Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Thomas C. Lewis and Derek A. Tocher*

Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, England

Correspondence e-mail: d.a.tocher@ucl.ac.uk

Key indicators

Single-crystal X-ray study
$T=150 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.041$
$w R$ factor $=0.111$
Data-to-parameter ratio $=13.7$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

A low-temperature determination of butyramide

The low-temperature structure determination of butyramide, $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NO}$, obtained as part of a experimental polymorph screen on adenine, is reported here. Each molecule takes part in four hydrogen bonds to form a three-dimensional ribbon structure.

Comment

The title compound, (I), is one of the n-aliphatic amides and has recently been studied as a possible agent for growth inhibition of human neuroblastoma cell lines (Rocchi et al., 1998) and inhibitory effects on DNA synthesis on hepatoma cells (Lea et al., 1993).

(I)

The powder diffractogram data for (I) were reported in 1950 (Matthews et al., 1950), as part of a study on derivatives of fatty acids, and the unit cell was determined five years later (Turner \& Lingafelter, 1955) using Weissenberg photographs, to give $a=9.94 \AA, b=5.79 \AA, c=10.02 \AA$ and $\beta=100.9^{\circ}$. Examination of the systematic absences showed the space group to be $P 2_{1} / a$; however, no atomic coordinates were published. We have solved and refined the crystal structure of butyramide at 150 K , to give a final R value of 0.041 . There is a 12° difference in the β angle between the two determinations. In (I), the bond lengths and angles are within expected values (Allen et al., 1987), with the $\mathrm{C}-\mathrm{C}$ bond lengths in the range 1.5057 (18) -1.515 (2) \AA and with $\mathrm{N} 1-\mathrm{C} 1$ and $\mathrm{O} 2-\mathrm{C} 1$ bond lengths of 1.3257 (15) and 1.2395 (13) \AA, respectively. There is a relative twist of the carbon chain from planarity, with torsion angles $\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$ and $\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$ of 177.41 (21) and $151.62(12)^{\circ}$, respectively. The packing consists of

Figure 1
View of (I), showing the atom labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.

Received 9 May 2005 Accepted 27 May 2005 Online 10 June 2005
centrosymmetric dimers, linked through a pair of $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds [2.9470 (15) \AA]. The other amine H atom is used to hydrogen bond to an adjacent dimer unit which is approximately perpendicular (73°), through an $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond [2.8496 (14) Å], resulting in the formation of a three-dimensional criss-crossed ribbon structure (Fig. 2).

Experimental

As part of an experimental polymorph screen on adenine, (I) was obtained from a 0.3 M aqueous solution of (I), to which approximately 0.15 g of adenine was added, and which was stirred on a hotplate at 303 K for 3 d . This solution was filtered, then evaporated at room temperature (10 ml solution, in $75 \times 25 \mathrm{~mm}$ vessels) in an attempt to crystallize adenine, as it has been found that the solubility of purine and pyrimidine bases increases in aqueous amide solutions (Herskovits \& Bowen, 1974). Colourless block-like crystals of (I) were formed after a number of days.

Crystal data

$\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NO}$
$M_{r}=87.12$
Monoclinic, $P 2_{1} / c$
$a=9.814$ (3) \AA
$b=5.9232(17) \AA$
$c=9.701$ (3) A
$\beta=112.070(4)^{\circ}$
$V=522.6(3) \AA^{3}$
$Z=4$

Data collection

Bruker SMART APEX
diffractometer
ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\min }=0.971, T_{\max }=0.987$
4321 measured reflections

$$
\begin{aligned}
& D_{x}=1.107 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 1237 \\
& \quad \text { reflections } \\
& \theta=2.2-25.4^{\circ} \\
& \mu=0.08 \mathrm{~mm}^{-1} \\
& T=150(2) \mathrm{K} \\
& \text { Block, colourless } \\
& 0.38 \times 0.20 \times 0.16 \mathrm{~mm}
\end{aligned}
$$

1244 independent reflections
993 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.021$
$\theta_{\text {max }}=28.3^{\circ}$
$h=-13 \rightarrow 12$
$k=-7 \rightarrow 7$
$l=-12 \rightarrow 12$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.041$
$w R\left(F^{2}\right)=0.111$
$S=1.01$
1244 reflections
91 parameters
All H -atom parameters refined

$$
\begin{aligned}
& w=1 /[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.064 P)^{2} \\
&+0.0651 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.19 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.12 \mathrm{e} \AA^{-3}
\end{aligned}
$$

