# organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

# Ashley T. Hulme\* and Derek A. Tocher

Christopher Ingold Laboratory, Department of Chemistry, 20 Gordon St., London WC1H 0AJ, England

Correspondence e-mail: a.hulme@ucl.ac.uk

#### **Key indicators**

Single-crystal X-ray study T = 150 K Mean  $\sigma$ (C–C) = 0.002 Å R factor = 0.044 wR factor = 0.123 Data-to-parameter ratio = 11.3

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

# 4-Amino-5-fluoropyrimidin-2(1H)-one-2-amino-5-fluoropyrimidin-4(3H)-onewater (1/1/1)

The title co-crystal,  $C_4H_4FN_3O \cdot C_4H_4FN_3O \cdot H_2O$ , has one molecule of 4-amino-5-fluoropyrimidin-2(1*H*)-one, one molecule of its isomer 2-amino-5-fluoropyrimidin-4(3*H*)-one and a molecule of water in the asymmetric unit. 4-Amino-5-fluoropyrimidin-2(1H)-one is commonly known as 5-fluorocytosine.

Received 1 June 2005 Accepted 8 June 2005 Online 17 June 2005

#### Comment

The title co-crystal, (I) (Fig. 1), was grown by evaporation of a 50% aqueous solution of ethanol saturated with 5-fluorocytosine. Two different crystal forms were obtained from this solution. The major crystallisation product exhibited a block morphology and was the known monohydrate of 5-fluorocytosine (Louis *et al.*, 1982). A small number of needle-shaped crystals were observed as the minor crystallization product. These crystals proved to be the co-crystal, (I). The isomer of 5-fluorocytosine was assumed to have been present in the commercial sample of 5-fluorocytosine purchased from Fluorochem (98% pure, Old Glossop, UK) that was used to prepare the initial solution.



The simplest hydrogen-bonded subunit observed is a twomolecule unit, containing one molecule of each isomer. Each molecule of 5-fluorocytosine forms three hydrogen bonds to a



#### Figure 1

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved The asymmetric unit of the title co-crystal. Displacement ellipsoids are drawn at the 50% probability level. H atoms are shown as spheres. Dotted lines indicate hydrogen bonds.



Figure 2

The hydrogen bonded ribbon present in the title structure. Dotted lines indicate hydrogen bonds.

molecule of the isomer (N4-H2···O14, N13-H13···N3 and N12-H12···O2), forming two adjoining  $R_2^2(8)$  hydrogen bond rings (Table 1). Two different  $R_2^4(8)$  hydrogen-bond rings join these subunits together to form a ribbon (Fig. 2).

The role of the water molecules in the structure is to join together the ribbons into a hydrogen-bonded sheet. The water hydrogen bonds to two molecules from one ribbon, acting both as donor and acceptor, and as a donor to a third molecule, from a different ribbon (Table 1). The ribbons form stepped sheets, parallel to the  $01\overline{1}$  planes (Fig. 3).

Within the ribbon structure, there is also a close  $F \cdots F$ contact, between F5 and F15, of 2.9003 (15) Å; however, this is likely to have arisen as a consequence of the adjacent  $R_2^4(8)$ hydrogen-bond ring.

### **Experimental**

Crystals were grown from a 50% aqueous ethanol solution, by evaporation at room temperature. The crystal form reported was the minor crystallisation product.

