i }}$	1.539 (4)
$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	0.9800	C6-H6	1.0000
$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	0.9800	C7-C8	1.517 (3)
$\mathrm{C} 2-\mathrm{H} 2 \mathrm{C}$	0.9800	C7-H7A	0.9900
C3-C4	1.519 (3)	C7-H7B	0.9900
$\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	0.9800	C8-C8 ${ }^{\text {i }}$	1.525 (4)
C3-H3B	0.9800	C8-H8A	0.9900
C3-H3C	0.9800	C8-H8B	0.9900
C4-O1	1.470 (2)	N1-H99	0.84 (2)
C5-O2	1.218 (2)		
$\mathrm{C} 4-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	109.5	O2-C5-O1	124.81 (18)
$\mathrm{C} 4-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	109.5	N1-C5-O1	110.32 (16)
$\mathrm{H} 1 \mathrm{~A}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	109.5	N1-C6-C7	111.44 (14)
$\mathrm{C} 4-\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	109.5	N1-C6-C6 ${ }^{\text {i }}$	110.33 (13)
$\mathrm{H} 1 \mathrm{~A}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	109.5	C7-C6- $\mathrm{C}^{\text {i }}$	110.22 (12)
$\mathrm{H} 1 \mathrm{~B}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	109.5	N1-C6-H6	108.3
$\mathrm{C} 4-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	109.5	C7-C6-H6	108.3
$\mathrm{C} 4-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	109.5	C6--C6-H6	108.3
$\mathrm{H} 2 \mathrm{~A}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	109.5	C8-C7-C6	112.21 (16)
$\mathrm{C} 4-\mathrm{C} 2-\mathrm{H} 2 \mathrm{C}$	109.5	C8-C7-H7A	109.2
$\mathrm{H} 2 \mathrm{~A}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{C}$	109.5	C6-C7-H7A	109.2
$\mathrm{H} 2 \mathrm{~B}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{C}$	109.5	C8-C7-H7B	109.2
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	109.5	C6-C7-H7B	109.2
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B}$	109.5	H7A-C7-H7B	107.9
H3A-C3-H3B	109.5	C7-C8-C8 ${ }^{\text {i }}$	110.84 (14)
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3 \mathrm{C}$	109.5	C7-C8-H8A	109.5
H3A-C3-H3C	109.5	C8- ${ }^{\text {i }} 8$ - H 8 A	109.5
$\mathrm{H} 3 \mathrm{~B}-\mathrm{C} 3-\mathrm{H} 3 \mathrm{C}$	109.5	C7-C8-H8B	109.5
$\mathrm{O} 1-\mathrm{C} 4-\mathrm{C} 2$	110.78 (16)	C8 ${ }^{\text {i }}$ - $\mathrm{C} 8-\mathrm{H} 8 \mathrm{~B}$	109.5
$\mathrm{O} 1-\mathrm{C} 4-\mathrm{C} 3$	102.18 (15)	H8A-C8-H8B	108.1
C2-C4-C3	110.21 (17)	C5-N1-C6	121.99 (17)
$\mathrm{O} 1-\mathrm{C} 4-\mathrm{C} 1$	109.87 (16)	C5-N1-H99	121.2 (16)
C2-C4-C1	112.82 (16)	C6-N1-H99	116.1 (17)

supporting information

$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 1$	$110.47(18)$	$\mathrm{C} 5-\mathrm{O} 1-\mathrm{C} 4$	$120.55(14)$
$\mathrm{O} 2-\mathrm{C} 5-\mathrm{N} 1$	$124.87(19)$		

Symmetry code: (i) $-x+1, y,-z$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D — \mathrm{H} \cdots A$
$\mathrm{~N} 1 — \mathrm{H} 99 \cdots \mathrm{O}^{\mathrm{ii}}$	$0.84(2)$	$2.20(3)$	$2.996(2)$	$160(2)$

Symmetry code: (ii) $x, y, z-1$.