Table 1
Hydrogen-bond geometry ($\AA{ }^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 \cdots$ O $^{\mathrm{i}}$	$0.92(2)$	$2.03(2)$	$2.9470(15)$	$176(1)$
$\mathrm{N} 1-\mathrm{H} 2 \cdots 2^{\mathrm{ii}}$	$0.89(2)$	$1.98(2)$	$2.8496(14)$	$168(1)$

Symmetry codes: (i) $-x+1,-y,-z+1$; (ii) $x,-y+\frac{1}{2}, z-\frac{1}{2}$.
H atoms were refined independently with an isotropic model.
Data collection: SMART (Bruker, 2000); cell refinement: SAINT; data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2000) and MERCURY (Bruno et al., 2002); software used to prepare material for publication: SHELXL97.

Figure 2
The packing in (I), showing the butyramide dimer unit which forms a hydrogen-bonded (dashed lines) criss-cross ribbon motif.

This research was supported by the EPSRC in funding a studentship for TCL. The authors acknowledge the Research Councils UK Basic Technology Programme for supporting 'Control and Prediction of the Organic Solid State'. For more information on this work, please visit http://www.cposs.org.uk.

References

Allen, F. H., Kennard, O. \& Watson, D. G. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-18.
Bruker (2000). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M. K., Macrae, C. F., McCabe, P., Pearson, J. \& Taylor, R. (2002). Acta Cryst. B58, 389-397.

Herskovits, T. T. \& Bowen, J. J. (1974). Biochemistry, 13, 5474-5483.
Lea, M. A., Xiao, Q., Sadhukhan, A., Sharma, S. \& Newmark, H. L. (1993). Anticancer Res. 13, 145-150.
Matthews, F. W., Warren, G. G. \& Michell, J. H. (1950). Anal. Chem. 22, 514 519.

Rocchi, P., Ferreri, A. M., Magrini, E. \& Perocco, P. (1998). Anticancer Res. 18, 1099-1103.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany. Turner, J. D. \& Lingafelter, E. C. (1955). Acta Cryst. 8, 549-550.

supporting information

Acta Cryst. (2005). E61, o1985-o1986 [https://doi.org/10.1107/S1600536805017022]

A low-temperature determination of butyramide

Thomas C. Lewis and Derek A. Tocher

Butyramide

Crystal data

$\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NO}$
$M_{r}=87.12$
Monoclinic, $P 2_{1} / c$
$a=9.814$ (3) \AA
$b=5.9232(17) \AA$
$c=9.701(3) \AA$
$\beta=112.070(4)^{\circ}$
$V=522.6(3) \AA^{3}$
$Z=4$

Data collection

Bruker SMART APEX

diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
ω rotation with narrow frames scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\min }=0.971, T_{\text {max }}=0.987$
$F(000)=192$
$D_{\mathrm{x}}=1.107 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 1237 reflections
$\theta=2.2-25.4^{\circ}$
$\mu=0.08 \mathrm{~mm}^{-1}$
$T=150 \mathrm{~K}$
Plate, colourless
$0.38 \times 0.20 \times 0.16 \mathrm{~mm}$