#### Crystal data

| $C_4H_4FN_3O \cdot C_4H_4FN_3O \cdot H_2O$ | Z = 2                                 |
|--------------------------------------------|---------------------------------------|
| $M_r = 276.22$                             | $D_x = 1.708 \text{ Mg m}^{-3}$       |
| Triclinic, P1                              | Mo $K\alpha$ radiation                |
| a = 5.4122 (16)  Å                         | Cell parameters from 1511             |
| b = 8.447 (2) Å                            | reflections                           |
| c = 12.083 (4) Å                           | $\theta = 3.0-28.1^{\circ}$           |
| $\alpha = 89.454 (5)^{\circ}$              | $\mu = 0.16 \text{ mm}^{-1}$          |
| $\beta = 85.718(5)^{\circ}$                | T = 150 (2) K                         |
| $\gamma = 77.096 \ (4)^{\circ}$            | Needle, colourless                    |
| V = 536.9 (3) Å <sup>3</sup>               | $0.44$ $\times$ 0.14 $\times$ 0.11 mm |
| Data collection                            |                                       |
| Bruker SMART APEX                          | 2405 independent reflection           |
| diffractometer                             | 1884 reflections with $I > 2\sigma$   |
| (i) scans                                  | $R_{\rm c} = 0.018$                   |

Absorption correction: multi-scan (SADABS; Sheldrick, 1996)  $T_{\min} = 0.934, T_{\max} = 0.984$ 4532 measured reflections

#### Refinement

Refinement on  $F^2$  $R[F^2 > 2\sigma(F^2)] = 0.044$  $wR(F^2) = 0.123$ S = 1.052405 reflections 212 parameters All H-atom parameters refined r(I)

 $\theta_{\rm max} = 28.3^{\circ}$  $h = -6 \rightarrow 6$  $k=-11\rightarrow 10$  $l = -15 \rightarrow 15$ 

 $w = 1/[\sigma^2(F_o^2) + (0.0762P)^2]$ + 0.0364P] where  $P = (F_0^2 + 2F_c^2)/3$  $(\Delta/\sigma)_{\rm max} < 0.001$  $\Delta \rho_{\text{max}} = 0.36 \text{ e} \text{ Å}^{-3}$  $\Delta \rho_{\rm min} = -0.24 \text{ e } \text{\AA}^{-3}$ 



#### Figure 3

The stepped structure of the sheet, comprising ribbons which are hydrogen bonded (dotted lines) via water molecules.

#### Table 1

Hydrogen-bond geometry (Å, °).

| $D - H \cdots A$           | D-H      | $H \cdots A$ | $D \cdots A$ | $D - \mathbf{H} \cdots A$ |
|----------------------------|----------|--------------|--------------|---------------------------|
| $N12-H11\cdots O2^{i}$     | 0.86 (3) | 2.13 (3)     | 2.870 (2)    | 143 (2)                   |
| $N12-H12\cdots O2^{ii}$    | 0.91(2)  | 1.99 (2)     | 2.889 (2)    | 172 (2)                   |
| N13-H13···N3 <sup>ii</sup> | 0.91 (3) | 2.01(3)      | 2.922 (2)    | 175 (2)                   |
| N1-H1···O21 <sup>iii</sup> | 0.83(2)  | 1.95 (2)     | 2.775 (2)    | 173 (2)                   |
| $N4-H2\cdots O14^{ii}$     | 0.88(2)  | 2.07 (2)     | 2.9482 (19)  | 177 (2)                   |
| N4-H3···O14                | 0.91(3)  | 2.01(2)      | 2.8285 (19)  | 149 (2)                   |
| O21-H21···N11              | 0.84(3)  | 1.94 (3)     | 2.785 (2)    | 177 (2)                   |
| $O21 - H22 \cdots O2^{iv}$ | 0.81 (3) | 2.03 (3)     | 2.826 (2)    | 170 (2)                   |

Symmetry codes: (i) x, y + 1, z + 1; (ii) -x + 2, -y, -z + 1; (iii) x, y - 1, z - 1; (iv) x - 1, y + 1, z + 1.

All H atoms were located [C-H = 0.95 (2)-0.96 (2), N-H =0.83 (2)-0.91 (3) and O-H = 0.95 (2)] in a difference map and were refined isotropically.

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: SHELXL97.

The authors acknowledge the Research Councils UK Basic Technology Programme for supporting 'Control and Prediction of the Organic Solid State' (URL: www.cposs.org.uk).

#### References

Bruker (1998). SMART (Version 5.625) and SAINT (Version 6.22). Bruker AXS Inc., Madison, Wisconsin, USA.

Louis, T., Low, J. N. & Tollin, P. (1982). Cryst. Struct. Commun. 11, 1059-1064. Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.

# supporting information

Acta Cryst. (2005). E61, o2112–o2113 [https://doi.org/10.1107/S1600536805018179]

4-Amino-5-fluoropyrimidin-2(1H)-one–2-amino-5-fluoropyrimidin-4(3H)-one– water (1/1/1)

# Ashley T. Hulme and Derek A. Tocher

4-Amino-5-fluoropyrimidin-2(1H)-one-2-amino-5-fluoropyrimidin-4(3H)-one-water (1/1/1)

## Crystal data

C<sub>4</sub>H<sub>4</sub>FN<sub>3</sub>O·C<sub>4</sub>H<sub>4</sub>FN<sub>3</sub>O·H<sub>2</sub>O  $M_r = 276.22$ Triclinic, *P*1 Hall symbol: -P 1 a = 5.4122 (16) Å b = 8.447 (2) Å c = 12.083 (4) Å a = 89.454 (5)°  $\beta = 85.718$  (5)°  $\gamma = 77.096$  (4)° V = 536.9 (3) Å<sup>3</sup>

### Data collection

Bruker SMART APEX diffractometer Radiation source: fine-focus sealed tube Graphite monochromator  $\omega$  rotation with narrow frames scans Absorption correction: multi-scan (SADABS; Sheldrick, 1996)  $T_{\min} = 0.934, T_{\max} = 0.984$ 

## Refinement

Refinement on  $F^2$ Least-squares matrix: full  $R[F^2 > 2\sigma(F^2)] = 0.044$  $wR(F^2) = 0.123$ S = 1.052405 reflections 212 parameters 0 restraints Primary atom site location: structure-invariant direct methods Z = 2 F(000) = 284  $D_x = 1.708 \text{ Mg m}^{-3}$ Mo K\alpha radiation, \lambda = 0.71073 \mathbf{A} Cell parameters from 1511 reflections  $\theta = 3.0-28.1^{\circ}$   $\mu = 0.16 \text{ mm}^{-1}$  T = 150 KLathe, colourless  $0.44 \times 0.14 \times 0.11 \text{ mm}$ 

4532 measured reflections 2405 independent reflections 1884 reflections with  $I > 2\sigma(I)$  $R_{int} = 0.018$  $\theta_{max} = 28.3^\circ$ ,  $\theta_{min} = 1.7^\circ$  $h = -6 \rightarrow 6$  $k = -11 \rightarrow 10$  $l = -15 \rightarrow 15$ 

Secondary atom site location: difference Fourier map Hydrogen site location: difference Fourier map All H-atom parameters refined  $w = 1/[\sigma^2(F_o^2) + (0.0762P)^2 + 0.0364P]$ where  $P = (F_o^2 + 2F_c^2)/3$  $(\Delta/\sigma)_{max} < 0.001$  $\Delta\rho_{max} = 0.36 \text{ e} \text{ Å}^{-3}$  $\Delta\rho_{min} = -0.24 \text{ e} \text{ Å}^{-3}$ 

### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

|     | x            | у             | Ζ            | $U_{ m iso}$ */ $U_{ m eq}$ |
|-----|--------------|---------------|--------------|-----------------------------|
| F15 | 0.24930 (19) | 0.40288 (12)  | 0.53690 (9)  | 0.0329 (3)                  |
| O14 | 0.7285 (2)   | 0.21415 (14)  | 0.57184 (10) | 0.0266 (3)                  |
| N11 | 0.4124 (3)   | 0.59592 (17)  | 0.77839 (12) | 0.0252 (3)                  |
| N12 | 0.7754 (3)   | 0.5260 (2)    | 0.87373 (13) | 0.0299 (4)                  |
| H11 | 0.710 (4)    | 0.600 (3)     | 0.923 (2)    | 0.045 (6)*                  |
| H12 | 0.917 (4)    | 0.449 (3)     | 0.8860 (19)  | 0.044 (6)*                  |
| N13 | 0.7418 (3)   | 0.37337 (17)  | 0.72161 (11) | 0.0216 (3)                  |
| H13 | 0.894 (5)    | 0.306 (3)     | 0.735 (2)    | 0.053 (7)*                  |
| C12 | 0.6385 (3)   | 0.50003 (19)  | 0.79159 (14) | 0.0217 (3)                  |
| C14 | 0.6254 (3)   | 0.33173 (19)  | 0.63165 (13) | 0.0202 (3)                  |
| H14 | 0.127 (4)    | 0.631 (3)     | 0.6791 (18)  | 0.038 (6)*                  |
| C15 | 0.3812 (3)   | 0.4364 (2)    | 0.62024 (14) | 0.0230 (4)                  |
| C16 | 0.2874 (3)   | 0.5612 (2)    | 0.69146 (15) | 0.0246 (4)                  |
| F5  | 0.29725 (18) | 0.17388 (12)  | 0.35499 (8)  | 0.0297 (3)                  |
| O2  | 0.7937 (2)   | -0.28047 (14) | 0.06559 (9)  | 0.0270 (3)                  |
| N1  | 0.4410 (3)   | -0.08912 (17) | 0.11725 (12) | 0.0222 (3)                  |
| H1  | 0.376 (4)    | -0.113 (3)    | 0.0611 (19)  | 0.036 (6)*                  |
| N3  | 0.7899 (2)   | -0.14513 (16) | 0.22807 (11) | 0.0205 (3)                  |
| N4  | 0.7783 (3)   | 0.00182 (18)  | 0.38789 (12) | 0.0250 (3)                  |
| H2  | 0.925 (4)    | -0.065 (3)    | 0.3978 (17)  | 0.035 (6)*                  |
| Н3  | 0.703 (4)    | 0.082 (3)     | 0.438 (2)    | 0.044 (6)*                  |
| C2  | 0.6802 (3)   | -0.17508 (19) | 0.13548 (13) | 0.0201 (3)                  |
| C4  | 0.6684 (3)   | -0.02817 (19) | 0.29956 (13) | 0.0195 (3)                  |
| C5  | 0.4193 (3)   | 0.06105 (19)  | 0.27865 (13) | 0.0214 (4)                  |
| C6  | 0.3091 (3)   | 0.0281 (2)    | 0.18955 (14) | 0.0229 (4)                  |
| H4  | 0.144 (4)    | 0.079 (2)     | 0.1689 (17)  | 0.033 (5)*                  |
| O21 | 0.1925 (2)   | 0.82377 (16)  | 0.94260 (11) | 0.0270 (3)                  |
| H21 | 0.261 (4)    | 0.757 (3)     | 0.892 (2)    | 0.043 (6)*                  |
| H22 | 0.089 (5)    | 0.783 (3)     | 0.977 (2)    | 0.051 (7)*                  |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(\hat{A}^2)$ 

Atomic displacement parameters  $(Å^2)$ 

|     | $U^{11}$   | $U^{22}$   | $U^{33}$   | $U^{12}$    | $U^{13}$    | $U^{23}$    |
|-----|------------|------------|------------|-------------|-------------|-------------|
| F15 | 0.0266 (5) | 0.0369 (6) | 0.0339 (6) | -0.0006 (4) | -0.0139 (4) | -0.0056 (5) |
| O14 | 0.0257 (6) | 0.0249 (6) | 0.0269 (7) | 0.0010 (5)  | -0.0069 (5) | -0.0079 (5) |
| N11 | 0.0226 (7) | 0.0216 (7) | 0.0285 (8) | 0.0006 (6)  | -0.0002 (6) | -0.0039 (6) |