4321 measured reflections
1244 independent reflections
993 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.021$
$\theta_{\text {max }}=28.3^{\circ}, \theta_{\text {min }}=2.2^{\circ}$
$h=-13 \rightarrow 12$
$k=-7 \rightarrow 7$
$l=-12 \rightarrow 12$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.041$
$w R\left(F^{2}\right)=0.111$
$S=1.01$
1244 reflections
91 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
All H -atom parameters refined
$w=1 /\left[\sigma^{2}\left(F_{0}{ }^{2}\right)+(0.064 P)^{2}+0.0651 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.19 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\min }=-0.12 \mathrm{e}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$
O2	$0.62317(10)$	$0.21606(15)$	$0.61392(8)$	$0.0388(3)$
N1	$0.58606(12)$	$0.13501(19)$	$0.37696(10)$	$0.0327(3)$
C1	$0.65020(13)$	$0.25241(19)$	$0.50094(11)$	$0.0300(3)$
C2	$0.76164(15)$	$0.4276(2)$	$0.50031(14)$	$0.0370(3)$
C3	$0.77563(15)$	$0.6237(2)$	$0.60348(16)$	$0.0387(3)$
C4	$0.89354(17)$	$0.7892(3)$	$0.60401(19)$	$0.0457(4)$
H1	$0.5216(15)$	$0.022(3)$	$0.3760(14)$	$0.042(4)^{*}$
H2	$0.6058(15)$	$0.164(2)$	$0.2966(16)$	$0.037(3)^{*}$
H3	$0.7428(17)$	$0.475(3)$	$0.4012(17)$	$0.055(4)^{*}$
H4	$0.860(2)$	$0.344(3)$	$0.5341(19)$	$0.061(5)^{*}$
H5	$0.680(2)$	$0.701(3)$	$0.5663(18)$	$0.054(4)^{*}$
H6	$0.7966(16)$	$0.564(2)$	$0.7050(18)$	$0.050(4)^{*}$
H7	$0.8744(19)$	$0.845(3)$	$0.506(2)$	$0.063(5)^{*}$
H8	$0.898(2)$	$0.914(3)$	$0.664(2)$	$0.070(5)^{*}$
H9	$0.9914(18)$	$0.716(3)$	$0.6376(16)$	$0.049(4)^{*}$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O2	$0.0579(6)$	$0.0422(5)$	$0.0254(4)$	$-0.0114(4)$	$0.0263(4)$	$-0.0053(3)$
N1	$0.0456(6)$	$0.0368(6)$	$0.0222(5)$	$-0.0047(5)$	$0.0202(4)$	$-0.0012(4)$
C1	$0.0398(6)$	$0.0317(6)$	$0.0240(5)$	$0.0024(5)$	$0.0183(5)$	$0.0006(4)$
C2	$0.0475(7)$	$0.0403(7)$	$0.0297(6)$	$-0.0074(6)$	$0.0218(5)$	$-0.0019(5)$
C3	$0.0383(7)$	$0.0353(7)$	$0.0453(8)$	$0.0003(5)$	$0.0190(6)$	$-0.0028(5)$
C4	$0.0435(8)$	$0.0382(8)$	$0.0549(9)$	$-0.0031(6)$	$0.0179(7)$	$-0.0013(7)$

Geometric parameters ($\AA,{ }^{\circ}$)

$\mathrm{O} 2-\mathrm{C} 1$	1.2395 (13)	C2-H4	1.022 (18)
N1-C1	1.3257 (15)	C3-C4	1.515 (2)
N1-H1	0.919 (16)	C3-H5	0.985 (18)
N1-H2	0.887 (15)	C3-H6	0.993 (16)
C1-C2	1.5091 (17)	C4-H7	0.954 (18)
C2-C3	1.5057 (18)	C4-H8	0.93 (2)
C2-H3	0.950 (16)	C4-H9	0.990 (16)
C1-N1-H1	118.8 (8)	C2-C3-C4	112.36 (11)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{H} 2$	120.7 (9)	C2-C3-H5	106.1 (9)
$\mathrm{H} 1-\mathrm{N} 1-\mathrm{H} 2$	120.5 (13)	C4-C3-H5	109.0 (9)
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{N} 1$	121.64 (11)	C2-C3-H6	108.5 (9)

$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2$	$121.28(10)$	$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 6$	$110.7(9)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	$117.05(10)$	$\mathrm{H} 5-\mathrm{C} 3-\mathrm{H} 6$	$110.0(13)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1$	$114.40(10)$	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 7$	$110.9(11)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 3$	$112.4(10)$	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 8$	$111.5(11)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 3$	$109.9(10)$	$\mathrm{H} 7-\mathrm{C} 4-\mathrm{H} 8$	$107.2(16)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 4$	$108.6(10)$	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 9$	$111.3(9)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 4$	$105.5(10)$	$\mathrm{H} 7-\mathrm{C} 4-\mathrm{H} 9$	$106.4(14)$
$\mathrm{H} 3-\mathrm{C} 2-\mathrm{H} 4$	$105.5(13)$	$\mathrm{H} 8-\mathrm{C} 4-\mathrm{H} 9$	$109.4(14)$
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$		$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$177.41(12)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$			

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 — \mathrm{H} 1 \cdots \mathrm{O} 2^{\mathrm{i}}$	$0.919(16)$	$2.030(16)$	$2.9470(15)$	$175.9(13)$
$\mathrm{N} 1 — \mathrm{H} 2 \cdots \mathrm{O} 2^{\mathrm{ii}}$	$0.887(15)$	$1.976(15)$	$2.8496(14)$	$167.9(13)$

Symmetry codes: (i) $-x+1,-y,-z+1$; (ii) $x,-y+1 / 2, z-1 / 2$.