# supporting information

| N12 | 0.0289 (8) | 0.0285 (8) | 0.0279 (8) | 0.0050 (7)  | -0.0069 (6) | -0.0128 (7) |
|-----|------------|------------|------------|-------------|-------------|-------------|
| N13 | 0.0181 (7) | 0.0224 (7) | 0.0222 (7) | 0.0010 (6)  | -0.0048 (5) | -0.0033 (6) |
| C12 | 0.0215 (8) | 0.0187 (8) | 0.0234 (8) | -0.0020 (6) | 0.0009 (6)  | -0.0031 (6) |
| C14 | 0.0209 (8) | 0.0192 (8) | 0.0198 (8) | -0.0031 (6) | -0.0019 (6) | -0.0012 (6) |
| C15 | 0.0205 (8) | 0.0238 (8) | 0.0247 (8) | -0.0040 (6) | -0.0055 (6) | 0.0007 (7)  |
| C16 | 0.0188 (8) | 0.0225 (8) | 0.0300 (9) | 0.0007 (6)  | -0.0019 (7) | 0.0025 (7)  |
| F5  | 0.0241 (5) | 0.0311 (6) | 0.0284 (5) | 0.0057 (4)  | -0.0014 (4) | -0.0101 (4) |
| O2  | 0.0236 (6) | 0.0320 (7) | 0.0237 (6) | -0.0013 (5) | -0.0037 (5) | -0.0104 (5) |
| N1  | 0.0191 (7) | 0.0273 (7) | 0.0196 (7) | -0.0027 (6) | -0.0055 (5) | -0.0009 (6) |
| N3  | 0.0180 (6) | 0.0220 (7) | 0.0199 (7) | -0.0002 (5) | -0.0035 (5) | -0.0028 (5) |
| N4  | 0.0216 (7) | 0.0265 (7) | 0.0230 (7) | 0.0046 (6)  | -0.0064 (6) | -0.0092 (6) |
| C2  | 0.0190 (7) | 0.0223 (8) | 0.0186 (8) | -0.0038 (6) | -0.0012 (6) | -0.0002 (6) |
| C4  | 0.0191 (7) | 0.0194 (7) | 0.0189 (8) | -0.0021 (6) | -0.0014 (6) | -0.0012 (6) |
| C5  | 0.0188 (8) | 0.0216 (8) | 0.0211 (8) | 0.0006 (6)  | 0.0008 (6)  | -0.0025 (6) |
| C6  | 0.0168 (7) | 0.0262 (8) | 0.0241 (8) | -0.0010 (6) | -0.0025 (6) | 0.0013 (7)  |
| O21 | 0.0218 (6) | 0.0319 (7) | 0.0247 (7) | -0.0004 (5) | -0.0020 (5) | -0.0064 (6) |
|     |            |            |            |             |             |             |

Geometric parameters (Å, °)

| F15—C15     | 1.3441 (19) | O2—C2    | 1.2552 (19) |
|-------------|-------------|----------|-------------|
| O14—C14     | 1.235 (2)   | N1—C6    | 1.364 (2)   |
| N11—C12     | 1.328 (2)   | N1—C2    | 1.368 (2)   |
| N11-C16     | 1.359 (2)   | N1—H1    | 0.83 (2)    |
| N12—C12     | 1.330 (2)   | N3—C4    | 1.340 (2)   |
| N12—H11     | 0.86 (3)    | N3—C2    | 1.356 (2)   |
| N12—H12     | 0.91 (2)    | N4—C4    | 1.313 (2)   |
| N13—C12     | 1.361 (2)   | N4—H2    | 0.88 (2)    |
| N13—C14     | 1.383 (2)   | N4—H3    | 0.91 (3)    |
| N13—H13     | 0.91 (3)    | C4—C5    | 1.429 (2)   |
| C14—C15     | 1.432 (2)   | C5—C6    | 1.330 (2)   |
| C15—C16     | 1.350 (2)   | С6—Н4    | 0.95 (2)    |
| C16—H14     | 0.96 (2)    | O21—H21  | 0.84 (3)    |
| F5—C5       | 1.3566 (18) | O21—H22  | 0.81 (3)    |
|             |             |          |             |
| C12—N11—C16 | 116.74 (14) | C6—N1—H1 | 120.8 (15)  |
| C12—N12—H11 | 119.5 (16)  | C2—N1—H1 | 117.5 (15)  |
| C12—N12—H12 | 117.7 (15)  | C4—N3—C2 | 120.27 (13) |
| H11—N12—H12 | 121 (2)     | C4—N4—H2 | 115.2 (14)  |
| C12—N13—C14 | 124.20 (14) | C4—N4—H3 | 122.4 (14)  |
| C12—N13—H13 | 120.2 (16)  | H2—N4—H3 | 122 (2)     |
| C14—N13—H13 | 115.5 (16)  | O2—C2—N3 | 121.40 (14) |
| N11-C12-N12 | 120.83 (15) | O2—C2—N1 | 118.93 (15) |
| N11-C12-N13 | 122.00 (15) | N3—C2—N1 | 119.67 (14) |
| N12-C12-N13 | 117.17 (14) | N4—C4—N3 | 119.75 (14) |
| O14—C14—N13 | 121.03 (14) | N4—C4—C5 | 121.07 (15) |
| O14—C14—C15 | 126.50 (15) | N3—C4—C5 | 119.18 (15) |
| N13-C14-C15 | 112.47 (14) | C6—C5—F5 | 121.80 (14) |
| F15—C15—C16 | 121.88 (14) | C6—C5—C4 | 120.43 (15) |

# supporting information

| F15—C15—C14 | 116.98 (14) | F5—C5—C4    | 117.71 (14) |
|-------------|-------------|-------------|-------------|
| C16—C15—C14 | 121.13 (15) | C5—C6—N1    | 118.72 (15) |
| C15—C16—N11 | 123.46 (15) | C5—C6—H4    | 126.9 (13)  |
| C15—C16—H14 | 118.6 (14)  | N1—C6—H4    | 114.3 (13)  |
| N11—C16—H14 | 117.9 (14)  | H21—O21—H22 | 106 (2)     |
| C6—N1—C2    | 121.68 (15) |             |             |

Hydrogen-bond geometry (Å, °)

| D—H···A                    | <i>D</i> —Н | H···A    | $D \cdots A$ | D—H··· $A$ |
|----------------------------|-------------|----------|--------------|------------|
| N12—H11…O2 <sup>i</sup>    | 0.86 (3)    | 2.13 (3) | 2.870 (2)    | 143 (2)    |
| N12—H12···O2 <sup>ii</sup> | 0.91 (2)    | 1.99 (2) | 2.889 (2)    | 172 (2)    |
| N13—H13…N3 <sup>ii</sup>   | 0.91 (3)    | 2.01 (3) | 2.922 (2)    | 175 (2)    |
| N1—H1···O21 <sup>iii</sup> | 0.83 (2)    | 1.95 (2) | 2.775 (2)    | 173 (2)    |
| N4—H2···O14 <sup>ii</sup>  | 0.88 (2)    | 2.07 (2) | 2.9482 (19)  | 177 (2)    |
| N4—H3…O14                  | 0.91 (3)    | 2.01 (2) | 2.8285 (19)  | 148.9 (19) |
| O21—H21…N11                | 0.84 (3)    | 1.94 (3) | 2.785 (2)    | 177 (2)    |
| O21—H22···O2 <sup>iv</sup> | 0.81 (3)    | 2.03 (3) | 2.826 (2)    | 170 (2)    |
|                            |             |          |              |            |

Symmetry codes: (i) *x*, *y*+1, *z*+1; (ii) –*x*+2, –*y*, –*z*+1; (iii) *x*, *y*–1, *z*–1; (iv) *x*–1, *y*+1, *z*+1.